The Abscopal Effect in the Era of Checkpoint Inhibitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články, přehledy
PubMed
34281259
PubMed Central
PMC8267720
DOI
10.3390/ijms22137204
PII: ijms22137204
Knihovny.cz E-zdroje
- Klíčová slova
- abscopal effect, anti-CTLA-4, cryotherapy, melanoma, tumor neoantigens, wound healing,
- MeSH
- antigen prezentující buňky imunologie MeSH
- antigeny nádorové metabolismus MeSH
- inhibitory kontrolních bodů terapeutické užití MeSH
- ipilimumab terapeutické užití MeSH
- kryoterapie MeSH
- lidé MeSH
- melanom imunologie sekundární terapie MeSH
- modely imunologické MeSH
- nádorové mikroprostředí imunologie MeSH
- nádory kůže imunologie patologie terapie MeSH
- paliativní péče MeSH
- senioři MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- přehledy MeSH
- Názvy látek
- antigeny nádorové MeSH
- inhibitory kontrolních bodů MeSH
- ipilimumab MeSH
Therapy targeting immune checkpoints represents an integral part of the treatment for patients suffering from advanced melanoma. However, the mechanisms of resistance are responsible for a lower therapeutic outcome than expected. Concerning melanoma, insufficient stimulation of the immune system by tumour neoantigens is a likely explanation. As shown previously, radiotherapy is a known option for increasing the production of tumour neoantigens and their release into the microenvironment. Consequently, neoantigens could be recognized by antigen presenting cells (APCs) and subjected to effector T lymphocytes. Enhancing the immune reaction can trigger the therapeutic response also at distant metastases, a phenomenon known as an abscopal effect (from "ab scopus", that is, away from the target). To illustrate this, we present the case of a 78-year old male treated by anti-CTLA-4/ipilimumab for metastatic melanoma. The patient received the standard four doses of ipilimumab administered every three weeks. However, the control CT scans detected disease progression in the form of axillary lymph nodes metastasis and liver metastasis two months after ipilimumab. At this stage, palliative cryotherapy of the skin metastases was initiated to alleviate the tumour burden. Surprisingly, the effect of cryotherapy was also observed in untreated metastases and deep subcutaneous metastases on the back. Moreover, we observed the disease remission of axillary lymph nodes and liver metastasis two months after the cryotherapy. The rarity of the abscopal effect suggests that even primed anti-tumour CD8+ T cells cannot overcome the tumour microenvironment's suppressive effect and execute immune clearance. However, the biological mechanism underlying this phenomenon is yet to be elucidated. The elicitation of a systemic response by cryotherapy with documented abscopal effect was rarely reported, although the immune response induction is presumably similar to a radiotherapy-induced one. The report is a combination case study and review of the abscopal effect in melanoma treated with checkpoint inhibitors.
Zobrazit více v PubMed
Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466. PubMed DOI PMC
Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Lao C.D., Cowey C.L., Schadendorf D., Wagstaff J., Dummer R., et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019;381:1535–1546. doi: 10.1056/NEJMoa1910836. PubMed DOI
