The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size

. 2016 Apr 20 ; 17 (4) : . [epub] 20160420

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27104527

Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

Zobrazit více v PubMed

An H., Jin B. Prospects of nanoparticle-DNA binding and its implications in medical biotechnology. Biotechnol. Adv. 2012;30:1721–1732. doi: 10.1016/j.biotechadv.2012.03.007. PubMed DOI

Fakruddin M., Hossain Z., Afroz H. Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnol. 2012;10:31. doi: 10.1186/1477-3155-10-31. PubMed DOI PMC

De Bono J.S., Oudard S., Ozguroglu M., Hansen S., Machiels J.-P., Kocak I., Gravis G., Bodrogi I., Mackenzie M.J., Shen L., et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet. 2010;376:1147–1154. doi: 10.1016/S0140-6736(10)61389-X. PubMed DOI

Kneuer C., Sameti M., Haltner E.G., Schiestel T., Schirra H., Schmidt H., Lehr C.-M. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 2000;196:257–261. doi: 10.1016/S0378-5173(99)00435-4. PubMed DOI

Gaylord B.S., Heeger A.J., Bazan G.C. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc. Natl. Acad. Sci. USA. 2002;99:10954–10957. doi: 10.1073/pnas.162375999. PubMed DOI PMC

Basu S., Jana S., Pande S., Pal T. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. J. Colloid Interface Sci. 2008;321:288–293. doi: 10.1016/j.jcis.2008.02.015. PubMed DOI

Pershina A.G., Sazonov A.E., Filimonov V.D. Magnetic nanoparticles-DNA interactions: Design and applications of nanobiohybrid systems. Russ. Chem. Rev. 2014;83:299–322. doi: 10.1070/RC2014v083n04ABEH004412. DOI

Kudr J., Richtera L., Nejdl L., Blazkova I., Milosavljevic V., Moravec Z., Wawrzak D., Kopel P., Ruttkay-Nedecky B., Adam V., et al. Characterization of Carbon Dots Covered with Polyvinylpyrrolidone and Polyethylene Glycol. Int. J. Electrochem. Sci. 2015;10:8243–8254.

Hom C., Lu J., Tamanoi F. Silica nanoparticles as a delivery system for nucleic acid-based reagents. J. Mater. Chem. 2009;19:6308–6316. doi: 10.1039/b904197d. PubMed DOI PMC

Shi B., Shin Y.K., Hassanali A.A., Singer S.J. DNA Binding to the Silica Surface. J. Phys. Chem. B. 2015;119:11030–11040. doi: 10.1021/acs.jpcb.5b01983. PubMed DOI

Sun L., Zhang Z., Wang S., Zhang J., Li H., Ren L., Weng J., Zhang Q. Effect of pH on the Interaction of Gold Nanoparticles with DNA and Application in the Detection of Human p53 Gene Mutation. Nanoscale Res. Lett. 2008;4:216–220. doi: 10.1007/s11671-008-9228-z. PubMed DOI PMC

Thompson D.G., Enright A., Faulds K., Smith W.E., Graham D. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem. 2008;80:2805–2810. doi: 10.1021/ac702403w. PubMed DOI

Kouassi G.K., Irudayaraj J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem. 2006;78:3234–3241. doi: 10.1021/ac051621j. PubMed DOI

Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI

Estelrich J., Escribano E., Queralt J., Busquets M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015;16:8070–8101. doi: 10.3390/ijms16048070. PubMed DOI PMC

Tombacz E., Turcu R., Socoliuc V., Vekas L. Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem. Biophys. Res. Commun. 2015;468:442–453. doi: 10.1016/j.bbrc.2015.08.030. PubMed DOI

Kandasamy G., Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 2015;496:191–218. doi: 10.1016/j.ijpharm.2015.10.058. PubMed DOI

Gutierrez L., Costo R., Gruttner C., Westphal F., Gehrke N., Heinke D., Fornara A., Pankhurst Q.A., Johansson C., Veintemillas-Verdaguer S., et al. Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans. 2015;44:2943–2952. doi: 10.1039/C4DT03013C. PubMed DOI

Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI

Meara J.G., Leather A.J., Hagander L., Alkire B.C., Alonso N., Ameh E.A., Bickler S.W., Conteh L., Dare A.J., Davies J., et al. Global Surgery 2030: Evidence and solutions for achieving health, welfare, and economic development. Int. J. Obstet. Anesth. 2016;25:75–78. PubMed

Alaeddini R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 2012;6:297–305. doi: 10.1016/j.fsigen.2011.08.006. PubMed DOI

Ding G., Adriane K., Chen X., Chen J., Liu Y. PVP magnetic nanospheres: Biocompatibility, in vitro and in vivo bleomycin release. Int. J. Pharm. 2007;328:78–85. PubMed

Song L., Liu T., Liang D., Fang D., Chu B. Separation of double-stranded DNA fragments by capillary electrophoresis in interpenetrating networks of polyacrylamide and polyvinylpyrrolidone. Electrophoresis. 2001;22:3688–3698. doi: 10.1002/1522-2683(200109)22:17<3688::AID-ELPS3688>3.0.CO;2-I. PubMed DOI

Hurth C., Gu J., Aboud M., Estes M.D., Nordquist A.R., McCord B., Zenhausern F. Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: A comparative study. Electrophoresis. 2012;33:2604–2611. doi: 10.1002/elps.201200148. PubMed DOI

Giordano B.C., Copeland E.R., Landers J.P. Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis. 2001;22:334–340. doi: 10.1002/1522-2683(200101)22:2<334::AID-ELPS334>3.0.CO;2-O. PubMed DOI

Bagwe R.P., Hilliard L.R., Tan W. Surface modification of silica nanoparticles to reduce aggregation and non-specific binding. Langmuir. 2006;22:4357–4362. doi: 10.1021/la052797j. PubMed DOI PMC

Wilson I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997;63:3741–3751. PubMed PMC

Chakrabarti R., Schutt C.E. The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Res. 2001;29:2377–2381. doi: 10.1093/nar/29.11.2377. PubMed DOI PMC

Koonjul P.K., Brandt W.F., Farrant J.M., Lindsey G.G. Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res. 1999;27:915–916. doi: 10.1093/nar/27.3.915. PubMed DOI PMC

Bustamante C., Bryant Z., Smith S.B. Ten years of tension: Single-molecule DNA mechanics. Nature. 2003;421:423–427. doi: 10.1038/nature01405. PubMed DOI

Heger Z., Cernei N., Guran R., Michalek P., Milosavljevic V., Kopel P., Zitka O., Kynicky J., Lany P., Adam V., et al. γ-Fe2O3 Magnetic Core Functionalized with Tetraethyl Orthosilicate and 3-Aminopropyl Triethoxysilane for an Isolation of H7N7 Influenza Serotype Virions. Int. J. Electrochem. Sci. 2014;9:3374–3385.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace