Molecular Changes Underlying Hypertrophic Scarring Following Burns Involve Specific Deregulations at All Wound Healing Stages (Inflammation, Proliferation and Maturation)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-16-0207 and APVV-14-0731
Agentúra na Podporu Výskumu a Vývoja
VEGA-1/0561/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PROGRES Q28 and Q37
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000785 and ITMS2014+ 313011D103
European Regional Development Fund
CA18103
European Cooperation in Science and Technology
PubMed
33477421
PubMed Central
PMC7831008
DOI
10.3390/ijms22020897
PII: ijms22020897
Knihovny.cz E-zdroje
- Klíčová slova
- burn, cell interaction, pathological scar, skin, stem cell, wound healing,
- MeSH
- epitelové buňky metabolismus patologie MeSH
- extracelulární matrix metabolismus patologie MeSH
- fibroblasty metabolismus patologie MeSH
- hojení ran genetika MeSH
- jizva hypertrofická genetika imunologie patologie MeSH
- lidé MeSH
- popálení genetika patologie MeSH
- proliferace buněk genetika MeSH
- zánět genetika patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Excessive connective tissue accumulation, a hallmark of hypertrophic scaring, results in progressive deterioration of the structure and function of organs. It can also be seen during tumor growth and other fibroproliferative disorders. These processes result from a wide spectrum of cross-talks between mesenchymal, epithelial and inflammatory/immune cells that have not yet been fully understood. In the present review, we aimed to describe the molecular features of fibroblasts and their interactions with immune and epithelial cells and extracellular matrix. We also compared different types of fibroblasts and their roles in skin repair and regeneration following burn injury. In summary, here we briefly review molecular changes underlying hypertrophic scarring following burns throughout all basic wound healing stages, i.e. during inflammation, proliferation and maturation.
BIOCEV 252 50 Vestec Czech Republic
Department of Pathology Louise Pasteur University Hospital 041 90 Košice Slovakia
Department of Pharmacology Faculty of Medicine Pavol Jozef Šafárik University 040 11 Košice Slovakia
Institute of Anatomy 1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Bayat A., McGrouther D.A., Ferguson M.W. Skin scarring. BMJ. 2003;326:88–92. doi: 10.1136/bmj.326.7380.88. PubMed DOI PMC
Tsao S.S., Dover J.S., Arndt K.A., Kaminer M.S. Scar management: Keloid, hypertrophic, atrophic, and acne scars. Semin. Cutan. Med. Surg. 2002;21:46–75. doi: 10.1053/sder.2002.31153. PubMed DOI
Bell L., McAdams T., Morgan R., Parshley P.F., Pike R.C., Riggs P., Carpenter J.E. Pruritus in burns: A descriptive study. J. Burn Care Rehabil. 1988;9:305–308. PubMed
Robert R., Blakeney P., Villarreal C., Meyer W.J., 3rd Anxiety: Current practices in assessment and treatment of anxiety of burn patients. Burns. 2000;26:549–552. doi: 10.1016/S0305-4179(00)00016-4. PubMed DOI
Taal L.A., Faber A.W. Posttraumatic stress and maladjustment among adult burn survivors 1-2 years postburn. Burns. 1998;24:285–292. doi: 10.1016/S0305-4179(98)00030-8. PubMed DOI
Slemp A.E., Kirschner R.E. Keloids and scars: A review of keloids and scars, their pathogenesis, risk factors, and management. Curr. Opin. Pediatr. 2006;18:396–402. doi: 10.1097/01.mop.0000236389.41462.ef. PubMed DOI
Atiyeh B.S. Nonsurgical management of hypertrophic scars: Evidence-based therapies, standard practices, and emerging methods. Aesthetic. Plast. Surg. 2007;31:468–492; discussion 493–464. doi: 10.1007/s00266-006-0253-y. PubMed DOI
Lindley L.E., Stojadinovic O., Pastar I., Tomic-Canic M. Biology and biomarkers for wound healing. Plast. Reconstr. Surg. 2016;138:18S–28S. doi: 10.1097/PRS.0000000000002682. PubMed DOI PMC
Gauglitz G.G., Korting H.C., Pavicic T., Ruzicka T., Jeschke M.G. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011;17:113–125. doi: 10.2119/molmed.2009.00153. PubMed DOI PMC
Berman B., Maderal A., Raphael B. Keloids and hypertrophic scars: Pathophysiology, classification, and treatment. Dermatol. Surg. 2017;43(Suppl 1):S3–S18. doi: 10.1097/DSS.0000000000000819. PubMed DOI
Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci. 2017;18:606. doi: 10.3390/ijms18030606. PubMed DOI PMC
Niessen F.B., Schalkwijk J., Vos H., Timens W. Hypertrophic scar formation is associated with an increased number of epidermal langerhans cells. J. Pathol. 2004;202:121–129. doi: 10.1002/path.1502. PubMed DOI
Xue M., Jackson C.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care. 2015;4:119–136. doi: 10.1089/wound.2013.0485. PubMed DOI PMC
Gurtner G.C., Dauskardt R.H., Wong V.W., Bhatt K.A., Wu K., Vial I.N., Padois K., Korman J.M., Longaker M.T. Improving cutaneous scar formation by controlling the mechanical environment: Large animal and phase i studies. Ann. Surg. 2011;254:217–225. doi: 10.1097/SLA.0b013e318220b159. PubMed DOI
Meyer M., McGrouther D.A. A study relating wound tension to scar morphology in the pre-sternal scar using langers technique. Br. J. Plast. Surg. 1991;44:291–294. doi: 10.1016/0007-1226(91)90074-T. PubMed DOI
Wray R.C. Force required for wound closure and scar appearance. Plast. Reconstr. Surg. 1983;72:380–382. doi: 10.1097/00006534-198309000-00021. PubMed DOI
Farina J.A., Jr., Rosique M.J., Rosique R.G. Curbing inflammation in burn patients. Int. J. Inflam. 2013;2013:715645. doi: 10.1155/2013/715645. PubMed DOI PMC
Schultz G.S., Chin G.A., Moldawer L., Diegelmann R.F. Principles of wound healing. In: Fitridge R., Thompson M., editors. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. University of Adelaide Press; Adelaide, SA, Australia: 2011.