Jiang T., Shi T., Zhang H., Hu J., Song Y., Wei J., Ren S., Zhou C. Tumor Neoantigens: From Basic Research to Clinical Applications. J. Hematol. Oncol. 2019;12:1–13. doi: 10.1186/s13045-019-0787-5. PubMed DOI PMC
Huang J., El-Gamil M., Dudley M.E., Li Y.F., Rosenberg S.A., Robbins P.F. T Cells Associated with Tumor Regression Recognize Frameshifted Products of the CDKN2A Tumor Suppressor Gene Locus and a Mutated HLA Class I Gene Product. J. Immunol. 2004;172:6057–6064. doi: 10.4049/jimmunol.172.10.6057. PubMed DOI PMC
Bonaventura P., Shekarian T., Alcazer V., Valladeau-Guilemond J., Valsesia-Wittmann S., Amigorena S., Caux C., Depil S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019;10:168. doi: 10.3389/fimmu.2019.00168. PubMed DOI PMC
Nowicki T.S., Hu-Lieskovan S., Ribas A. Mechanisms of Resistance to PD-1 and PD-L1 Blockade. Cancer J. 2018;24:47–53. doi: 10.1097/PPO.0000000000000303. PubMed DOI PMC
Hugo W., Zaretsky J.M., Sun L., Song C., Moreno B.H., Hu-Lieskovan S., Berent-Maoz B., Pang J., Chmielowski B., Cherry G., et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016;165:35–44. doi: 10.1016/j.cell.2016.02.065. PubMed DOI PMC
Ayers M., Lunceford J., Nebozhyn M., Murphy E., Loboda A., Kaufman D.R., Albright A., Cheng J.D., Kang S.P., Shankaran V., et al. IFN-γ-Related MRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017;127:2930–2940. doi: 10.1172/JCI91190. PubMed DOI PMC
Vilain R.E., Menzies A.M., Wilmott J.S., Kakavand H., Madore J., Guminski A., Liniker E., Kong B.Y., Cooper A.J., Howle J.R., et al. Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early during Treatment Predict Response to PD-1 Blockade in Melanoma. Clin. Cancer Res. 2017;23:5024–5033. doi: 10.1158/1078-0432.CCR-16-0698. PubMed DOI
Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S., et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014;371:2189–2199. doi: 10.1056/NEJMoa1406498. PubMed DOI PMC
Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E., et al. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016;167:397–404. doi: 10.1016/j.cell.2016.08.069. PubMed DOI PMC
McGranahan N., Furness A.J.S., Rosenthal R., Ramskov S., Lyngaa R., Saini S.K., Jamal-Hanjani M., Wilson G.A., Birkbak N.J., Hiley C.T., et al. Clonal Neoantigens Elicit T Cell Immunoreactivity and Sensitivity to Immune Checkpoint Blockade. Science. 2016;351:1463–1469. doi: 10.1126/science.aaf1490. PubMed DOI PMC
Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C., Bignell G., Davies H., Teague J., Butler A., Stevens C., et al. Patterns of Somatic Mutation in Human Cancer Genomes. Nature. 2007;446:153–158. doi: 10.1038/nature05610. PubMed DOI PMC
Gros A., Parkhurst M.R., Tran E., Pasetto A., Robbins P.F., Ilyas S., Prickett T.D., Gartner J.J., Crystal J.S., Roberts I.M., et al. Prospective Identification of Neoantigen-Specific Lymphocytes in the Peripheral Blood of Melanoma Patients. Nat. Med. 2016;22:433–438. doi: 10.1038/nm.4051. PubMed DOI PMC
Zhao X., Shao C. Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers. 2020;12:2762. doi: 10.3390/cancers12102762. PubMed DOI PMC
MOLE R.H. Whole Body Irradiation; Radiobiology or Medicine? Br. J. Radiol. 1953;26:234–241. doi: 10.1259/0007-1285-26-305-234. PubMed DOI
Golden E.B., Demaria S., Schiff P.B., Chachoua A., Formenti S.C. An Abscopal Response to Radiation and Ipilimumab in a Patient with Metastatic Non-Small Cell Lung Cancer. Cancer Immunol. Res. 2013;1:365–372. doi: 10.1158/2326-6066.CIR-13-0115. PubMed DOI PMC
