Chick chorioallantoic membrane (CAM) assay for the evaluation of the antitumor and antimetastatic activity of platinum-based drugs in association with the impact on the amino acid metabolism
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36824411
PubMed Central
PMC9941372
DOI
10.1016/j.mtbio.2023.100570
PII: S2590-0064(23)00030-3
Knihovny.cz E-zdroje
- Klíčová slova
- Amino acids metabolism, Breast cancer, CAM assay, Cisplatin, Platinum nanoparticles, TCA cycle,
- Publikační typ
- časopisecké články MeSH
The combination of in ovo and ex ovo chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the in vivo performance has barely scratched the surface. Herein, we used CAM assay as in vivo model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft. PtNPs showed a higher efficiency to inhibit the tumor growth and metastasis compared to CDDP. The amino acids profiling in the MDA-MB-231 cells revealed that the PtNPs had an overall depleting effect on the amino acids content. Noteworthy, more side effects to amino acid metabolism were deduced from the depletion of the amino acids in tumor, brain, and liver upon CDDP treatment. Different sets of enzymes of the tricarboxylic acid (TCA) cycle were targeted by PtNPs and CDDP, and while mRNA encoding multiple enzymes was downregulated by PtNPs, the treatment with CDDP affected only two TCA enzymes, indicating a different mechanism of action. Taken together, CAM assay represents and invaluable model, demonstrating the PtNPs capability of repressing angiogenesis, decrease amino acid contents and disrupt the TCA cycle.
Zobrazit více v PubMed
Manzoor S., Bashir D.J., Imtiyaz K., Rizvi M.M.A., Ahamad I., Fatma T., et al. Biofabricated platinum nanoparticles: therapeutic evaluation as a potential nanodrug against breast cancer cells and drug-resistant bacteria. RSC Adv. 2021;11:24900–24916. PubMed PMC
Ullah S., Ahmad A., Wang A., Raza M., Jan A.U., Tahir K., et al. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549) J. Photochem. Photobiol., B. 2017;173:368–375. PubMed
Sahin B., Aygun A., Gunduz H., Sahin K., Demir E., Akocak S., et al. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B Biointerfaces. 2018;163:119–124. PubMed
Abed A., Derakhshan M., Karimi M., Shirazinia M., Mahjoubin-Tehran M., Homayonfal M., et al. Platinum nanoparticles in biomedicine: preparation, anti-cancer activity, and drug delivery vehicles. Front. Pharmacol. 2022;13 PubMed PMC
Jeyaraj M., Gurunathan S., Qasim M., Kang M.H., Kim J.H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials. 2019:9. PubMed PMC
Nejdl L., Kudr J., Moulick A., Hegerova D., Ruttkay-Nedecky B., Gumulec J., et al. Platinum nanoparticles induce damage to DNA and inhibit DNA replication. PLoS One. 2017;12 PubMed PMC
Baskaran B., Muthukumarasamy A., Chidambaram S., Sugumaran A., Ramachandran K., Rasu Manimuthu T. Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells. IET Nanobiotechnol. 2017;11:241–246. PubMed PMC
Bendale Y., Bendale V., Natu R., Paul S. Biosynthesized platinum nanoparticles inhibit the proliferation of human lung-cancer cells in vitro and delay the growth of a human lung-tumor xenograft in vivo: -in vitro and in vivo anticancer activity of bio-Pt NPs. J. Pharmacopuncture. 2016;19:114–121. PubMed PMC
Bendale Y., Bendale V., Paul S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res. 2017;6:141–148. PubMed PMC
Medhat A., Mansour S., El-Sonbaty S., Kandil E., Mahmoud M. Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats. Tumour Biol. 2017;39 PubMed
Kutwin M., Sawosz E., Jaworski S., Hinzmann M., Wierzbicki M., Hotowy A., et al. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Arch. Med. Sci. 2017;13:1322–1334. PubMed PMC
Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014;68:475–478. PubMed
Lyssiotis C.A., Son J., Cantley L.C., Kimmelman A.C. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle. 2013;12:1987–1988. PubMed PMC