Smith S.A., Travers R.J., Morrissey J.H. How it all starts: Initiation of the clotting cascade. Crit. Rev. Biochem Mol. Biol. 2015;50:326–336. doi: 10.3109/10409238.2015.1050550. PubMed DOI PMC
Wang P.H., Huang B.S., Horng H.C., Yeh C.C., Chen Y.J. Wound healing. J. Chin. Med. Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002. PubMed DOI
Niessen F.B., Spauwen P.H., Schalkwijk J., Kon M. On the nature of hypertrophic scars and keloids: A review. Plast. Reconstr. Surg. 1999;104:1435–1458. doi: 10.1097/00006534-199910000-00031. PubMed DOI
Balaji S., Watson C.L., Ranjan R., King A., Bollyky P.L., Keswani S.G. Chemokine involvement in fetal and adult wound healing. Adv. Wound Care. 2015;4:660–672. doi: 10.1089/wound.2014.0564. PubMed DOI PMC
Martins-Green M., Petreaca M., Wang L. Chemokines and their receptors are key players in the orchestra that regulates wound healing. Adv. Wound Care. 2013;2:327–347. doi: 10.1089/wound.2012.0380. PubMed DOI PMC
Fivenson D.P., Faria D.T., Nickoloff B.J., Poverini P.J., Kunkel S., Burdick M., Strieter R.M. Chemokine and inflammatory cytokine changes during chronic wound healing. Wound Repair. Regen. 1997;5:310–322. doi: 10.1046/j.1524-475X.1997.50405.x. PubMed DOI
Palta S., Saroa R., Palta A. Overview of the coagulation system. Ind. J. Anaesth. 2014;58:515–523. doi: 10.4103/0019-5049.144643. PubMed DOI PMC
Reinke J.M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI
Ozgok Kangal M.K., Regan J.P. Statpearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. Wound healing. PubMed
Lin F., Nguyen C.M., Wang S.J., Saadi W., Gross S.P., Jeon N.L. Effective neutrophil chemotaxis is strongly influenced by mean il-8 concentration. Biochem. Biophys. Res. Commun. 2004;319:576–581. doi: 10.1016/j.bbrc.2004.05.029. PubMed DOI
Futosi K., Fodor S., Mocsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 2013;17:638–650. doi: 10.1016/j.intimp.2013.06.034. PubMed DOI PMC
De Oliveira S., Rosowski E.E., Huttenlocher A. Neutrophil migration in infection and wound repair: Going forward in reverse. Nat. Rev. Immunol. 2016;16:378–391. doi: 10.1038/nri.2016.49. PubMed DOI PMC
Zhao R., Liang H., Clarke E., Jackson C., Xue M. Inflammation in chronic wounds. Int. J. Mol. Sci. 2016;17:2085. doi: 10.3390/ijms17122085. PubMed DOI PMC
Serhan C.N., Chiang N., Van Dyke T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008;8:349–361. doi: 10.1038/nri2294. PubMed DOI PMC
Widgerow A.D. Cellular resolution of inflammation—Catabasis. Wound Repair Regen. 2012;20:2–7. doi: 10.1111/j.1524-475X.2011.00754.x. PubMed DOI
Butler K.L., Ambravaneswaran V., Agrawal N., Bilodeau M., Toner M., Tompkins R.G., Fagan S., Irimia D. Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLoS ONE. 2010;5:e11921. doi: 10.1371/journal.pone.0011921. PubMed DOI PMC
Egners A., Erdem M., Cramer T. The response of macrophages and neutrophils to hypoxia in the context of cancer and other inflammatory diseases. Mediat. Inflamm. 2016;2016:2053646. doi: 10.1155/2016/2053646. PubMed DOI PMC
Rodero M.P., Legrand J.M., Bou-Gharios G., Khosrotehrani K. Wound-associated macrophages control collagen 1alpha2 transcription during the early stages of skin wound healing. Exp. Dermatol. 2013;22:143–145. doi: 10.1111/exd.12068. PubMed DOI
Rodero M.P., Licata F., Poupel L., Hamon P., Khosrotehrani K., Combadiere C., Boissonnas A. In vivo imaging reveals a pioneer wave of monocyte recruitment into mouse skin wounds. PLoS ONE. 2014;9:e108212. doi: 10.1371/journal.pone.0108212. PubMed DOI PMC
MacDonald K.P., Palmer J.S., Cronau S., Seppanen E., Olver S., Raffelt N.C., Kuns R., Pettit A.R., Clouston A., Wainwright B., et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116:3955–3963. doi: 10.1182/blood-2010-02-266296. PubMed DOI
Adams D.O. Molecular interactions in macrophage activation. Immunol. Today. 1989;10:33–35. doi: 10.1016/0167-5699(89)90298-3. PubMed DOI
Adams D.O., Koerner T.J. Gene regulation in macrophage development and activation. Year Immunol. 1989;4:159–180. PubMed
Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008;13:453–461. doi: 10.2741/2692. PubMed DOI
Verreck F.A., de Boer T., Langenberg D.M., Hoeve M.A., Kramer M., Vaisberg E., Kastelein R., Kolk A., de Waal-Malefyt R., Ottenhoff T.H. Human il-23-producing type 1 macrophages promote but il-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA. 2004;101:4560–4565. doi: 10.1073/pnas.0400983101. PubMed DOI PMC
Sica A., Mantovani A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 2012;122:787–795. doi: 10.1172/JCI59643. PubMed DOI PMC
Sica A., Porta C., Morlacchi S., Banfi S., Strauss L., Rimoldi M., Totaro M.G., Riboldi E. Origin and functions of tumor-associated myeloid cells (tamcs) Cancer Microenviron. 2012;5:133–149. doi: 10.1007/s12307-011-0091-6. PubMed DOI PMC
Zaja-Milatovic S., Richmond A. Cxc chemokines and their receptors: A case for a significant biological role in cutaneous wound healing. Histol. Histopathol. 2008;23:1399–1407. PubMed PMC
Mendez M.V., Stanley A., Park H.Y., Shon K., Phillips T., Menzoian J.O. Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J. Vasc. Surg. 1998;28:876–883. doi: 10.1016/S0741-5214(98)70064-3. PubMed DOI