Liu Y., Dong Y., Kong L., Shi F., Zhu H., Yu J. Abscopal Effect of Radiotherapy Combined with Immune Checkpoint Inhibitors. J. Hematol. Oncol. 2018;11:1–15. doi: 10.1186/s13045-018-0647-8. PubMed DOI PMC
Chandra R.A., Wilhite T.J., Balboni T.A., Alexander B.M., Spektor A., Ott P.A., Ng A.K., Hodi F.S., Schoenfeld J.D. A Systematic Evaluation of Abscopal Responses Following Radiotherapy in Patients with Metastatic Melanoma Treated with Ipilimumab. Oncoimmunology. 2015;4:1–7. doi: 10.1080/2162402X.2015.1046028. PubMed DOI PMC
Mukhopadhyay A., Wright J., Shirley S., Canton D.A., Burkart C., Connolly R.J., Campbell J.S., Pierce R.H. Characterization of Abscopal Effects of Intratumoral Electroporation-Mediated IL-12 Gene Therapy. Gene Ther. 2019;26:1–15. doi: 10.1038/s41434-018-0044-5. PubMed DOI PMC
Iwai T., Oebisu N., Hoshi M., Orita K., Yamamoto A., Hamamoto S., Kageyama K., Nakamura H. Promising Abscopal Effect of Combination Therapy with Thermal Tumour Ablation and Intratumoural OK-432 Injection in the Rat Osteosarcoma Model. Sci. Rep. 2020;10:9679. doi: 10.1038/s41598-020-66934-6. PubMed DOI PMC
Abdo J., Cornell D.L., Mittal S.K., Agrawal D.K. Immunotherapy plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers. Front. Oncol. 2018;8:85. doi: 10.3389/fonc.2018.00085. PubMed DOI PMC
Tel J., Anguille S., Waterborg C.E.J., Smits E.L., Figdor C.G., de Vries I.J.M. Tumoricidal Activity of Human Dendritic Cells. Trends Immunol. 2014;35:38–46. doi: 10.1016/j.it.2013.10.007. PubMed DOI PMC
Gerlinger M., Rowan A.J., Horswell S., Larkin J., Endesfelder D., Gronroos E., Martinez P., Matthews N., Stewart A., Tarpey P., et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012;366:883–892. doi: 10.1056/NEJMoa1113205. PubMed DOI PMC
Mukherji B. Immunology of Melanoma. Clin. Dermatol. 2013;31:156–165. doi: 10.1016/j.clindermatol.2012.08.017. PubMed DOI
Lee Y., Auh S.L., Wang Y., Burnette B., Wang Y., Meng Y., Beckett M., Sharma R., Chin R., Tu T., et al. Therapeutic Effects of Ablative Radiation on Local Tumor Require CD8 + T Cells: Changing Strategies for Cancer Treatment. Blood. 2009;114:589–595. doi: 10.1182/blood-2009-02-206870. PubMed DOI PMC
Demaria S., Ng B., Devitt M.L., Babb J.S., Kawashima N., Liebes L., Formenti S.C. Ionizing Radiation Inhibition of Distant Untreated Tumors (Abscopal Effect) Is Immune Mediated. Int. J. Radiat. Oncol. Biol. Phys. 2004;58:862–870. doi: 10.1016/j.ijrobp.2003.09.012. PubMed DOI
Ribas A., Dummer R., Puzanov I., VanderWalde A., Andtbacka R.H.I., Michielin O., Olszanski A.J., Malvehy J., Cebon J., Fernandez E., et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell. 2017;170:1109–1119.e10. doi: 10.1016/j.cell.2017.08.027. PubMed DOI PMC
Marchini A., Daeffler L., Pozdeev V.I., Angelova A., Rommelaere J. Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study. Front. Immunol. 2019;10:1848. doi: 10.3389/fimmu.2019.01848. PubMed DOI PMC
Capone M., Giannarelli D., Mallardo D., Madonna G., Festino L., Grimaldi A.M., Vanella V., Simeone E., Paone M., Palmieri G., et al. Baseline Neutrophil-to-Lymphocyte Ratio (NLR) and Derived NLR Could Predict Overall Survival in Patients with Advanced Melanoma Treated with Nivolumab. J. Immunother. Cancer. 2018;6:1–7. doi: 10.1186/s40425-018-0383-1. PubMed DOI PMC
Robert C., Thomas L., Bondarenko I., O’Day S., Weber J., Garbe C., Lebbe C., Baurain J.-F., Testori A., Grob J.-J., et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N. Engl. J. Med. 2011;364:2517–2526. doi: 10.1056/NEJMoa1104621. PubMed DOI
Schadendorf D., Hodi F.S., Robert C., Weber J.S., Margolin K., Hamid O., Patt D., Chen T.T., Berman D.M., Wolchok J.D. Pooled Analysis of Long-Term Survival Data from Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015;33:1889–1894. doi: 10.1200/JCO.2014.56.2736. PubMed DOI PMC
Grimaldi A.M., Simeone E., Giannarelli D., Muto P., Falivene S., Borzillo V., Giugliano F.M., Sandomenico F., Petrillo A., Curvietto M., et al. Abscopal Effects of Radiotherapy on Advanced Melanoma Patients Who Progressed after Ipilimumab Immunotherapy. Oncoimmunology. 2014;3:e28780. doi: 10.4161/onci.28780. PubMed DOI PMC
Liang H., Deng L., Chmura S., Burnette B., Liadis N., Darga T., Beckett M.A., Lingen M.W., Witt M., Weichselbaum R.R., et al. Radiation-Induced Equilibrium Is a Balance between Tumor Cell Proliferation and T Cell–Mediated Killing. J. Immunol. 2013;190:5874–5881. doi: 10.4049/jimmunol.1202612. PubMed DOI PMC
Park S.S., Dong H., Liu X., Harrington S.M., Krco C.J., Grams M.P., Mansfield A.S., Furutani K.M., Olivier K.R., Kwon E.D. PD-1 Restrains Radiotherapy-Induced Abscopal Effect. Cancer Immunol. Res. 2015;3:610–619. doi: 10.1158/2326-6066.CIR-14-0138. PubMed DOI PMC
Pilones K.A., Kawashima N., Yang A.M., Babb J.S., Formenti S.C., Demaria S. Invariant Natural Killer T Cells Regulate Breast Cancer Response to Radiation and CTLA-4 Blockade. Clin. Cancer Res. 2009;15:597–606. doi: 10.1158/1078-0432.CCR-08-1277. PubMed DOI PMC
Milano M.T., Katz A.W., Zhang H., Okunieff P. Oligometastases Treated with Stereotactic Body Radiotherapy: Long-Term Follow-up of Prospective Study. Int. J. Radiat. Oncol. Biol. Phys. 2012;83:878–886. doi: 10.1016/j.ijrobp.2011.08.036. PubMed DOI
Salama J.K., Hasselle M.D., Chmura S.J., Malik R., Mehta N., Yenice K.M., Villaflor V.M., Stadler W.M., Hoffman P.C., Cohen E.E.W., et al. Stereotactic Body Radiotherapy for Multisite Extracranial Oligometastases: Final Report of a Dose Escalation Trial in Patients with 1 to 5 Sites of Metastatic Disease. Cancer. 2012;118:2962–2970. doi: 10.1002/cncr.26611. PubMed DOI
Schreiber R.D., Old L.J., Smyth M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science. 2011;331:1565–1570. doi: 10.1126/science.1203486. PubMed DOI
Zhang D., Bi J., Liang Q., Wang S., Zhang L., Han F., Li S., Qiu B., Fan X., Chen W., et al. VCAM1 Promotes Tumor Cell Invasion and Metastasis by Inducing EMT and Transendothelial Migration in Colorectal Cancer. Front. Oncol. 2020;10:1066. doi: 10.3389/fonc.2020.01066. PubMed DOI PMC
Johnson J.P. Cell Adhesion Molecules in the Development and Progression of Malignant Melanoma. Cancer Metastasis Rev. 1999;18:345–357. doi: 10.1023/A:1006304806799. PubMed DOI
Reits E.A., Hodge J.W., Herberts C.A., Groothuis T.A., Chakraborty M., Wansley E.K., Camphausen K., Luiten R.M., De Ru A.H., Neijssen J., et al. Radiation Modulates the Peptide Repertoire, Enhances MHC Class I Expression, and Induces Successful Antitumor Immunotherapy. J. Exp. Med. 2006;203:1259–1271. doi: 10.1084/jem.20052494. PubMed DOI PMC
Chakraborty M., Abrams S.I., Camphausen K., Liu K., Scott T., Coleman C.N., Hodge J.W. Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy. J. Immunol. 2003;170:6338–6347. doi: 10.4049/jimmunol.170.12.6338. PubMed DOI