Wang D., Yin L., Wei J., Yang Z., Jiang G. ATP citrate lyase is increased in human breast cancer, depletion of which promotes apoptosis. Tumour Biol. 2017;39 PubMed
Liu W.-S., Chan S.-H., Chang H.-T., Li G.-C., Tu Y.-T., Tseng H.-H., et al. Breast Cancer Research; 2018. Isocitrate Dehydrogenase 1–snail axis Dysfunction Significantly Correlates with Breast Cancer Prognosis and Regulates Cell Invasion Ability; p. 20. PubMed PMC
Simpson N.E., Tryndyak V.P., Beland F.A., Pogribny I.P. An in vitro investigation of metabolically sensitive biomarkers in breast cancer progression. Breast Cancer Res. Treat. 2011;133:959–968. PubMed
Yoo H.C., Yu Y.C., Sung Y., Han J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020;52:1496–1516. PubMed PMC
Anderson N.M., Mucka P., Kern J.G., Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–237. PubMed PMC
Moffatt B.A., Ashihara H. Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book. 2002;1 PubMed PMC
Green C.R., Wallace M., Divakaruni A.S., Phillips S.A., Murphy A.N., Ciaraldi T.P., et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 2016;12:15–21. PubMed PMC
Broer S., Broer A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017;474:1935–1963. PubMed PMC
Bachhawat A.K., Yadav S. The glutathione cycle: glutathione metabolism beyond the gamma-glutamyl cycle. IUBMB Life. 2018;70:585–592. PubMed
Rupp T., Legrand C., Hunault M., Genest L., Babin D., Froget G., et al. A face-to-face comparison of tumor chicken chorioallantoic membrane (TCAM) in ovo with murine models for early evaluation of cancer therapy and early drug toxicity. Cancers. 2022;14 PubMed PMC
Buhr C.R., Wiesmann N., Tanner R.C., Brieger J., Eckrich J. The chorioallantoic membrane assay in nanotoxicological research-an alternative for in vivo experimentation. Nanomaterials. 2020;10 PubMed PMC
S. Intasa-ard, A. Birault, Nanoparticles characterization using the CAM assay, in: F. Tamanoi (Ed.) The Enzymes, Academic Press2019, pp. 129-160. PubMed
Lokman N.A., Elder A.S.F., Ricciardelli C., Oehler M.K. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int. J. Mol. Sci. 2012;13:9959–9970. PubMed PMC
Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol. 2017;70:97–101. PubMed
Vargas A., Zeisser-Labouebe M., Lange N., Gurny R., Delie F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv. Drug Deliv. Rev. 2007;59:1162–1176. PubMed
Merlos Rodrigo M.A., Casar B., Michalkova H., Jimenez Jimenez A.M., Heger Z., Adam V. Extending the applicability of in ovo and ex ovo chicken chorioallantoic membrane assays to study cytostatic activity in neuroblastoma cells. Front. Oncol. 2021;11 PubMed PMC
Buchtelova H., Dostalova S., Michalek P., Krizkova S., Strmiska V., Kopel P., et al. Size-related cytotoxicological aspects of polyvinylpyrrolidone-capped platinum nanoparticles. Food Chem. Toxicol. 2017;105:337–346. PubMed
Heger Z., Gumulec J., Cernei N., Tmejova K., Kopel P., Balvan J., et al. 17beta-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: an in vitro study on the MCF-7 cell line. Oncol. Rep. 2015;33:921–929. PubMed
Pawlikowska P., Tayoun T., Oulhen M., Faugeroux V., Rouffiac V., Aberlenc A., et al. Exploitation of the chick embryo chorioallantoic membrane (CAM) as a platform for anti-metastatic drug testing. Sci. Rep. 2020;10 PubMed PMC
Augustine R., Alhussain H., Hasan A., Badie Ahmed M., C.Y. H. Al Moustafa A.E. A novel in ovo model to study cancer metastasis using chicken embryos and GFP expressing cancer cells. Bosn. J. Basic Med. Sci. 2020;20:140–148. PubMed PMC
Aranda P.S., LaJoie D.M., Jorcyk C.L. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33:366–369. PubMed PMC
Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–515. PubMed
Ye J.-Y., Attard G.A., Brew A., Zhou Z.-Y., Sun S.-G., Morgan D.J., et al. Explicit detection of the mechanism of platinum nanoparticle shape control by polyvinylpyrrolidone. J. Phys. Chem. C. 2016;120:7532–7542.
Safo I.A., Werheid M., Dosche C., Oezaslan M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 2019;1:3095–3106. PubMed PMC
Mitrevska K., Cernei N., Michalkova H., Rodrigo M.A.M., Sivak L., Heger Z., et al. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front. Oncol. 2022;12 PubMed PMC
Rodrigo M.A.M., Michalkova H., Strmiska V., Casar B., Crespo P., de Los Rios V., et al. Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci. Rep. 2021;11:5496. PubMed PMC
Pedone D., Moglianetti M., De Luca E., Bardi G., Pompa P.P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 2017;46:4951–4975. PubMed
Kaneda Y., Tsutsumi Y., Yoshioka Y., Kamada H., Yamamoto Y., Kodaira H., et al. The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials. 2004;25:3259–3266. PubMed
Zhang X., Zeng G., Tian J., Wan Q., Huang Q., Wang K., et al. PEGylation of carbon nanotubes via mussel inspired chemistry: preparation, characterization and biocompatibility evaluation. Appl. Surf. Sci. 2015;351:425–432.
Caracciolo G., Farokhzad O.C., Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35:257–264. PubMed
Franco P., De Marco I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: a review. Polymers. 2020:12. PubMed PMC
Yang M.D., Sun Y., Zhou W.J., Xie X.Z., Zhou Q.M., Lu Y.Y., et al. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer MDA-MB-231 cell models in vivo and in vitro. Molecules. 2021:26. PubMed PMC
Skowron M.A., Sathe A., Romano A., Hoffmann M.J., Schulz W.A., van Koeveringe G.A., et al. Applying the chicken embryo chorioallantoic membrane assay to study treatment approaches in urothelial carcinoma. Urol. Oncol. 2017;35:544 e11–e23. PubMed
Sarogni P., Mapanao A.K., Gonnelli A., Ermini M.L., Marchetti S., Kusmic C., et al. Chorioallantoic membrane tumor models highlight the effects of cisplatin compounds in oral carcinoma treatment. iScience. 2022;25 PubMed PMC
Iyer A.K., Khaled G., Fang J., Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today. 2006;11:812–818. PubMed
Vu B.T., Shahin S.A., Croissant J., Fatieiev Y., Matsumoto K., Le-Hoang Doan T., et al. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci. Rep. 2018;8 PubMed PMC
Mapanao A.K., Sarogni P., Santi M., Menicagli M., Gonnelli A., Zamborlin A., et al. Biomater Sci; 2022. Pro-apoptotic and Size-Reducing Effects of Protein Corona-Modulating Nano-Architectures Enclosing Platinum Prodrug in in Vivo Oral Carcinoma. PubMed
Wang D.-P., Shen J., Qin C.-Y., Li Y.-M., Gao L.-J., Zheng J., et al. Platinum nanoparticles promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation. Nano Res. 2022;15:7366–7377.
Kim Y., Williams K.C., Gavin C.T., Jardine E., Chambers A.F., Leong H.S. Quantification of cancer cell extravasation in vivo. Nat. Protoc. 2016;11:937–948. PubMed
Galvez L., Rusz M., Schwaiger-Haber M., El Abiead Y., Hermann G., Jungwirth U., et al. Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics. 2019;11:1716–1728. PubMed
Kim H.R., Park J.H., Lee S.H., Kwack S.J., Lee J., Kim S., et al. Using intracellular metabolic profiling to identify novel biomarkers of cisplatin-induced acute kidney injury in NRK-52E cells. J. Toxicol. Environ. Health. 2022;85:29–42. PubMed
Yoo H.C., Han J.M. Amino acid metabolism in cancer drug resistance. Cells. 2022:11. PubMed PMC
Gurunathan S., Jeyaraj M., La H., Yoo H., Choi Y., Do J.T., et al. Anisotropic platinum nanoparticle-induced cytotoxicity, apoptosis, inflammatory response, and transcriptomic and molecular pathways in human acute monocytic leukemia cells. Int. J. Mol. Sci. 2020;21 PubMed PMC
Gunda V., Pathania A.S., Chava S., Prathipati P., Chaturvedi N.K., Coulter D.W., et al. Amino acids regulate cisplatin insensitivity in neuroblastoma. Cancers. 2020;12 PubMed PMC
Ryu C.S., Kwak H.C., Lee K.S., Kang K.W., Oh S.J., Lee K.H., et al. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells. Toxicol. Appl. Pharmacol. 2011;255:94–102. PubMed
Zhang P., Li W., Chen J., Li R., Zhang Z., Huang Y., et al. Branched-Chain amino acids as predictors for individual differences of cisplatin nephrotoxicity in rats: a pharmacometabonomics study. J. Proteome Res. 2017;16:1753–1762. PubMed
Alonezi S., Al Washih M., Clements J.C., Young C.L., Ferro A.V., Watson G.D. Liquid chromatography mass spectrometry (LCMS) and phenotype microarray profiling of ovarian cancer cells after exposure to cisplatin. Current Metabolomics. 2018;6:112–123.
Alonezi S., Tusiimire J., Wallace J., Dufton M., Parkinson J., Young L., et al. Metabolomic profiling of the synergistic effects of melittin in combination with cisplatin on ovarian cancer cells. Metabolites. 2017;7 PubMed PMC
Alonezi S., Tusiimire J., Wallace J., Dufton M.J., Parkinson J.A., Young L.C., et al. Metabolomic profiling of the effects of melittin on cisplatin resistant and cisplatin sensitive ovarian cancer cells using mass spectrometry and biolog microarray technology. Metabolites. 2016;6 PubMed PMC
Tully E., Bharti S., Woo J., Bhujwalla Z., Gabrielson E. Biguanide drugs enhance cytotoxic effects of cisplatin by depleting aspartate and NAD+ in sensitive cancer cells. Cancer Biol. Ther. 2021;22:579–586. PubMed PMC
Pan Y., Deng L., Wang H., He K., Xia Q. Histidine-rich glycoprotein (HRGP): pleiotropic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Genes Dis. 2022;9:381–392. PubMed PMC
Zhang Y.-N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Contr. Release. 2016;240:332–348. PubMed
Dkhil M.A., Al-Quraishy S., Aref A.M., Othman M.S., El-Deib K.M., Abdel Moneim A.E. The potential role ofAzadirachta indicaTreatment on cisplatin-induced hepatotoxicity and oxidative stress in female rats. Oxid. Med. Cell. Longev. 2013:1–9. 2013. PubMed PMC
Lieu E.L., Nguyen T., Rhyne S., Kim J. Amino acids in cancer. Exp. Mol. Med. 2020;52:15–30. PubMed PMC
Korangath P., Teo W.W., Sadik H., Han L., Mori N., Huijts C.M., et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin. Cancer Res. 2015;21:3263–3273. PubMed PMC
Aleshin V.A., Zhou X., Krishnan S., Karlsson A., Bunik V.I. Interplay between thiamine and p53/p21 axes affects antiproliferative action of cisplatin in lung adenocarcinoma cells by changing metabolism of 2-oxoglutarate/glutamate. Front. Genet. 2021;12 PubMed PMC
Tu Y., Johnstone C.N., Ryall J.G., López-Campos G.H., Keenan C.R., Stewart A.G. Altered energy metabolism and metabolic gene expression associated with increased metastatic capacity identified in MDA-MB-231 cell line variants. Journal of Cancer Metastasis and Treatment. 2018:2018.
Pinweha P., Phillips C.A., Gregory P.A., Li X., Chuayboonya P., Mongkolsiri P., et al. MicroRNA-143-3p targets pyruvate carboxylase expression and controls proliferation and migration of MDA-MB-231cells. Arch. Biochem. Biophys. 2019;677 PubMed
Puissegur M.P., Mazure N.M., Bertero T., Pradelli L., Grosso S., Robbe-Sermesant K., et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011;18:465–478. PubMed PMC
Fadejeva I., Olschewski H., Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget. 2017;8:115754–115773. PubMed PMC
Kharbangar A., Khynriam D., Prasad S.B. Effect of cisplatin on mitochondrial protein, glutathione, and succinate dehydrogenase in Dalton lymphoma-bearing mice. Cell Biology andToxicology. 2000;16:363–373. PubMed
Kruspig B., Valter K., Skender B., Zhivotovsky B., Gogvadze V. Targeting succinate:ubiquinone reductase potentiates the efficacy of anticancer therapy. Biochim. Biophys. Acta. 2016;1863:2065–2071. PubMed
Ananieva E.A., Wilkinson A.C. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:64–70. PubMed PMC
Luo L., Sun W., Zhu W., Li S., Zhang W., Xu X., et al. BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism. Cell Death Dis. 2021;12:169. PubMed PMC
Zhang L., Han J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys. Res. Commun. 2017;486:224–231. PubMed