Elliott M.R., Koster K.M., Murphy P.S. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J. Immunol. 2017;198:1387–1394. doi: 10.4049/jimmunol.1601520. PubMed DOI PMC
Fadok V.A., Bratton D.L., Konowal A., Freed P.W., Westcott J.Y., Henson P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving tgf-beta, pge2, and paf. J. Clin. Investig. 1998;101:890–898. doi: 10.1172/JCI1112. PubMed DOI PMC
Landen N.X., Li D., Stahle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol. Life Sci. 2016;73:3861–3885. doi: 10.1007/s00018-016-2268-0. PubMed DOI PMC
Liu W., Shahid M.Q., Bai L., Lu Z.Z., Chen Y.H., Jiang L., Diao M.Y., Liu X.D., Lu Y.G. Evaluation of genetic diversity and development of a core collection of wild rice (oryza rufipogon griff.) populations in china. PLoS ONE. 2015;10:e0145990. doi: 10.1371/journal.pone.0145990. PubMed DOI PMC
Nosbaum A., Prevel N., Truong H.A., Mehta P., Ettinger M., Scharschmidt T.C., Ali N.H., Pauli M.L., Abbas A.K., Rosenblum M.D. Cutting edge: Regulatory t cells facilitate cutaneous wound healing. J. Immunol. 2016;196:2010–2014. doi: 10.4049/jimmunol.1502139. PubMed DOI PMC
Brancato S.K., Albina J.E. Wound macrophages as key regulators of repair: Origin, phenotype, and function. Am. J. Pathol. 2011;178:19–25. doi: 10.1016/j.ajpath.2010.08.003. PubMed DOI PMC
Xiu F., Jeschke M.G. Perturbed mononuclear phagocyte system in severely burned and septic patients. Shock. 2013;40:81–88. doi: 10.1097/SHK.0b013e318299f774. PubMed DOI PMC
Hesketh M., Sahin K.B., West Z.E., Murray R.Z. Macrophage phenotypes regulate scar formation and chronic wound healing. Int. J. Mol. Sci. 2017;18:1545. doi: 10.3390/ijms18071545. PubMed DOI PMC
Sindrilaru A., Peters T., Wieschalka S., Baican C., Baican A., Peter H., Hainzl A., Schatz S., Qi Y., Schlecht A., et al. An unrestrained proinflammatory m1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Investig. 2011;121:985–997. doi: 10.1172/JCI44490. PubMed DOI PMC
Ellis S., Lin E.J., Tartar D. Immunology of wound healing. Curr. Dermatol. Rep. 2018;7:350–358. doi: 10.1007/s13671-018-0234-9. PubMed DOI PMC
Nomura T., Kabashima K., Miyachi Y. The panoply of alphabetat cells in the skin. J. Dermatol. Sci. 2014;76:3–9. doi: 10.1016/j.jdermsci.2014.07.010. PubMed DOI
Havran W.L., Jameson J.M. Epidermal t cells and wound healing. J. Immunol. 2010;184:5423–5428. doi: 10.4049/jimmunol.0902733. PubMed DOI PMC
Jensen K.D., Su X., Shin S., Li L., Youssef S., Yamasaki S., Steinman L., Saito T., Locksley R.M., Davis M.M., et al. Thymic selection determines gammadelta t cell effector fate: Antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity. 2008;29:90–100. doi: 10.1016/j.immuni.2008.04.022. PubMed DOI PMC
Schmolka N., Wencker M., Hayday A.C., Silva-Santos B. Epigenetic and transcriptional regulation of gammadelta t cell differentiation: Programming cells for responses in time and space. Semin. Immunol. 2015;27:19–25. doi: 10.1016/j.smim.2015.01.001. PubMed DOI
Larouche J., Sheoran S., Maruyama K., Martino M.M. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv. Wound Care. 2018;7:209–231. doi: 10.1089/wound.2017.0761. PubMed DOI PMC
Schwacha M.G. Gammadelta t-cells: Potential regulators of the post-burn inflammatory response. Burns. 2009;35:318–326. doi: 10.1016/j.burns.2008.08.002. PubMed DOI PMC
Rani M., Schwacha M.G. The composition of t-cell subsets are altered in the burn wound early after injury. PLoS ONE. 2017;12:e0179015. doi: 10.1371/journal.pone.0179015. PubMed DOI PMC
Boyce D.E., Jones W.D., Ruge F., Harding K.G., Moore K. The role of lymphocytes in human dermal wound healing. Br. J. Dermatol. 2000;143:59–65. doi: 10.1046/j.1365-2133.2000.03591.x. PubMed DOI
Bernabei P., Rigamonti L., Ariotti S., Stella M., Castagnoli C., Novelli F. Functional analysis of t lymphocytes infiltrating the dermis and epidermis of post-burn hypertrophic scar tissues. Burns. 1999;25:43–48. doi: 10.1016/S0305-4179(98)00128-4. PubMed DOI
Pileri D., Accardo Palombo A., D’Amelio L., D’Arpa N., Amato G., Masellis A., Cataldo V., Mogavero R., Napoli B., Lombardo C., et al. Concentrations of cytokines il-6 and il-10 in plasma of burn patients: Their relationship to sepsis and outcome. Ann. Burns Fire Disast. 2008;21:182–185. PubMed PMC
Diehl S., Rincon M. The two faces of il-6 on th1/th2 differentiation. Mol. Immunol. 2002;39:531–536. doi: 10.1016/S0161-5890(02)00210-9. PubMed DOI
Hager S., Foldenauer A.C., Rennekampff H.O., Deisz R., Kopp R., Tenenhaus M., Gernot M., Pallua N. Interleukin-6 serum levels correlate with severity of burn injury but not with gender. J. Burn Care Res. 2018;39:379–386. doi: 10.1097/BCR.0000000000000604. PubMed DOI
Entezami K.Z., Mosavi T. Determination of lymphocytes surface markers in patients with thermal burns and the influence of burn size on mononuclear cell subsets. Med. J. Islam Repub. Iran. 2017;31:38. doi: 10.14196/mjiri.31.38. PubMed DOI PMC
Rose L.F., Chan R.K. The burn wound microenvironment. Adv. Wound Care. 2016;5:106–118. doi: 10.1089/wound.2014.0536. PubMed DOI PMC
Wilgus T.A., Wulff B.C. The importance of mast cells in dermal scarring. Adv. Wound Care. 2014;3:356–365. doi: 10.1089/wound.2013.0457. PubMed DOI PMC
