eL-Chem Viewer: a freeware package for the analysis of electroanalytical data and their post-acquisition processing

. 2014 Jul 31 ; 14 (8) : 13943-54. [epub] 20140731

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25090415

In electrochemical sensing, a number of voltammetric or amperometric curves are obtained which are subsequently processed, typically by evaluating peak currents and peak potentials or wave heights and half-wave potentials, frequently after background correction. Transformations of voltammetric data can help to extract specific information, e.g., the number of transferred electrons, and can reveal aspects of the studied electrochemical system, e.g., the contribution of adsorption phenomena. In this communication, we introduce a LabView-based software package, 'eL-Chem Viewer', which is for the analysis of voltammetric and amperometric data, and enables their post-acquisition processing using semiderivative, semiintegral, derivative, integral and elimination procedures. The software supports the single-click transfer of peak/wave current and potential data to spreadsheet software, a feature that greatly improves productivity when constructing calibration curves, trumpet plots and performing similar tasks. eL-Chem Viewer is freeware and can be downloaded from www.lchem.cz/elchemviewer.htm.

Zobrazit více v PubMed

Jakubowska M. Signal processing in electrochemistry. Electroanalysis. 2011;23:553–572.

Fourmond V., Hoke K., Heering H.A., Baffert C., Leroux F., Bertrand P., Leger C. Soas: A free program to analyze electrochemical data and other one-dimensional signals. Bioelectrochemistry. 2009;76:141–147. PubMed

Mozo J.D. To Electrochemical Data Processing Software v.4.0. [(accessed on 28 July 2014)]. Available online: http://www.uhu.es/giea/Tto/help.htm.

Economou A., Bolis S.D., Efstathiou C.E., Volikakis G.J. A “virtual” electroanalytical instrument for square wave voltammetry. Anal. Chim. Acta. 2002;467:179–188.

Stevic Z., Andjelkovic Z., Antic D. A new PC and labVIEW package based system for electrochemical investigations. Sensors. 2008;8:1819–1831. PubMed PMC

Bucher E.S., Brooks K., Verber M.D., Keithley R.B., Owesson-White C., Carroll S., Takmakov P., McKinney C.J., Wightman R.M. Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis. Anal. Chem. 2013;85:10344–10353. PubMed PMC

Savitzky A., Golay M.J.E. Smoothing + differentiation of data by simplified least squares procedures. Anal. Chem. 1964;36:1627–1639.

Savéant J.M. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry. John Wiley & Sons; Hoboken, NJ, USA: 2006. p. 485.

Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications. 2nd ed. Wiley; New York, NY, USA: 2001.

Grenness M., Oldham K.B. Semi-Integral electroanalysis—Theory and verification. Anal. Chem. 1972;44:1121–1129.

Goto M., Oldham K.B. Semiintegral electroanalysis—Shapes of neopolarograms. Anal. Chem. 1973;45:2043–2050.

Goto M., Oldham K.B. Semi-Integral electroanalysis—Shape of irreversible neopolarograms. Anal. Chem. 1976;48:1671–1676.

Palys M., Korba T., Bos M., Vanderlinden W.E. The separation of overlapping peaks in cyclic voltammetry by means of semi-differential transformation. Talanta. 1991;38:723–733. PubMed

Huang W., Henderson T.L.E., Bond A.M., Oldham K.B. Curve-Fitting to resolve overlapping voltammetric peaks—Model and examples. Anal. Chim. Acta. 1995;304:1–15.

Bentley C.L., Bond A.M., Hollenkamp A.F., Mahon P.J., Zhang J. Advantages available in the application of the semi-integral electroanalysis technique for the determination of diffusion coefficients in the highly viscous ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate. Anal. Chem. 2013;85:2239–2245. PubMed

Bond A.M., Oldham K.B., Snook G.A. Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high resistance organic solvents. Anal. Chem. 2000;72:3492–3496. PubMed

Bowling R., Mccreery R.L. Diagnosis of adsorption on solid electrodes with semi-integral voltammetry. Anal. Chem. 1988;60:605–608.

Dracka O. Theory of current elimination in linear scan voltammetry. J. Electroanal. Chem. 1996;402:19–28.

Trnkova L., Dracka O. Elimination voltammetry. Experimental verification and extension of theoretical results. J. Electroanal. Chem. 1996;413:123–129.

Trnkova L., Novotny L., Serrano N., Klosova K., Polaskova P. Elimination voltammetry of miniaturized mercury drop electrodes. Electroanalysis. 2010;22:1873–1880.

Serrano N., Klosova K., Trnkova L. Elimination procedure as a novel and promising mathematical approach in voltammetric methods. Electroanalysis. 2010;22:2071–2080.

Alberich A., Serrano N., Arino C., Diaz-Cruz J.M., Esteban M. Bismuth film electrodes for the study of metal thiolate complexation: An alternative to mercury electrodes. Talanta. 2009;78:1017–1022. PubMed

Kang J.W., Li Z.F., Lu X.Q., Wang Y.S. Studies on the electrochemical behavior of 3-nitrobenzaldehyde thiosemicarbazone at glass carbon electrode modified with nano-gamma-al2o3. Electrochim. Acta. 2004;50:19–26.

Sander S., Navratil T., Novotny L. Study of the complexation, adsorption and electrode reaction mechanisms of chromium (vi) and (iii) with dtpa under adsorptive stripping voltammetric conditions. Electroanalysis. 2003;15:1513–1521.

Skopalova J., Navratil T. Application of elimination voltammetry to the study of electrochemical reduction and determination of the herbicide metribuzin. Chem. Anal. 2007;52:961–977.

Trnkova L. Identification of current nature by elimination voltammetry with linear scan. J. Electroanal. Chem. 2005;582:258–266.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...