Fuertes M.B., Kacha A.K., Kline J., Woo S.R., Kranz D.M., Murphy K.M., Gajewski T.F. Host Type I IFN Signals Are Required for Antitumor CD8+ T Cell Responses through CD8α+ Dendritic Cells. J. Exp. Med. 2011;208:2005–2016. doi: 10.1084/jem.20101159. PubMed DOI PMC
Grasso C.S., Tsoi J., Onyshchenko M., Abril-Rodriguez G., Ross-Macdonald P., Wind-Rotolo M., Champhekar A., Medina E., Torrejon D.Y., Shin D.S., et al. Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell. 2020;38:500–515.e3. doi: 10.1016/j.ccell.2020.08.005. PubMed DOI PMC
Zhou J., Wang G., Chen Y., Wang H., Hua Y., Cai Z. Immunogenic Cell Death in Cancer Therapy: Present and Emerging Inducers. J. Cell. Mol. Med. 2019;23:4854–4865. doi: 10.1111/jcmm.14356. PubMed DOI PMC
Gardai S.J., McPhillips K.A., Frasch S.C., Janssen W.J., Starefeldt A., Murphy-Ullrich J.E., Bratton D.L., Oldenborg P.A., Michalak M., Henson P.M. Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through Trans-Activation of LRP on the Phagocyte. Cell. 2005;123:321–334. doi: 10.1016/j.cell.2005.08.032. PubMed DOI
Perregaux D.G., McNiff P., Laliberte R., Conklyn M., Gabel C.A. ATP Acts as an Agonist to Promote Stimulus-Induced Secretion of IL-1β and IL-18 in Human Blood. J. Immunol. 2000;165:4615–4623. doi: 10.4049/jimmunol.165.8.4615. PubMed DOI
Vijay K. Toll-like Receptors in Immunity and Inflammatory Diseases: Past, Present, and Future. Int. Immunopharmacol. 2018;59:391–412. doi: 10.1016/j.intimp.2018.03.002. PubMed DOI PMC
Herrera F.G., Bourhis J., Coukos G. Radiotherapy Combination Opportunities Leveraging Immunity for the next Oncology Practice. CA. Cancer J. Clin. 2017;67:65–85. doi: 10.3322/caac.21358. PubMed DOI
Pedicord V.A., Montalvo W., Leiner I.M., Allison J.P. Single Dose of Anti-CTLA-4 Enhances CD8+ T-Cell Memory Formation, Function, and Maintenance. Proc. Natl. Acad. Sci. USA. 2011;108:266–271. doi: 10.1073/pnas.1016791108. PubMed DOI PMC
Herbst R.S., Baas P., Kim D.W., Felip E., Pérez-Gracia J.L., Han J.Y., Molina J., Kim J.H., Arvis C.D., Ahn M.J., et al. Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet. 2016;387:1540–1550. doi: 10.1016/S0140-6736(15)01281-7. PubMed DOI
Long G.V., Larkin J., Ascierto P.A., Hodi F.S., Rutkowski P., Sileni V., Hassel J., Lebbe C., Pavlick A.C., Wagstaff J., et al. Melanoma and Other Skin Tumours 1112PD PD-L1 Expression as a Biomarker for Nivolumab (NIVO) plus Ipilimumab (IPI) and NIVO Alone in Advanced Melanoma (MEL): A Pooled Analysis. Ann. Oncol. 2016;27:379–400. doi: 10.1093/annonc/mdw379.07. PubMed DOI
Deng L., Liang H., Burnette B., Beckett M., Darga T., Weichselbaum R.R., Fu Y.X. Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. J. Clin. Investig. 2014;124:687–695. doi: 10.1172/JCI67313. PubMed DOI PMC
Tsui J.M., Mihalcioiu C., Cury F.L. Abscopal Effect in a Stage IV Melanoma Patient Who Progressed on Pembrolizumab. Cureus. 2018;10:e2238. doi: 10.7759/cureus.2238. PubMed DOI PMC
Tchanque-Fossuo C.N., Eisen D.B. A Systematic Review on the Use of Cryotherapy versus Other Treatments for Basal Cell Carcinoma. Dermatol. Online J. 2018;24 doi: 10.1016/j.jid.2017.02.389. PubMed DOI
Zeng Y., Hu C., Shu L., Pan Y., Zhao L., Pu X., Wu F. Clinical Treatment Options for Early-Stage and Advanced Conjunctival Melanoma. Surv. Ophthalmol. 2020;66:461–470. doi: 10.1016/j.survophthal.2020.09.004. PubMed DOI
John H.E., Mahaffey P.J. Laser Ablation and Cryotherapy of Melanoma Metastases. J. Surg. Oncol. 2014;109:296–300. doi: 10.1002/jso.23488. PubMed DOI