Komi D.E.A., Khomtchouk K., Santa Maria P.L. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin. Rev. Allergy Immunol. 2020;58:298–312. doi: 10.1007/s12016-019-08729-w. PubMed DOI
Au S.R., Au K., Saggers G.C., Karne N., Ehrlich H.P. Rat mast cells communicate with fibroblasts via gap junction intercellular communications. J. Cell Biochem. 2007;100:1170–1177. doi: 10.1002/jcb.21107. PubMed DOI
Foley T.T., Saggers G.C., Moyer K.E., Ehrlich H.P. Rat mast cells enhance fibroblast proliferation and fibroblast-populated collagen lattice contraction through gap junctional intercellular communications. Plast. Reconstr. Surg. 2011;127:1478–1486. doi: 10.1097/PRS.0b013e318208d0bb. PubMed DOI
Foley T.T., Ehrlich H.P. Through gap junction communications, co-cultured mast cells and fibroblasts generate fibroblast activities allied with hypertrophic scarring. Plast. Reconstr. Surg. 2013;131:1036–1044. doi: 10.1097/PRS.0b013e3182865c3f. PubMed DOI
Chen L., Schrementi M.E., Ranzer M.J., Wilgus T.A., DiPietro L.A. Blockade of mast cell activation reduces cutaneous scar formation. PLoS ONE. 2014;9:e85226. doi: 10.1371/journal.pone.0085226. PubMed DOI PMC
Wilgus T.A. Immune cells in the healing skin wound: Influential players at each stage of repair. Pharmacol. Res. 2008;58:112–116. doi: 10.1016/j.phrs.2008.07.009. PubMed DOI
Santos F.X., Arroyo C., Garcia I., Blasco R., Obispo J.M., Hamann C., Espejo L. Role of mast cells in the pathogenesis of postburn inflammatory response: Reactive oxygen species as mast cell stimulators. Burns. 2000;26:145–147. doi: 10.1016/S0305-4179(99)00021-2. PubMed DOI
Parihar A., Parihar M.S., Milner S., Bhat S. Oxidative stress and anti-oxidative mobilization in burn injury. Burns. 2008;34:6–17. doi: 10.1016/j.burns.2007.04.009. PubMed DOI
Sirbulescu R.F., Boehm C.K., Soon E., Wilks M.Q., Ilies I., Yuan H., Maxner B., Chronos N., Kaittanis C., Normandin M.D., et al. Mature b cells accelerate wound healing after acute and chronic diabetic skin lesions. Wound Repair. Regen. 2017;25:774–791. doi: 10.1111/wrr.12584. PubMed DOI PMC
Iwata Y., Yoshizaki A., Komura K., Shimizu K., Ogawa F., Hara T., Muroi E., Bae S., Takenaka M., Yukami T., et al. Cd19, a response regulator of b lymphocytes, regulates wound healing through hyaluronan-induced tlr4 signaling. Am. J. Pathol. 2009;175:649–660. doi: 10.2353/ajpath.2009.080355. PubMed DOI PMC
Vinish M., Cui W., Stafford E., Bae L., Hawkins H., Cox R., Toliver-Kinsky T. Dendritic cells modulate burn wound healing by enhancing early proliferation. Wound Repair. Regen. 2016;24:6–13. doi: 10.1111/wrr.12388. PubMed DOI
Gomes I., Mathur S.K., Espenshade B.M., Mori Y., Varga J., Ackerman S.J. Eosinophil-fibroblast interactions induce fibroblast il-6 secretion and extracellular matrix gene expression: Implications in fibrogenesis. J. Allergy Clin. Immunol. 2005;116:796–804. doi: 10.1016/j.jaci.2005.06.031. PubMed DOI
Childs D.R., Murthy A.S. Overview of wound healing and management. Surg. Clin. North. Am. 2017;97:189–207. doi: 10.1016/j.suc.2016.08.013. PubMed DOI
Lenselink E.A. Role of fibronectin in normal wound healing. Int. Wound J. 2015;12:313–316. doi: 10.1111/iwj.12109. PubMed DOI PMC
Ehrlich H.P., Krummel T.M. Regulation of wound healing from a connective tissue perspective. Wound Repair. Regen. 1996;4:203–210. doi: 10.1046/j.1524-475X.1996.40206.x. PubMed DOI
Li B., Wang J.H. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. J. Tissue Viabil. 2011;20:108–120. doi: 10.1016/j.jtv.2009.11.004. PubMed DOI PMC
Pastar I., Stojadinovic O., Yin N.C., Ramirez H., Nusbaum A.G., Sawaya A., Patel S.B., Khalid L., Isseroff R.R., Tomic-Canic M. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care. 2014;3:445–464. doi: 10.1089/wound.2013.0473. PubMed DOI PMC
Fuchs E., Raghavan S. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 2002;3:199–209. doi: 10.1038/nrg758. PubMed DOI
Rousselle P., Braye F., Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 2019;146:344–365. doi: 10.1016/j.addr.2018.06.019. PubMed DOI
Lavker R.M., Sun T.T. Epidermal stem cells: Properties, markers, and location. Proc. Natl. Acad. Sci. USA. 2000;97:13473–13475. doi: 10.1073/pnas.250380097. PubMed DOI PMC
Watt S.M., Pleat J.M. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv. Drug Deliv. Rev. 2018;123:82–106. doi: 10.1016/j.addr.2017.10.012. PubMed DOI
Zhang X., Yin M., Zhang L.J. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis. Cells. 2019;8:807. doi: 10.3390/cells8080807. PubMed DOI PMC
Rigal C., Pieraggi M.T., Vincent C., Prost C., Bouisou H., Serre G. Healing of full-thickness cutaneous wounds in the pig. I. Immunohistochemical study of epidermo-dermal junction regeneration. J. Investig. Dermatol. 1991;96:777–785. doi: 10.1111/1523-1747.ep12471745. PubMed DOI
Darby I.A., Laverdet B., Bonte F., Desmouliere A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 2014;7:301–311. PubMed PMC
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Zeisberg M., Neilson E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Investig. 2009;119:1429–1437. doi: 10.1172/JCI36183. PubMed DOI PMC
Taylor M.A., Parvani J.G., Schiemann W.P. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J. Mamm. Gland Biol. Neoplas. 2010;15:169–190. doi: 10.1007/s10911-010-9181-1. PubMed DOI PMC
