The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27104527
PubMed Central
PMC4849006
DOI
10.3390/ijms17040550
PII: ijms17040550
Knihovny.cz E-zdroje
- Klíčová slova
- DNA isolation, magnetic, nanoparticles, particle size, zeta potential,
- MeSH
- biotechnologie metody MeSH
- DNA chemie izolace a purifikace MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- magnetismus metody MeSH
- mikroskopie elektronová rastrovací MeSH
- nanočástice chemie ultrastruktura MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.
Zobrazit více v PubMed
An H., Jin B. Prospects of nanoparticle-DNA binding and its implications in medical biotechnology. Biotechnol. Adv. 2012;30:1721–1732. doi: 10.1016/j.biotechadv.2012.03.007. PubMed DOI
Fakruddin M., Hossain Z., Afroz H. Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnol. 2012;10:31. doi: 10.1186/1477-3155-10-31. PubMed DOI PMC
De Bono J.S., Oudard S., Ozguroglu M., Hansen S., Machiels J.-P., Kocak I., Gravis G., Bodrogi I., Mackenzie M.J., Shen L., et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet. 2010;376:1147–1154. doi: 10.1016/S0140-6736(10)61389-X. PubMed DOI
Kneuer C., Sameti M., Haltner E.G., Schiestel T., Schirra H., Schmidt H., Lehr C.-M. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 2000;196:257–261. doi: 10.1016/S0378-5173(99)00435-4. PubMed DOI
Gaylord B.S., Heeger A.J., Bazan G.C. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc. Natl. Acad. Sci. USA. 2002;99:10954–10957. doi: 10.1073/pnas.162375999. PubMed DOI PMC
Basu S., Jana S., Pande S., Pal T. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. J. Colloid Interface Sci. 2008;321:288–293. doi: 10.1016/j.jcis.2008.02.015. PubMed DOI
Pershina A.G., Sazonov A.E., Filimonov V.D. Magnetic nanoparticles-DNA interactions: Design and applications of nanobiohybrid systems. Russ. Chem. Rev. 2014;83:299–322. doi: 10.1070/RC2014v083n04ABEH004412. DOI
Kudr J., Richtera L., Nejdl L., Blazkova I., Milosavljevic V., Moravec Z., Wawrzak D., Kopel P., Ruttkay-Nedecky B., Adam V., et al. Characterization of Carbon Dots Covered with Polyvinylpyrrolidone and Polyethylene Glycol. Int. J. Electrochem. Sci. 2015;10:8243–8254.
Hom C., Lu J., Tamanoi F. Silica nanoparticles as a delivery system for nucleic acid-based reagents. J. Mater. Chem. 2009;19:6308–6316. doi: 10.1039/b904197d. PubMed DOI PMC
Shi B., Shin Y.K., Hassanali A.A., Singer S.J. DNA Binding to the Silica Surface. J. Phys. Chem. B. 2015;119:11030–11040. doi: 10.1021/acs.jpcb.5b01983. PubMed DOI
Sun L., Zhang Z., Wang S., Zhang J., Li H., Ren L., Weng J., Zhang Q. Effect of pH on the Interaction of Gold Nanoparticles with DNA and Application in the Detection of Human p53 Gene Mutation. Nanoscale Res. Lett. 2008;4:216–220. doi: 10.1007/s11671-008-9228-z. PubMed DOI PMC
Thompson D.G., Enright A., Faulds K., Smith W.E., Graham D. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem. 2008;80:2805–2810. doi: 10.1021/ac702403w. PubMed DOI
Kouassi G.K., Irudayaraj J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem. 2006;78:3234–3241. doi: 10.1021/ac051621j. PubMed DOI
Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI
Estelrich J., Escribano E., Queralt J., Busquets M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015;16:8070–8101. doi: 10.3390/ijms16048070. PubMed DOI PMC
Tombacz E., Turcu R., Socoliuc V., Vekas L. Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem. Biophys. Res. Commun. 2015;468:442–453. doi: 10.1016/j.bbrc.2015.08.030. PubMed DOI
Kandasamy G., Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 2015;496:191–218. doi: 10.1016/j.ijpharm.2015.10.058. PubMed DOI
Gutierrez L., Costo R., Gruttner C., Westphal F., Gehrke N., Heinke D., Fornara A., Pankhurst Q.A., Johansson C., Veintemillas-Verdaguer S., et al. Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans. 2015;44:2943–2952. doi: 10.1039/C4DT03013C. PubMed DOI
Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI
Meara J.G., Leather A.J., Hagander L., Alkire B.C., Alonso N., Ameh E.A., Bickler S.W., Conteh L., Dare A.J., Davies J., et al. Global Surgery 2030: Evidence and solutions for achieving health, welfare, and economic development. Int. J. Obstet. Anesth. 2016;25:75–78. PubMed
Alaeddini R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 2012;6:297–305. doi: 10.1016/j.fsigen.2011.08.006. PubMed DOI
Ding G., Adriane K., Chen X., Chen J., Liu Y. PVP magnetic nanospheres: Biocompatibility, in vitro and in vivo bleomycin release. Int. J. Pharm. 2007;328:78–85. PubMed
Song L., Liu T., Liang D., Fang D., Chu B. Separation of double-stranded DNA fragments by capillary electrophoresis in interpenetrating networks of polyacrylamide and polyvinylpyrrolidone. Electrophoresis. 2001;22:3688–3698. doi: 10.1002/1522-2683(200109)22:17<3688::AID-ELPS3688>3.0.CO;2-I. PubMed DOI
Hurth C., Gu J., Aboud M., Estes M.D., Nordquist A.R., McCord B., Zenhausern F. Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: A comparative study. Electrophoresis. 2012;33:2604–2611. doi: 10.1002/elps.201200148. PubMed DOI
Giordano B.C., Copeland E.R., Landers J.P. Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis. 2001;22:334–340. doi: 10.1002/1522-2683(200101)22:2<334::AID-ELPS334>3.0.CO;2-O. PubMed DOI
Bagwe R.P., Hilliard L.R., Tan W. Surface modification of silica nanoparticles to reduce aggregation and non-specific binding. Langmuir. 2006;22:4357–4362. doi: 10.1021/la052797j. PubMed DOI PMC
Wilson I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997;63:3741–3751. PubMed PMC
Chakrabarti R., Schutt C.E. The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Res. 2001;29:2377–2381. doi: 10.1093/nar/29.11.2377. PubMed DOI PMC
Koonjul P.K., Brandt W.F., Farrant J.M., Lindsey G.G. Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res. 1999;27:915–916. doi: 10.1093/nar/27.3.915. PubMed DOI PMC
Bustamante C., Bryant Z., Smith S.B. Ten years of tension: Single-molecule DNA mechanics. Nature. 2003;421:423–427. doi: 10.1038/nature01405. PubMed DOI
Heger Z., Cernei N., Guran R., Michalek P., Milosavljevic V., Kopel P., Zitka O., Kynicky J., Lany P., Adam V., et al. γ-Fe2O3 Magnetic Core Functionalized with Tetraethyl Orthosilicate and 3-Aminopropyl Triethoxysilane for an Isolation of H7N7 Influenza Serotype Virions. Int. J. Electrochem. Sci. 2014;9:3374–3385.
DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering
Magnetic Nanoparticles: From Design and Synthesis to Real World Applications