The Application of Curve Fitting on the Voltammograms of Various Isoforms of Metallothioneins-Metal Complexes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28287470
PubMed Central
PMC5372626
DOI
10.3390/ijms18030610
PII: ijms18030610
Knihovny.cz E-zdroje
- Klíčová slova
- electrochemistry, mass spectrometry MALDI-TOF, metallomics, metallothionein, signal resolving,
- MeSH
- chlorid sodný chemie MeSH
- elektrochemie MeSH
- elektrolyty MeSH
- komplexní sloučeniny chemie metabolismus MeSH
- kovy chemie metabolismus MeSH
- metalothionein chemie metabolismus MeSH
- protein - isoformy MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- elektrolyty MeSH
- komplexní sloučeniny MeSH
- kovy MeSH
- metalothionein MeSH
- protein - isoformy MeSH
The translation of metallothioneins (MTs) is one of the defense strategies by which organisms protect themselves from metal-induced toxicity. MTs belong to a family of proteins comprising MT-1, MT-2, MT-3, and MT-4 classes, with multiple isoforms within each class. The main aim of this study was to determine the behavior of MT in dependence on various externally modelled environments, using electrochemistry. In our study, the mass distribution of MTs was characterized using MALDI-TOF. After that, adsorptive transfer stripping technique with differential pulse voltammetry was selected for optimization of electrochemical detection of MTs with regard to accumulation time and pH effects. Our results show that utilization of 0.5 M NaCl, pH 6.4, as the supporting electrolyte provides a highly complicated fingerprint, showing a number of non-resolved voltammograms. Hence, we further resolved the voltammograms exhibiting the broad and overlapping signals using curve fitting. The separated signals were assigned to the electrochemical responses of several MT complexes with zinc(II), cadmium(II), and copper(II), respectively. Our results show that electrochemistry could serve as a great tool for metalloproteomic applications to determine the ratio of metal ion bonds within the target protein structure, however, it provides highly complicated signals, which require further resolution using a proper statistical method, such as curve fitting.
Zobrazit více v PubMed
Kojima Y. Definitions and nomenclature of metallothioneins. Method Enzymol. 1991;205:8–10. PubMed
Margoshes M., Vallee B.L. A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 1957;79:4813–4814. doi: 10.1021/ja01574a064. DOI
Klaassen C.D., Liu J., Diwan B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 2009;238:215–220. doi: 10.1016/j.taap.2009.03.026. PubMed DOI PMC
Park J.D., Liu Y.P., Klaassen C.D. Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology. 2001;163:93–100. doi: 10.1016/S0300-483X(01)00375-4. PubMed DOI
Heger Z., Zitka J., Cernei N., Krizkova S., Sztalmachova M., Kopel P., Masarik M., Hodek P., Zitka O., Adam V., et al. 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis. 2015;36:1256–1264. doi: 10.1002/elps.201400559. PubMed DOI
Tmejova K., Hynek D., Kopel P., Gumulec J., Krizkova S., Guran R., Heger Z., Kalina M., Vaculovicova M., Adam V., et al. Structural effects and nanoparticle size are essential for quantum dots-metallothionein complex formation. Colloid Surf. Biointerfaces. 2015;134:262–272. doi: 10.1016/j.colsurfb.2015.06.045. PubMed DOI
Babu C.S., Lee Y.M., Dudev T., Lim C. Modeling Zn2+ release from metallothionein. J. Phys. Chem. A. 2014;118:9244–9252. doi: 10.1021/jp503189v. PubMed DOI
Liu C.B., He X.Y., Hong X.R., Kang F.H., Chen S.Q., Wang Q., Chen X.Q., Hu D., Sun Q.H. Suppression of placental metallothionein 1 and zinc transporter 1 mRNA expressions contributes to fetal heart malformations caused by maternal zinc deficiency. Cardiovasc. Toxicol. 2014;14:329–338. doi: 10.1007/s12012-014-9256-0. PubMed DOI
Hwang J.J., Lee S.J., Kim T.Y., Cho J.H., Koh J.Y. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J. Neurosci. 2008;28:3114–3122. doi: 10.1523/JNEUROSCI.0199-08.2008. PubMed DOI PMC
Lee S.J., Koh J.Y. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol. Brain. 2010;3:1–9. doi: 10.1186/1756-6606-3-30. PubMed DOI PMC