Bolos V., Peinado H., Perez-Moreno M.A., Fraga M.F., Esteller M., Cano A. The transcription factor slug represses e-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with snail and e47 repressors. J. Cell Sci. 2003;116:499–511. doi: 10.1242/jcs.00224. PubMed DOI
Yang J., Mani S.A., Donaher J.L., Ramaswamy S., Itzykson R.A., Come C., Savagner P., Gitelman I., Richardson A., Weinberg R.A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–939. doi: 10.1016/j.cell.2004.06.006. PubMed DOI
Xiong M., Jiang L., Zhou Y., Qiu W., Fang L., Tan R., Wen P., Yang J. The mir-200 family regulates tgf-beta1-induced renal tubular epithelial to mesenchymal transition through smad pathway by targeting zeb1 and zeb2 expression. Am. J. Physiol. Renal Physiol. 2012;302:F369–F379. doi: 10.1152/ajprenal.00268.2011. PubMed DOI
Radisky D.C., Kenny P.A., Bissell M.J. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via emt? J. Cell. Biochem. 2007;101:830–839. doi: 10.1002/jcb.21186. PubMed DOI PMC
Yan C., Grimm W.A., Garner W.L., Qin L., Travis T., Tan N., Han Y.P. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am. J. Pathol. 2010;176:2247–2258. doi: 10.2353/ajpath.2010.090048. PubMed DOI PMC
Safferling K., Sutterlin T., Westphal K., Ernst C., Breuhahn K., James M., Jager D., Halama N., Grabe N. Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models. J. Cell. Biol. 2013;203:691–709. doi: 10.1083/jcb.201212020. PubMed DOI PMC
Aragona M., Dekoninck S., Rulands S., Lenglez S., Mascre G., Simons B.D., Blanpain C. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 2017;8:14684. doi: 10.1038/ncomms14684. PubMed DOI PMC
Du H., Wang Y., Haensel D., Lee B., Dai X., Nie Q. Multiscale modeling of layer formation in epidermis. PLoS Comput. Biol. 2018;14:e1006006. doi: 10.1371/journal.pcbi.1006006. PubMed DOI PMC
Gal P., Varinska L., Faber L., Novak S., Szabo P., Mitrengova P., Mirossay A., Mucaji P., Smetana K. How signaling molecules regulate tumor microenvironment: Parallels to wound repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC
Ji S.Z., Xiao S.C., Luo P.F., Huang G.F., Wang G.Y., Zhu S.H., Wu M.J., Xia Z.F. An epidermal stem cells niche microenvironment created by engineered human amniotic membrane. Biomaterials. 2011;32:7801–7811. doi: 10.1016/j.biomaterials.2011.06.076. PubMed DOI
Freedberg I.M., Tomic-Canic M., Komine M., Blumenberg M. Keratins and the keratinocyte activation cycle. J. Invest. Dermatol. 2001;116:633–640. doi: 10.1046/j.1523-1747.2001.01327.x. PubMed DOI
Li J., Chen J., Kirsner R. Pathophysiology of acute wound healing. Clin. Dermatol. 2007;25:9–18. doi: 10.1016/j.clindermatol.2006.09.007. PubMed DOI
Fisher G., Rittie L. Restoration of the basement membrane after wounding: A hallmark of young human skin altered with aging. J. Cell Commun Signal. 2018;12:401–411. doi: 10.1007/s12079-017-0417-3. PubMed DOI PMC
Forte E., Chimenti I., Rosa P., Angelini F., Pagano F., Calogero A., Giacomello A., Messina E. Emt/met at the crossroad of stemness, regeneration and oncogenesis: The ying-yang equilibrium recapitulated in cell spheroids. Cancers. 2017;9:98. doi: 10.3390/cancers9080098. PubMed DOI PMC
Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI
Du B., Shim J.S. Targeting epithelial-mesenchymal transition (emt) to overcome drug resistance in cancer. Molecules. 2016;21:965. doi: 10.3390/molecules21070965. PubMed DOI PMC
Ramesh V., Brabletz T., Ceppi P. Targeting emt in cancer with repurposed metabolic inhibitors. Trends Cancer. 2020;6:942–950. doi: 10.1016/j.trecan.2020.06.005. PubMed DOI
Pattabiraman D.R., Bierie B., Kober K.I., Thiru P., Krall J.A., Zill C., Reinhardt F., Tam W.L., Weinberg R.A. Activation of pka leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680. doi: 10.1126/science.aad3680. PubMed DOI PMC
Chen A.F., Liu A.J., Krishnakumar R., Freimer J.W., DeVeale B., Blelloch R. Grhl2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naive pluripotency. Cell Stem Cell. 2018;23:226–238 e224. doi: 10.1016/j.stem.2018.06.005. PubMed DOI PMC
Roca H., Hernandez J., Weidner S., McEachin R.C., Fuller D., Sud S., Schumann T., Wilkinson J.E., Zaslavsky A., Li H., et al. Transcription factors ovol1 and ovol2 induce the mesenchymal to epithelial transition in human cancer. PLoS ONE. 2013;8:e76773. doi: 10.1371/journal.pone.0076773. PubMed DOI PMC
Watanabe K., Villarreal-Ponce A., Sun P., Salmans M.L., Fallahi M., Andersen B., Dai X. Mammary morphogenesis and regeneration require the inhibition of emt at terminal end buds by ovol2 transcriptional repressor. Dev. Cell. 2014;29:59–74. doi: 10.1016/j.devcel.2014.03.006. PubMed DOI PMC
Takaku M., Grimm S.A., Shimbo T., Perera L., Menafra R., Stunnenberg H.G., Archer T.K., Machida S., Kurumizaka H., Wade P.A. Gata3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol. 2016;17:36. doi: 10.1186/s13059-016-0897-0. PubMed DOI PMC
Jagle S., Busch H., Freihen V., Beyes S., Schrempp M., Boerries M., Hecht A. Snail1-mediated downregulation of foxa proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet. 2017;13:e1007109. doi: 10.1371/journal.pgen.1007109. PubMed DOI PMC