Bala M.M., Riemsma R.P., Wolff R., Kleijnen J. Cryotherapy for Liver Metastases. Cochrane Database Syst. Rev. 2013:CD009058. doi: 10.1002/14651858.CD009058.pub2. PubMed DOI
Slovak R., Ludwig J.M., Gettinger S.N., Herbst R.S., Kim H.S. Immuno-Thermal Ablations–Boosting the Anticancer Immune Response. J. Immunother. Cancer. 2017;5:1–15. doi: 10.1186/s40425-017-0284-8. PubMed DOI PMC
Gazzaniga S., Bravo A., Goldszmid S.R., Maschi F., Martinelli J., Mordoh J., Wainstok R. Inflammatory Changes after Cryosurgery-Induced Necrosis in Human Melanoma Xenografted in Nude Mice. J. Investig. Dermatol. 2001;116:664–671. doi: 10.1046/j.0022-202x.2001.01313.x. PubMed DOI
Liu Y.C., Zou X.B., Chai Y.F., Yao Y.M. Macrophage Polarization in Inflammatory Diseases. Int. J. Biol. Sci. 2014;10:520–529. doi: 10.7150/ijbs.8879. PubMed DOI PMC
Zhou J., Tang Z., Gao S., Li C., Feng Y., Zhou X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020;10:188. doi: 10.3389/fonc.2020.00188. PubMed DOI PMC
Gu Y., Srimathveeravalli G., Cai L., Ueshima E., Maybody M., Yarmohammadi H., Zhu Y.S., Durack J.C., Solomon S.B., Coleman J.A., et al. Pirfenidone Inhibits Cryoablation Induced Local Macrophage Infiltration along with Its Associated TGFb1 Expression and Serum Cytokine Level in a Mouse Model. Cryobiology. 2018;82:106–111. doi: 10.1016/j.cryobiol.2018.03.012. PubMed DOI PMC
Takahashi Y., Izumi Y., Matsutani N., Dejima H., Nakayama T., Okamura R., Uehara H., Kawamura M. Optimized Magnitude of Cryosurgery Facilitating Anti-Tumor Immunoreaction in a Mouse Model of Lewis Lung Cancer. Cancer Immunol. Immunother. 2016;65:973–982. doi: 10.1007/s00262-016-1858-x. PubMed DOI PMC
Den Brok M.H.M.G.M., Sutmuller R.P.M., Nierkens S., Bennink E.J., Toonen L.W.J., Figdor C.G., Ruers T.J.M., Adema G.J. Synergy between in Situ Cryoablation and TLR9 Stimulation Results in a Highly Effective in Vivo Dendritic Cell Vaccine. Cancer Res. 2006;66:7285–7292. doi: 10.1158/0008-5472.CAN-06-0206. PubMed DOI
Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K. Ecology of Melanoma Cell. Histol. Histopathol. 2018;33:247–254. PubMed
Dvorak H.F. Tumors: Wounds That Do Not Heal-Redux. Cancer Immunol. Res. 2015;3:1–11. doi: 10.1158/2326-6066.CIR-14-0209. PubMed DOI PMC
Jobe N.P., Živicová V., Mifková A., Rösel D., Dvořánková B., Kodet O., Strnad H., Kolář M., Šedo A., Smetana K., et al. Fibroblasts Potentiate Melanoma Cells in Vitro Invasiveness Induced by UV-Irradiated Keratinocytes. Histochem. Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI
Čoma M., Fröhlichová L., Urban L., Zajícĕk R., Urban T., Szabo P., Novák Š., Fetissov V., Dvořánková B., Smetana K., et al. Molecular Changes Underlying Hypertrophic Scarring Following Burns Involve Specific Deregulations at Allwound Healing Stages (Inflammation, Proliferation and Maturation) Int. J. Mol. Sci. 2021;22:897. doi: 10.3390/ijms22020897. PubMed DOI PMC
Ressler J.M., Karasek M., Koch L., Silmbrod R., Mangana J., Latifyan S., Aedo-Lopez V., Kehrer H., Weihsengruber F., Koelblinger P., et al. Real-Life Use of Talimogene Laherparepvec (T-VEC) in Melanoma Patients in Centers in Austria, Switzerland and Germany. J. Immunother. Cancer. 2021;9:e001701. doi: 10.1136/jitc-2020-001701. PubMed DOI PMC
Kepp O., Marabelle A., Zitvogel L., Kroemer G. Oncolysis without Viruses–Inducing Systemic Anticancer Immune Responses with Local Therapies. Nat. Rev. Clin. Oncol. 2020;17:49–64. doi: 10.1038/s41571-019-0272-7. PubMed DOI