Torreggiani A., Domenech J., Atrian S., Capdevila M., Tinti A. Raman study of in vivo synthesized Zn(II)-metallothionein complexes: Structural insight into metal clusters and protein folding. Biopolymers. 2008;89:1114–1124. doi: 10.1002/bip.21063. PubMed DOI
Gehrig P.M., You C.H., Dallinger R., Gruber C., Brouwer M., Kagi J.H.R., Hunziker P.E. Electrospray ionization mass spectrometry of zinc, cadmium, and copper metallothioneins: Evidence for metal-binding cooperativity. Protein Sci. 2000;9:395–402. doi: 10.1110/ps.9.2.395. PubMed DOI PMC
Adam V., Petrlova J., Wang J., Eckschlager T., Trnkova L., Kizek R. Zeptomole electrochemical detection of metallothioneins. PLoS ONE. 2010;5:e11441. doi: 10.1371/journal.pone.0011441. PubMed DOI PMC
Sobrova P., Vyslouzilova L., Stepankova O., Ryvolova M., Anyz J., Trnkova L., Adam V., Hubalek J., Kizek R. Tissue specific electrochemical fingerprinting. PLoS ONE. 2012;7:e49654. doi: 10.1371/journal.pone.0049654. PubMed DOI PMC
Adam V., Fabrik I., Eckschlager T., Stiborova M., Trnkova L., Kizek R. Vertebrate metallothioneins as target molecules for analytical techniques. Trends Anal. Chem. 2010;29:409–418. doi: 10.1016/j.trac.2010.02.004. DOI
Jakubowska M. Signal processing in electrochemistry. Electroanalysis. 2011;23:553–572. doi: 10.1002/elan.201000465. DOI
Alberich A., Arino C., Diaz-Cruz J.M., Esteban M. Soft modelling for the resolution of highly overlapped voltammetric peaks: Application to some Pb-phytochelatin systems. Talanta. 2007;71:344–352. doi: 10.1016/j.talanta.2006.04.006. PubMed DOI
Lopez M.J., Arino C., Diaz-Cruz S., Diaz-Cruz J.M., Tauler R., Esteban M. Voltammetry assisted by multivariate analysis as a tool for speciation of metallothioneins: Competitive complexation of α and β-metallothionein domains with cadmium and zinc. Environ. Sci. Technol. 2003;37:5609–5616. doi: 10.1021/es030048n. PubMed DOI
Cruz B.H., Diaz-Cruz J.M., Arino C., Esteban M. Complexation of heavy metals by phytochelatins: Voltammetric study of the binding of Cd2+ and Zn2+ ions by the phytochelatin (γ-glu-cys)3gly assisted by multivariate curve resolution. Environ. Sci. Technol. 2005;39:778–786. doi: 10.1021/es040065s. PubMed DOI
Pižeta I., Omanović D., Branica M. The influence of data treatment on the interpretation of experimental results in voltammetry. Anal. Chim. Acta. 1999;401:163–172. doi: 10.1016/S0003-2670(99)00491-2. DOI
Omanović D., Garnier C., Louis Y., Lenoble V., Mounier S., Pižeta I. Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry. Anal. Chim. Acta. 2010;664:136–143. doi: 10.1016/j.aca.2010.02.008. PubMed DOI
Pižeta I. Deconvolution of non-resolved voltammetric signals. Anal. Chim. Acta. 1994;285:95–102. doi: 10.1016/0003-2670(94)85013-5. DOI
Zelić M., Pižeta I., Branica M. Study of cadmium adsorption from iodide media by voltammetry combined with data treatment by deconvolution. Anal. Chim. Acta. 1993;281:63–70. doi: 10.1016/0003-2670(93)85340-P. DOI
Slowey A.J., Marvin-DiPasquale M. How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe(II), Mn(II), and S(-II) in undisturbed soils and sediments using voltammetry. Geochem. Trans. 2012;13:1–20. doi: 10.1186/1467-4866-13-6. PubMed DOI PMC
Garbellini G.S., Uliana C.V., Yamanaka H. Detection of DNA nucleotides on pretreated boron doped diamond electrodes. J. Braz. Chem. Soc. 2011;22:1241–1245. doi: 10.1590/S0103-50532011000700007. DOI
Engblom S.O. The fourier transform of a voltammetric peak and its use in resolution enhancement. J. Electroanal. Chem. 1990;296:371–394. doi: 10.1016/0022-0728(90)87259-M. DOI
Bucur R.V. Structure of the voltammograms of the platinum-black electrodes: Derivative voltammetry and data fitting analysis. Electrochim. Acta. 2014;129:76–84. doi: 10.1016/j.electacta.2014.02.018. DOI
Pižeta I., Lovrić M., Zelić M., Branica M. Application of a fourier transform method to the resolution enhancement of adsorption peaks in differential pulse polarography. J. Electroanal. Chem. 1991;318:25–38. doi: 10.1016/0022-0728(91)85291-V. DOI
Economou A., Fielden P.R., Packham A.J. Deconvolution of analytical peaks by means of the fast hartley transform. Analyst. 1996;121:1015–1018. doi: 10.1039/an9962101015. DOI
Lu X.Q., Mo J.Y., Kang J.W., Gao J.Z. Method of processing discrete data for deconvolution voltammetry—(ii) Spline wavelet transformation. Anal. Lett. 1998;31:529–540.
Engblom S.O. Properties and applications of the fourier transform of a voltammetric wave. J. Electroanal. Chem. 1992;332:73–99. doi: 10.1016/0022-0728(92)80342-2. DOI
Raspor B., Ivanka P., Branica M. Comparative quantitative analysis of overlapping voltammetric signals. Anal. Chim. Acta. 1994;285:103–111. doi: 10.1016/0003-2670(94)85014-3. DOI
Gutknech W.F., Perone S.P. Numerical deconvolution of overlapping stationary electrode polarographic curves with an on-line digital computer. Anal. Chem. 1970;42:906–917.
Boudreau P.A., Perone S.P. Quantitative resolution of overlapped peaks in programmed potential-step voltammetry. Anal. Chem. 1979;51:811–817. doi: 10.1021/ac50043a009. DOI
Romanenko S.V., Stromberg A.G., Selivanova E.V., Romanenko E.S. Resolution of the overlapping peaks in the case of linear sweep anodic stripping voltammetry via curve fitting. Chemometrics Intell. Lab. Syst. 2004;73:7–13. doi: 10.1016/j.chemolab.2004.04.002. DOI
Lehmann E., Zenobi R., Vetter S. Matrix-assisted laser desorption/ionization mass spectra reflect solution-phase zinc finger peptide complexation. J. Am. Soc. Mass Spectrom. 1999;10:27–34. doi: 10.1016/S1044-0305(98)00116-0. PubMed DOI
Nejdl L., Nguyen H.V., Richtera L., Krizkova S., Guran R., Masarik M., Hynek D., Heger Z., Lundberg K., Erikson K., et al. Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis. 2015;36:1894–1904. doi: 10.1002/elps.201500069. PubMed DOI
Ruiz C., Rodriguez A.R. Characterisation of human metallothioneins from foetal liver and adult kidney using differential pulse polarography. Anal. Chim. Acta. 1997;350:305–317. doi: 10.1016/S0003-2670(97)00255-9. DOI
Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657. doi: 10.1002/elan.200403264. DOI
Nieto O., Hellemans G., Bordin G., de Ley M., Rodriguez A.R. Characterisation of human foetal liver Zn-metallothioneins using differential pulse polarography. Talanta. 1998;46:315–324. doi: 10.1016/S0039-9140(97)00338-X. PubMed DOI
Adam V., Krizkova S., Zitka O., Trnkova L., Petrlova J., Beklova M., Kizek R. Determination of apo-metallothionein using adsorptive transfer stripping technique in connection with differential pulse voltammetry. Electroanalysis. 2007;19:339–347. doi: 10.1002/elan.200603738. DOI
Adam V., Petrlova J., Potesil D., Lubal P., Zehnalek J., Sures B., Kizek R. New electrochemical biosensor to determine platinum cytostatics to DNA structure. Chem. Listy. 2005;99:353–393.
Erk M., Raspor B. Evaluation of cadmium–metallothionein stability constants based on voltammetric measurements. Anal. Chim. Acta. 1998;360:189–194. doi: 10.1016/S0003-2670(97)00729-0. DOI
Skalickova S., Zitka O., Nejdl L., Krizkova S., Sochor J., Janu L., Ryvolova M., Hynek D., Zidkova J., Zidek V., et al. Study of interaction between metallothionein and CdTe quantum dots. Chromatographia. 2013;76:345–353. doi: 10.1007/s10337-013-2418-6. DOI
Hrbac J., Halouzka V., Trnkova L., Vacek J. El-chem viewer: A freeware package for the analysis of electroanalytical data and their post-acquisition processing. Sensors. 2014;14:13943–13954. doi: 10.3390/s140813943. PubMed DOI PMC
Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochim. Acta. 2006;51:5169–5173. doi: 10.1016/j.electacta.2006.03.077. DOI
Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914. doi: 10.1002/elan.200703953. DOI
Krizkova S., Adam V., Petrlova J., Zitka O., Stejskal K., Zehnalek J., Sures B., Trnkova L., Beklova M., Kizek R. A suggestion of electrochemical biosensor for study of platinum(II)-DNA interactions. Electroanalysis. 2007;19:331–338. doi: 10.1002/elan.200603737. DOI
Knipp M. Metallothioneins and platinum(II) anti-tumor compounds. Curr. Med. Chem. 2009;16:522–537. doi: 10.2174/092986709787458452. PubMed DOI
Knipp M., Karotki A.V., Chesnov S., Natile G., Sadler P.J., Brabec V., Vasak M. Reaction of Zn7metallothionein with cis- and trans-[Pt(N-donor)2Cl2] anticancer complexes: Trans-Pt(II) complexes retain their N-donor ligands. J. Med. Chem. 2007;50:4075–4086. doi: 10.1021/jm070271l. PubMed DOI
Huska D., Fabrik I., Baloun J., Adam V., Masarik M., Hubalek J., Vasku A., Trnkova L., Horna A., Zeman L., et al. Study of interactions between metallothionein and cisplatin by using differential pulse voltammetry Brdicka’s reaction and quartz crystal microbalance. Sensors. 2009;9:1355–1369. doi: 10.3390/s90301355. PubMed DOI PMC