Chen J., Liu J., Yang J., Chen Y., Chen J., Ni S., Song H., Zeng L., Ding K., Pei D. Bmps functionally replace klf4 and support efficient reprogramming of mouse fibroblasts by oct4 alone. Cell Res. 2011;21:205–212. doi: 10.1038/cr.2010.172. PubMed DOI PMC
Hu X., Zhang L., Mao S.Q., Li Z., Chen J., Zhang R.R., Wu H.P., Gao J., Guo F., Liu W., et al. Tet and tdg mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell. 2014;14:512–522. doi: 10.1016/j.stem.2014.01.001. PubMed DOI
Sakurai K., Talukdar I., Patil V.S., Dang J., Li Z., Chang K.Y., Lu C.C., Delorme-Walker V., Dermardirossian C., Anderson K., et al. Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Stem Cell. 2014;14:523–534. doi: 10.1016/j.stem.2014.03.001. PubMed DOI PMC
Brabletz S., Brabletz T. The zeb/mir-200 feedback loop—A motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–677. doi: 10.1038/embor.2010.117. PubMed DOI PMC
Watanabe K., Liu Y., Noguchi S., Murray M., Chang J.C., Kishima M., Nishimura H., Hashimoto K., Minoda A., Suzuki H. Ovol2 induces mesenchymal-to-epithelial transition in fibroblasts and enhances cell-state reprogramming towards epithelial lineages. Sci. Rep. 2019;9:6490. doi: 10.1038/s41598-019-43021-z. PubMed DOI PMC
Sahai E., Astsaturov I., Cukierman E., DeNardo D.G., Egeblad M., Evans R.M., Fearon D., Greten F.R., Hingorani S.R., Hunter T., et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer. 2020;20:174–186. doi: 10.1038/s41568-019-0238-1. PubMed DOI PMC
Erez N., Truitt M., Olson P., Arron S.T., Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an nf-kappab-dependent manner. Cancer Cell. 2010;17:135–147. doi: 10.1016/j.ccr.2009.12.041. PubMed DOI
desJardins-Park H.E., Chinta M.S., Foster D.S., Borrelli M.R., Shen A.H., Wan D.C., Longaker M.T. Fibroblast heterogeneity in and its implications for plastic and reconstructive surgery: A basic science review. Plast. Reconstr. Surg. Glob. Open. 2020;8:e2927. PubMed PMC
Vorstandlechner V., Laggner M., Kalinina P., Haslik W., Radtke C., Shaw L., Lichtenberger B.M., Tschachler E., Ankersmit H.J., Mildner M. Deciphering the functional heterogeneity of skin fibroblasts using single-cell rna sequencing. FASEB J. 2020;34:3677–3692. doi: 10.1096/fj.201902001RR. PubMed DOI
Jiang D., Rinkevich Y. Scars or regeneration?-dermal fibroblasts as drivers of diverse skin wound responses. Int. J. Mol. Sci. 2020;21:617. doi: 10.3390/ijms21020617. PubMed DOI PMC
Reilkoff R.A., Bucala R., Herzog E.L. Fibrocytes: Emerging effector cells in chronic inflammation. Nat. Rev. Immunol. 2011;11:427–435. doi: 10.1038/nri2990. PubMed DOI PMC
Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 2003;200:500–503. doi: 10.1002/path.1427. PubMed DOI
Li H., Yao Z., He W., Gao H., Bai Y., Yang S., Zhang L., Zhan R., Tan J., Zhou J., et al. P311 induces the transdifferentiation of epidermal stem cells to myofibroblast-like cells by stimulating transforming growth factor beta1 expression. Stem Cell Res. Ther. 2016;7:175. doi: 10.1186/s13287-016-0421-1. PubMed DOI PMC
Saikia P., Crabb J.S., Dibbin L.L., Juszczak M.J., Willard B., Jang G.F., Shiju T.M., Crabb J.W., Wilson S.E. Quantitative proteomic comparison of myofibroblasts derived from bone marrow and cornea. Sci Rep. 2020;10:16717. doi: 10.1038/s41598-020-73686-w. PubMed DOI PMC
Piera-Velazquez S., Li Z., Jimenez S.A. Role of endothelial-mesenchymal transition (endomt) in the pathogenesis of fibrotic disorders. Am. J. Pathol. 2011;179:1074–1080. doi: 10.1016/j.ajpath.2011.06.001. PubMed DOI PMC
Kirkpatrick L.D., Shupp J.W., Smith R.D., Alkhalil A., Moffatt L.T., Carney B.C. Galectin-1 production is elevated in hypertrophic scar. Wound Repair. Regen. 2020 doi: 10.1111/wrr.12869. PubMed DOI
Lin Y.T., Chen J.S., Wu M.H., Hsieh I.S., Liang C.H., Hsu C.L., Hong T.M., Chen Y.L. Galectin-1 accelerates wound healing by regulating the neuropilin-1/smad3/nox4 pathway and ros production in myofibroblasts. J. Investig. Dermatol. 2015;135:258–268. doi: 10.1038/jid.2014.288. PubMed DOI
Grotendorst G.R., Duncan M.R. Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J. 2005;19:729–738. doi: 10.1096/fj.04-3217com. PubMed DOI
Desmouliere A., Geinoz A., Gabbiani F., Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993;122:103–111. doi: 10.1083/jcb.122.1.103. PubMed DOI PMC
Glim J.E., Niessen F.B., Everts V., van Egmond M., Beelen R.H. Platelet derived growth factor-cc secreted by m2 macrophages induces alpha-smooth muscle actin expression by dermal and gingival fibroblasts. Immunobiology. 2013;218:924–929. doi: 10.1016/j.imbio.2012.10.004. PubMed DOI
Lian N., Li T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications. Biomed. Pharmacother. 2016;84:42–50. doi: 10.1016/j.biopha.2016.09.010. PubMed DOI
Limandjaja G.C., Niessen F.B., Scheper R.J., Gibbs S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp. Dermatol. 2020;30:146–161. doi: 10.1111/exd.14121. PubMed DOI PMC
Ghazawi F.M., Zargham R., Gilardino M.S., Sasseville D., Jafarian F. Insights into the pathophysiology of hypertrophic scars and keloids: How do they differ? Adv. Skin Wound Care. 2018;31:582–595. doi: 10.1097/01.ASW.0000527576.27489.0f. PubMed DOI
Honnegowda T., Kumar P., Udupa E., Kumar S., Kumar U., Rao P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast. Aesthet. Res. 2015;2:243.
