The Application of Curve Fitting on the Voltammograms of Various Isoforms of Metallothioneins-Metal Complexes

. 2017 Mar 11 ; 18 (3) : . [epub] 20170311

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28287470

The translation of metallothioneins (MTs) is one of the defense strategies by which organisms protect themselves from metal-induced toxicity. MTs belong to a family of proteins comprising MT-1, MT-2, MT-3, and MT-4 classes, with multiple isoforms within each class. The main aim of this study was to determine the behavior of MT in dependence on various externally modelled environments, using electrochemistry. In our study, the mass distribution of MTs was characterized using MALDI-TOF. After that, adsorptive transfer stripping technique with differential pulse voltammetry was selected for optimization of electrochemical detection of MTs with regard to accumulation time and pH effects. Our results show that utilization of 0.5 M NaCl, pH 6.4, as the supporting electrolyte provides a highly complicated fingerprint, showing a number of non-resolved voltammograms. Hence, we further resolved the voltammograms exhibiting the broad and overlapping signals using curve fitting. The separated signals were assigned to the electrochemical responses of several MT complexes with zinc(II), cadmium(II), and copper(II), respectively. Our results show that electrochemistry could serve as a great tool for metalloproteomic applications to determine the ratio of metal ion bonds within the target protein structure, however, it provides highly complicated signals, which require further resolution using a proper statistical method, such as curve fitting.

Zobrazit více v PubMed

Kojima Y. Definitions and nomenclature of metallothioneins. Method Enzymol. 1991;205:8–10. PubMed

Margoshes M., Vallee B.L. A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 1957;79:4813–4814. doi: 10.1021/ja01574a064. DOI

Klaassen C.D., Liu J., Diwan B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 2009;238:215–220. doi: 10.1016/j.taap.2009.03.026. PubMed DOI PMC

Park J.D., Liu Y.P., Klaassen C.D. Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology. 2001;163:93–100. doi: 10.1016/S0300-483X(01)00375-4. PubMed DOI

Heger Z., Zitka J., Cernei N., Krizkova S., Sztalmachova M., Kopel P., Masarik M., Hodek P., Zitka O., Adam V., et al. 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis. 2015;36:1256–1264. doi: 10.1002/elps.201400559. PubMed DOI

Tmejova K., Hynek D., Kopel P., Gumulec J., Krizkova S., Guran R., Heger Z., Kalina M., Vaculovicova M., Adam V., et al. Structural effects and nanoparticle size are essential for quantum dots-metallothionein complex formation. Colloid Surf. Biointerfaces. 2015;134:262–272. doi: 10.1016/j.colsurfb.2015.06.045. PubMed DOI

Babu C.S., Lee Y.M., Dudev T., Lim C. Modeling Zn2+ release from metallothionein. J. Phys. Chem. A. 2014;118:9244–9252. doi: 10.1021/jp503189v. PubMed DOI

Liu C.B., He X.Y., Hong X.R., Kang F.H., Chen S.Q., Wang Q., Chen X.Q., Hu D., Sun Q.H. Suppression of placental metallothionein 1 and zinc transporter 1 mRNA expressions contributes to fetal heart malformations caused by maternal zinc deficiency. Cardiovasc. Toxicol. 2014;14:329–338. doi: 10.1007/s12012-014-9256-0. PubMed DOI

Hwang J.J., Lee S.J., Kim T.Y., Cho J.H., Koh J.Y. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J. Neurosci. 2008;28:3114–3122. doi: 10.1523/JNEUROSCI.0199-08.2008. PubMed DOI PMC

Lee S.J., Koh J.Y. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol. Brain. 2010;3:1–9. doi: 10.1186/1756-6606-3-30. PubMed DOI PMC

Torreggiani A., Domenech J., Atrian S., Capdevila M., Tinti A. Raman study of in vivo synthesized Zn(II)-metallothionein complexes: Structural insight into metal clusters and protein folding. Biopolymers. 2008;89:1114–1124. doi: 10.1002/bip.21063. PubMed DOI

Gehrig P.M., You C.H., Dallinger R., Gruber C., Brouwer M., Kagi J.H.R., Hunziker P.E. Electrospray ionization mass spectrometry of zinc, cadmium, and copper metallothioneins: Evidence for metal-binding cooperativity. Protein Sci. 2000;9:395–402. doi: 10.1110/ps.9.2.395. PubMed DOI PMC

Adam V., Petrlova J., Wang J., Eckschlager T., Trnkova L., Kizek R. Zeptomole electrochemical detection of metallothioneins. PLoS ONE. 2010;5:e11441. doi: 10.1371/journal.pone.0011441. PubMed DOI PMC

