Tissue specific electrochemical fingerprinting
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23185396
PubMed Central
PMC3501457
DOI
10.1371/journal.pone.0049654
PII: PONE-D-12-21844
Knihovny.cz E-zdroje
- MeSH
- elektrochemie metody MeSH
- interpretace statistických dat MeSH
- králíci MeSH
- krysa rodu Rattus MeSH
- metalothionein chemie MeSH
- potkani Wistar MeSH
- proteomika metody MeSH
- rozhodovací stromy MeSH
- statistické modely MeSH
- teoretické modely MeSH
- tkáňová distribuce * MeSH
- výpočetní biologie metody MeSH
- výzkumný projekt MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- metalothionein MeSH
BACKGROUND: Proteomics and metalloproteomics are rapidly developing interdisciplinary fields providing enormous amounts of data to be classified, evaluated and interpreted. Approaches offered by bioinformatics and also by biostatistical data analysis and treatment are therefore of extreme interest. Numerous methods are now available as commercial or open source tools for data processing and modelling ready to support the analysis of various datasets. The analysis of scientific data remains a big challenge, because each new task sets its specific requirements and constraints that call for the design of a targeted data pre-processing approach. METHODOLOGY/PRINCIPAL FINDINGS: This study proposes a mathematical approach for evaluating and classifying datasets obtained by electrochemical analysis of metallothionein in rat 9 tissues (brain, heart, kidney, eye, spleen, gonad, blood, liver and femoral muscle). Tissue extracts were heated and then analysed using the differential pulse voltammetry Brdicka reaction. The voltammograms were subsequently processed. Classification models were designed making separate use of two groups of attributes, namely attributes describing local extremes, and derived attributes resulting from the level=5 wavelet transform. CONCLUSIONS/SIGNIFICANCE: On the basis of our results, we were able to construct a decision tree that makes it possible to distinguish among electrochemical analysis data resulting from measurements of all the considered tissues. In other words, we found a way to classify an unknown rat tissue based on electrochemical analysis of the metallothionein in this tissue.
Zobrazit více v PubMed
Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79: 4813–4814.
Simpkins CO (2000) Metallothionein in human disease. Cell Mol Biol 46: 465–488. PubMed
Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, et al. (1994) Metallothionein-III Is Expressed in Neurons That Sequester Zinc in Synaptic Vesicles. J Neurosci 14: 5844–5857. PubMed PMC
Moffatt P, Seguin C (1998) Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol 17: 501–510. PubMed
Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: The multipurpose protein. Cell Mol Life Sci 59: 627–647. PubMed PMC
Ebadi M, Iversen PL (1994) Metallothionein in Carcinogenesis and Cancer-Chemotherapy. Gen Pharmacol 25: 1297–1310. PubMed
Jasani B, Schmid KW (1997) Significance of metallothionein overexpression in human. Histopathology 31: 211–214. PubMed
Thirumoorthy N, Kumar KTM, Sundar AS, Panayappan L, Chatterjee M (2007) Metallothionein: An overview. World J Gastroenterol 13: 993–996. PubMed PMC
Adam V, Fabrik I, Eckschlager T, Stiborova M, Trnkova L, et al. (2010) Vertebrate metallothioneins as target molecules for analytical techniques. TRAC-Trends Anal Chem 29: 409–418.
Adam V, Petrlova J, Wang J, Eckschlager T, Trnkova L, et al. (2010) Zeptomole Electrochemical Detection of Metallothioneins. PLoS One 5: 1–8. PubMed PMC
Eckschlager T, Adam V, Hrabeta J, Figova K, Kizek R (2009) Metallothioneins and cancer. Curr Protein Pept Sci 10: 360–375. PubMed
Klema J, Novakova L, Karel F, Stepankova O, Zelezny F (2008) Sequential data mining: A comparative case study in development of atherosclerosis risk factors. IEEE Trans Syst Man Cybern Part C-Appl Rev 38: 3–15.
Brdicka R (1933) Polarographic Studies with the Dropping Mercury Kathode. -Part XXXII. - Activation of Hydrogen in Sulphydryl Group of Some Thio-Acids in Cobalt Salts Solutions. Collect Czech Chem Commun 5: 148–164.
Bertini I, Luchinat C, Messori L, Vasak M (1989) Proton NMR-studies of the cobalt(II)-metallothionein system. J Am Chem Soc 111: 7296–7300.
Heyrovsky M (2000) New aspects of the Brdicka reaction of low-molecular thiols; Voltammetry at low rate of potential scan. Electroanalysis 12: 935–939.
Anzenbacher P, Kalous V (1972) Catalytic polarographic double wave of cysteine on a hanging mercury drop electrode. Collect Czech Chem Commun 37: 3209–&.
Mairanovskii SG (1968) Catalytic and Kinetic Waves in Polarography; Press P, editor. New York.
Raspor B, Paic M, Erk M (2001) Analysis of metallothioneins by the modified Brdicka procedure. Talanta 55: 109–115. PubMed
Olafson RW, Sim RG (1979) Electrochemical approach to quantitation and characterization of metallothioneins. Anal Biochem 100: 343–351. PubMed
Olafson RW, Olsson PE (1991) Electrochemical detection of metallothionein. Method Enzymol 205: 205–213. PubMed
Bebianno MJ, Machado LM (1997) Concentrations of metals and metallothioneins in Mytilus galloprovincialis along the south coast of Portugal. Marine Poll Bull 34: 666–671.
Olafson RW (1988) Electrochemical characterization of metallothionein metal mercaptide complexes - Application of cyclic voltammetry to investigation of metalloproteins. Bioelectrochem Bioenerg 19: 111–125.
Raspor B (2001) Elucidation of the mechanism of the Brdicka reaction. J Electroanal Chem 503: 159–162.
Vasatkova A, Krizova S, Krystofova O, Adam V, Zeman L, et al. (2009) Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats. Neuroendocrinol Lett 30: 163–168. PubMed
Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2009) YALE: Rapid Prototyping for Complex Data Mining Tasks. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-06): 1–6.
Nievergelt Y (2001) Wavelets made easy. Boston: Birkhäuser.
Chui CK (1992) An Introduction to Wavelets. San Diego: Academic Press.
Witten IH, Frank E, Hall MA (2011) Data Mining: Practical Machine Learning Tools and Techniques: Morgan Kaufmann.
Hoffman P, Grinstein G, Pinkney D (1999) Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations: Proceedings of the 1999 Workshop on New Paradigms in information Visualization and Manipulation: 9–16.
Fayyad UM, Grinstein GG, Wierse A (2002) Information Visualization in DataMining and Knowledge Discovery: Morgan Kaufmann.
Novakova L, Stepankova O (2006) Visualization of Some Relational Patterns for DM. Cybernetics Systems 2: 785–790.
Ward M, Grinstein G, Keim D (2010) Interactive Data Visualization: Foundations, Techniques, and Applications; Peters AK, editor. Natick, USA.
Barbas C, Moraes EP, Villasenor A (2011) Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal 55: 823–831. PubMed
Brdicka R (1937) Application of the polarographic effect of proteins in cancer diagnosis. Nature 139: 330–330.
Brdicka R (1937) Polarographic investigations in serological cancer diagnosis. Nature 139: 1020–1021.
Heyrovsky J (1938) Polarographic research in cancer. Nature 142: 317–319.
Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol Ther 80: 183–201. PubMed
Khalil AA, Kabapy NF, Deraz SF, Smith C (2011) Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta-Rev Cancer 1816: 89–104. PubMed
Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 61: 243–282. PubMed
Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631–677. PubMed
Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, et al. (2007) Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14: 2839–2847. PubMed
Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81: 15–27. PubMed
Fabrik I, Krizkova S, Huska D, Adam V, Hubalek J, et al. (2008) Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanalysis 20: 1521–1532.
Petrlova J, Potesil D, Mikelova R, Blastik O, Adam V, et al. (2006) Attomole voltammetric determination of metallothionein. Electrochim Acta 51: 5112–5119.