Breier G., Blum S., Peli J., Groot M., Wild C., Risau W., Reichmann E. Transforming growth factor-beta and ras regulate the vegf/vegf-receptor system during tumor angiogenesis. Int. J. Cancer. 2002;97:142–148. doi: 10.1002/ijc.1599. PubMed DOI
Nagy J.A., Benjamin L., Zeng H., Dvorak A.M., Dvorak H.F. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11:109–119. doi: 10.1007/s10456-008-9099-z. PubMed DOI PMC
Dvorak H.F., Nagy J.A., Feng D., Brown L.F., Dvorak A.M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 1999;237:97–132. PubMed
Ornitz D.M., Itoh N. Fibroblast growth factors. Genome Biol. 2001;2:3005. doi: 10.1186/gb-2001-2-3-reviews3005. PubMed DOI PMC
Majima M., Hayashi I., Muramatsu M., Katada J., Yamashina S., Katori M. Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br. J. Pharmacol. 2000;130:641–649. doi: 10.1038/sj.bjp.0703327. PubMed DOI PMC
Pintucci G., Froum S., Pinnell J., Mignatti P., Rafii S., Green D. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (fgf-2) and vascular endothelial growth factor (vegf) Thromb. Haemost. 2002;88:834–842. doi: 10.1055/s-0037-1613311. PubMed DOI
Nath S.G., Raveendran R. An insight into the possibilities of fibroblast growth factor in periodontal regeneration. J. Ind. Soc. Periodontol. 2014;18:289–292. doi: 10.4103/0972-124X.134560. PubMed DOI PMC
Yoshida S., Yoshida A., Matsui H., Takada Y., Ishibashi T. Involvement of macrophage chemotactic protein-1 and interleukin-1beta during inflammatory but not basic fibroblast growth factor-dependent neovascularization in the mouse cornea. Lab. Invest. J. Tech. Methods Pathol. 2003;83:927–938. doi: 10.1097/01.LAB.0000075642.11787.83. PubMed DOI
Barrientos S., Stojadinovic O., Golinko M.S., Brem H., Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601. doi: 10.1111/j.1524-475X.2008.00410.x. PubMed DOI
Mans S., Banz Y., Mueller B.U., Pabst T. The angiogenesis inhibitor vasostatin is regulated by neutrophil elastase-dependent cleavage of calreticulin in aml patients. Blood. 2012;120:2690–2699. doi: 10.1182/blood-2012-02-412759. PubMed DOI
Inoki I., Shiomi T., Hashimoto G., Enomoto H., Nakamura H., Makino K., Ikeda E., Takata S., Kobayashi K., Okada Y. Connective tissue growth factor binds vascular endothelial growth factor (vegf) and inhibits vegf-induced angiogenesis. FASEB J. 2002;16:219–221. doi: 10.1096/fj.01-0332fje. PubMed DOI
Grimm D., Bauer J., Schoenberger J. Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases. Curr. Vasc. Pharmacol. 2009;7:347–357. doi: 10.2174/157016109788340640. PubMed DOI
Bootle-Wilbraham C.A., Tazzyman S., Thompson W.D., Stirk C.M., Lewis C.E. Fibrin fragment e stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro. Angiogenesis. 2001;4:269–275. doi: 10.1023/A:1016076121918. PubMed DOI
Zhang X., Liu L., Wei X., Tan Y.S., Tong L., Chang R., Ghanamah M.S., Reinblatt M., Marti G.P., Harmon J.W., et al. Impaired angiogenesis and mobilization of circulating angiogenic cells in hif-1alpha heterozygous-null mice after burn wounding. Wound Repair Regen. 2010;18:193–201. doi: 10.1111/j.1524-475X.2010.00570.x. PubMed DOI PMC
Fox A., Smythe J., Fisher N., Tyler M.P., McGrouther D.A., Watt S.M., Harris A.L. Mobilization of endothelial progenitor cells into the circulation in burned patients. Br. J. Surg. 2008;95:244–251. doi: 10.1002/bjs.5913. PubMed DOI
Foresta C., Schipilliti M., De Toni L., Magagna S., Lancerotto L., Azzena B., Vindigni V., Mazzoleni F. Blood levels, apoptosis, and homing of the endothelial progenitor cells after skin burns and escharectomy. J. Trauma. 2011;70:459–465. doi: 10.1097/TA.0b013e3181fcf83c. PubMed DOI
Bates D.O., Heald R.I., Curry F.E., Williams B. Vascular endothelial growth factor increases rana vascular permeability and compliance by different signalling pathways. J. Physiol. 2001;533:263–272. doi: 10.1111/j.1469-7793.2001.0263b.x. PubMed DOI PMC
Zittermann S.I., Issekutz A.C. Endothelial growth factors vegf and bfgf differentially enhance monocyte and neutrophil recruitment to inflammation. J. Leukoc. Biol. 2006;80:247–257. doi: 10.1189/jlb.1205718. PubMed DOI
Detmar M., Brown L.F., Schon M.P., Elicker B.M., Velasco P., Richard L., Fukumura D., Monsky W., Claffey K.P., Jain R.K. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of vegf transgenic mice. J. Investig. Dermatol. 1998;111:1–6. doi: 10.1046/j.1523-1747.1998.00262.x. PubMed DOI
Wulff B.C., Parent A.E., Meleski M.A., DiPietro L.A., Schrementi M.E., Wilgus T.A. Mast cells contribute to scar formation during fetal wound healing. J. Investig. Dermatol. 2012;132:458–465. doi: 10.1038/jid.2011.324. PubMed DOI PMC
Reinders M.E., Sho M., Izawa A., Wang P., Mukhopadhyay D., Koss K.E., Geehan C.S., Luster A.D., Sayegh M.H., Briscoe D.M. Proinflammatory functions of vascular endothelial growth factor in alloimmunity. J. Clin. Investig. 2003;112:1655–1665. doi: 10.1172/JCI17712. PubMed DOI PMC
Bagabir R., Byers R.J., Chaudhry I.H., Muller W., Paus R., Bayat A. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br. J. Dermatol. 2012;167:1053–1066. doi: 10.1111/j.1365-2133.2012.11190.x. PubMed DOI