Sobrova P., Vyslouzilova L., Stepankova O., Ryvolova M., Anyz J., Trnkova L., Adam V., Hubalek J., Kizek R. Tissue specific electrochemical fingerprinting. PLoS ONE. 2012;7:e49654. doi: 10.1371/journal.pone.0049654. PubMed DOI PMC

Adam V., Fabrik I., Eckschlager T., Stiborova M., Trnkova L., Kizek R. Vertebrate metallothioneins as target molecules for analytical techniques. Trends Anal. Chem. 2010;29:409–418. doi: 10.1016/j.trac.2010.02.004. DOI

Jakubowska M. Signal processing in electrochemistry. Electroanalysis. 2011;23:553–572. doi: 10.1002/elan.201000465. DOI

Alberich A., Arino C., Diaz-Cruz J.M., Esteban M. Soft modelling for the resolution of highly overlapped voltammetric peaks: Application to some Pb-phytochelatin systems. Talanta. 2007;71:344–352. doi: 10.1016/j.talanta.2006.04.006. PubMed DOI

Lopez M.J., Arino C., Diaz-Cruz S., Diaz-Cruz J.M., Tauler R., Esteban M. Voltammetry assisted by multivariate analysis as a tool for speciation of metallothioneins: Competitive complexation of α and β-metallothionein domains with cadmium and zinc. Environ. Sci. Technol. 2003;37:5609–5616. doi: 10.1021/es030048n. PubMed DOI

Cruz B.H., Diaz-Cruz J.M., Arino C., Esteban M. Complexation of heavy metals by phytochelatins: Voltammetric study of the binding of Cd2+ and Zn2+ ions by the phytochelatin (γ-glu-cys)3gly assisted by multivariate curve resolution. Environ. Sci. Technol. 2005;39:778–786. doi: 10.1021/es040065s. PubMed DOI

Pižeta I., Omanović D., Branica M. The influence of data treatment on the interpretation of experimental results in voltammetry. Anal. Chim. Acta. 1999;401:163–172. doi: 10.1016/S0003-2670(99)00491-2. DOI

Omanović D., Garnier C., Louis Y., Lenoble V., Mounier S., Pižeta I. Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry. Anal. Chim. Acta. 2010;664:136–143. doi: 10.1016/j.aca.2010.02.008. PubMed DOI

Pižeta I. Deconvolution of non-resolved voltammetric signals. Anal. Chim. Acta. 1994;285:95–102. doi: 10.1016/0003-2670(94)85013-5. DOI

Zelić M., Pižeta I., Branica M. Study of cadmium adsorption from iodide media by voltammetry combined with data treatment by deconvolution. Anal. Chim. Acta. 1993;281:63–70. doi: 10.1016/0003-2670(93)85340-P. DOI

Slowey A.J., Marvin-DiPasquale M. How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe(II), Mn(II), and S(-II) in undisturbed soils and sediments using voltammetry. Geochem. Trans. 2012;13:1–20. doi: 10.1186/1467-4866-13-6. PubMed DOI PMC

Garbellini G.S., Uliana C.V., Yamanaka H. Detection of DNA nucleotides on pretreated boron doped diamond electrodes. J. Braz. Chem. Soc. 2011;22:1241–1245. doi: 10.1590/S0103-50532011000700007. DOI

Engblom S.O. The fourier transform of a voltammetric peak and its use in resolution enhancement. J. Electroanal. Chem. 1990;296:371–394. doi: 10.1016/0022-0728(90)87259-M. DOI

Bucur R.V. Structure of the voltammograms of the platinum-black electrodes: Derivative voltammetry and data fitting analysis. Electrochim. Acta. 2014;129:76–84. doi: 10.1016/j.electacta.2014.02.018. DOI

Pižeta I., Lovrić M., Zelić M., Branica M. Application of a fourier transform method to the resolution enhancement of adsorption peaks in differential pulse polarography. J. Electroanal. Chem. 1991;318:25–38. doi: 10.1016/0022-0728(91)85291-V. DOI

Economou A., Fielden P.R., Packham A.J. Deconvolution of analytical peaks by means of the fast hartley transform. Analyst. 1996;121:1015–1018. doi: 10.1039/an9962101015. DOI

Lu X.Q., Mo J.Y., Kang J.W., Gao J.Z. Method of processing discrete data for deconvolution voltammetry—(ii) Spline wavelet transformation. Anal. Lett. 1998;31:529–540.

Engblom S.O. Properties and applications of the fourier transform of a voltammetric wave. J. Electroanal. Chem. 1992;332:73–99. doi: 10.1016/0022-0728(92)80342-2. DOI

Raspor B., Ivanka P., Branica M. Comparative quantitative analysis of overlapping voltammetric signals. Anal. Chim. Acta. 1994;285:103–111. doi: 10.1016/0003-2670(94)85014-3. DOI

Gutknech W.F., Perone S.P. Numerical deconvolution of overlapping stationary electrode polarographic curves with an on-line digital computer. Anal. Chem. 1970;42:906–917.