Barleon B., Sozzani S., Zhou D., Weich H.A., Mantovani A., Marme D. Migration of human monocytes in response to vascular endothelial growth factor (vegf) is mediated via the vegf receptor flt-1. Blood. 1996;87:3336–3343. doi: 10.1182/blood.V87.8.3336.bloodjournal8783336. PubMed DOI
Stockmann C., Kirmse S., Helfrich I., Weidemann A., Takeda N., Doedens A., Johnson R.S. A wound size-dependent effect of myeloid cell-derived vascular endothelial growth factor on wound healing. J. Investig. Dermatol. 2011;131:797–801. doi: 10.1038/jid.2010.345. PubMed DOI
Jacobi J., Tam B.Y., Sundram U., von Degenfeld G., Blau H.M., Kuo C.J., Cooke J.P. Discordant effects of a soluble vegf receptor on wound healing and angiogenesis. Gene Ther. 2004;11:302–309. doi: 10.1038/sj.gt.3302162. PubMed DOI
Frank S., Hubner G., Breier G., Longaker M.T., Greenhalgh D.G., Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J. Biol. Chem. 1995;270:12607–12613. doi: 10.1074/jbc.270.21.12607. PubMed DOI
Wilgus T.A., Ferreira A.M., Oberyszyn T.M., Bergdall V.K., Dipietro L.A. Regulation of scar formation by vascular endothelial growth factor. Lab. Invest. J. Tech. Methods Pathol. 2008;88:579–590. doi: 10.1038/labinvest.2008.36. PubMed DOI PMC
Cao P.F., Xu Y.B., Tang J.M., Yang R.H., Liu X.S. Hoxa9 regulates angiogenesis in human hypertrophic scars: Induction of vegf secretion by epidermal stem cells. Int. J. Clin. Exp. Pathol. 2014;7:2998–3007. PubMed PMC
Wang J., Chen H., Shankowsky H.A., Scott P.G., Tredget E.E. Improved scar in postburn patients following interferon-alpha2b treatment is associated with decreased angiogenesis mediated by vascular endothelial cell growth factor. J. Interf. Cytok. Res. 2008;28:423–434. doi: 10.1089/jir.2007.0104. PubMed DOI
Mejia I., Bodapati S., Chen K.T., Diaz B. Pancreatic adenocarcinoma invasiveness and the tumor microenvironment: From biology to clinical trials. Biomedicines. 2020;8:401. doi: 10.3390/biomedicines8100401. PubMed DOI PMC
Jobe N.P., Zivicova V., Mifkova A., Rosel D., Dvorankova B., Kodet O., Strnad H., Kolar M., Sedo A., Smetana K., Jr., et al. Fibroblasts potentiate melanoma cells in vitro invasiveness induced by uv-irradiated keratinocytes. Histochem. Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI
Boyuk E., Saracoglu Z.N., Arik D. Cutaneous leiomyoma mimicking a keloid. Acta Dermatovenerol. Croat. 2020;28:116. PubMed
Zhou B.Y., Wang W.B., Wu X.L., Zhang W.J., Zhou G.D., Gao Z., Liu W. Nintedanib inhibits keloid fibroblast functions by blocking the phosphorylation of multiple kinases and enhancing receptor internalization. Acta Pharmacol. Sin. 2020;41:1234–1245. doi: 10.1038/s41401-020-0381-y. PubMed DOI PMC
Schulz J.N., Plomann M., Sengle G., Gullberg D., Krieg T., Eckes B. New developments on skin fibrosis—Essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biol. 2018;68:522–532. doi: 10.1016/j.matbio.2018.01.025. PubMed DOI
Barnes L.A., Marshall C.D., Leavitt T., Hu M.S., Moore A.L., Gonzalez J.G., Longaker M.T., Gurtner G.C. Mechanical forces in cutaneous wound healing: Emerging therapies to minimize scar formation. Adv. Wound Care. 2018;7:47–56. doi: 10.1089/wound.2016.0709. PubMed DOI PMC
Shah M., Foreman D.M., Ferguson M.W. Neutralisation of tgf-beta 1 and tgf-beta 2 or exogenous addition of tgf-beta 3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 1995;108:985–1002. PubMed
Theocharis A.D., Manou D., Karamanos N.K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286:2830–2869. doi: 10.1111/febs.14818. PubMed DOI
Januszyk M., Kwon S.H., Wong V.W., Padmanabhan J., Maan Z.N., Whittam A.J., Major M.R., Gurtner G.C. The role of focal adhesion kinase in keratinocyte fibrogenic gene expression. Int. J. Mol. Sci. 2017;18:1915. doi: 10.3390/ijms18091915. PubMed DOI PMC
Dvorak H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Eng. J. Med. 1986;315:1650–1659. PubMed
Dvorak H.F. Tumors: Wounds that do not heal-redux. Cancer Immunol. Res. 2015;3:1–11. doi: 10.1158/2326-6066.CIR-14-0209. PubMed DOI PMC
Ladin D.A., Hou Z., Patel D., McPhail M., Olson J.C., Saed G.M., Fivenson D.P. P53 and apoptosis alterations in keloids and keloid fibroblasts. Wound Repair Regen. 1998;6:28–37. doi: 10.1046/j.1524-475X.1998.60106.x. PubMed DOI
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Tan S., Khumalo N., Bayat A. Understanding keloid pathobiology from a quasi-neoplastic perspective: Less of a scar and more of a chronic inflammatory disease with cancer-like tendencies. Front. Immunol. 2019;10:1810. doi: 10.3389/fimmu.2019.01810. PubMed DOI PMC
Rees P.A., Greaves N.S., Baguneid M., Bayat A. Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv. Wound Care. 2015;4:687–703. doi: 10.1089/wound.2014.0568. PubMed DOI PMC
Taylor A., Budd D.C., Shih B., Seifert O., Beaton A., Wright T., Dempsey M., Kelly F., Egerton J., Marshall R.P., et al. Transforming growth factor beta gene signatures are spatially enriched in keloid tissue biopsies and ex vivo-cultured keloid fibroblasts. Acta Derm. Venereol. 2017;97:10–16. doi: 10.2340/00015555-2462. PubMed DOI
The Abscopal Effect in the Era of Checkpoint Inhibitors
Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review