Boudreau P.A., Perone S.P. Quantitative resolution of overlapped peaks in programmed potential-step voltammetry. Anal. Chem. 1979;51:811–817. doi: 10.1021/ac50043a009. DOI

Romanenko S.V., Stromberg A.G., Selivanova E.V., Romanenko E.S. Resolution of the overlapping peaks in the case of linear sweep anodic stripping voltammetry via curve fitting. Chemometrics Intell. Lab. Syst. 2004;73:7–13. doi: 10.1016/j.chemolab.2004.04.002. DOI

Lehmann E., Zenobi R., Vetter S. Matrix-assisted laser desorption/ionization mass spectra reflect solution-phase zinc finger peptide complexation. J. Am. Soc. Mass Spectrom. 1999;10:27–34. doi: 10.1016/S1044-0305(98)00116-0. PubMed DOI

Nejdl L., Nguyen H.V., Richtera L., Krizkova S., Guran R., Masarik M., Hynek D., Heger Z., Lundberg K., Erikson K., et al. Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis. 2015;36:1894–1904. doi: 10.1002/elps.201500069. PubMed DOI

Ruiz C., Rodriguez A.R. Characterisation of human metallothioneins from foetal liver and adult kidney using differential pulse polarography. Anal. Chim. Acta. 1997;350:305–317. doi: 10.1016/S0003-2670(97)00255-9. DOI

Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657. doi: 10.1002/elan.200403264. DOI

Nieto O., Hellemans G., Bordin G., de Ley M., Rodriguez A.R. Characterisation of human foetal liver Zn-metallothioneins using differential pulse polarography. Talanta. 1998;46:315–324. doi: 10.1016/S0039-9140(97)00338-X. PubMed DOI

Adam V., Krizkova S., Zitka O., Trnkova L., Petrlova J., Beklova M., Kizek R. Determination of apo-metallothionein using adsorptive transfer stripping technique in connection with differential pulse voltammetry. Electroanalysis. 2007;19:339–347. doi: 10.1002/elan.200603738. DOI

Adam V., Petrlova J., Potesil D., Lubal P., Zehnalek J., Sures B., Kizek R. New electrochemical biosensor to determine platinum cytostatics to DNA structure. Chem. Listy. 2005;99:353–393.

Erk M., Raspor B. Evaluation of cadmium–metallothionein stability constants based on voltammetric measurements. Anal. Chim. Acta. 1998;360:189–194. doi: 10.1016/S0003-2670(97)00729-0. DOI

Skalickova S., Zitka O., Nejdl L., Krizkova S., Sochor J., Janu L., Ryvolova M., Hynek D., Zidkova J., Zidek V., et al. Study of interaction between metallothionein and CdTe quantum dots. Chromatographia. 2013;76:345–353. doi: 10.1007/s10337-013-2418-6. DOI

Hrbac J., Halouzka V., Trnkova L., Vacek J. El-chem viewer: A freeware package for the analysis of electroanalytical data and their post-acquisition processing. Sensors. 2014;14:13943–13954. doi: 10.3390/s140813943. PubMed DOI PMC

Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochim. Acta. 2006;51:5169–5173. doi: 10.1016/j.electacta.2006.03.077. DOI

Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914. doi: 10.1002/elan.200703953. DOI

Krizkova S., Adam V., Petrlova J., Zitka O., Stejskal K., Zehnalek J., Sures B., Trnkova L., Beklova M., Kizek R. A suggestion of electrochemical biosensor for study of platinum(II)-DNA interactions. Electroanalysis. 2007;19:331–338. doi: 10.1002/elan.200603737. DOI

Knipp M. Metallothioneins and platinum(II) anti-tumor compounds. Curr. Med. Chem. 2009;16:522–537. doi: 10.2174/092986709787458452. PubMed DOI

Knipp M., Karotki A.V., Chesnov S., Natile G., Sadler P.J., Brabec V., Vasak M. Reaction of Zn7metallothionein with cis- and trans-[Pt(N-donor)2Cl2] anticancer complexes: Trans-Pt(II) complexes retain their N-donor ligands. J. Med. Chem. 2007;50:4075–4086. doi: 10.1021/jm070271l. PubMed DOI

Huska D., Fabrik I., Baloun J., Adam V., Masarik M., Hubalek J., Vasku A., Trnkova L., Horna A., Zeman L., et al. Study of interactions between metallothionein and cisplatin by using differential pulse voltammetry Brdicka’s reaction and quartz crystal microbalance. Sensors. 2009;9:1355–1369. doi: 10.3390/s90301355. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace