Tumor Biology and Microenvironment of Vestibular Schwannoma-Relation to Tumor Growth and Hearing Loss
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-08241S
Czech Science Foundation
874120
Charles University
CZ.02.1.01/0.0/0.0/16_019/0000785
Centre for tumour ecology
PubMed
36672540
PubMed Central
PMC9856152
DOI
10.3390/biomedicines11010032
PII: biomedicines11010032
Knihovny.cz E-zdroje
- Klíčová slova
- VS, hearing loss, tumor growth, tumor microenvironment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. It arises from Schwann cells of the vestibular nerve. The first symptoms of vestibular schwannoma include hearing loss, tinnitus, and vestibular symptoms. In the event of further growth, cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves, may be present. Although hearing impairment is present in 95% of patients diagnosed with vestibular schwannoma, most tumors do not progress in size or have low growth rates. However, the clinical picture has unpredictable dynamics, and there are currently no reliable predictors of the tumor's behavior. The etiology of the hearing loss in patients with vestibular schwannoma is unclear. Given the presence of hearing loss in patients with non-growing tumors, a purely mechanistic approach is insufficient. A possible explanation for this may be that the function of the auditory system may be affected by the paracrine activity of the tumor. Moreover, initiation of the development and growth progression of vestibular schwannomas is not yet clearly understood. Biallelic loss of the NF2 gene does not explain the occurrence in all patients; therefore, detection of gene expression abnormalities in cases of progressive growth is required. As in other areas of cancer research, the tumor microenvironment is coming to the forefront, also in vestibular schwannomas. In the paradigm of the tumor microenvironment, the stroma of the tumor actively influences the tumor's behavior. However, research in the area of vestibular schwannomas is at an early stage. Thus, knowledge of the molecular mechanisms of tumorigenesis and interactions between cells present within the tumor is crucial for the diagnosis, prediction of tumor behavior, and targeted therapeutic interventions. In this review, we provide an overview of the current knowledge in the field of molecular biology and tumor microenvironment of vestibular schwannomas, as well as their relationship to tumor growth and hearing loss.
BIOCEV Biotechnology and Biomedicine Centre 252 50 Vestec Czech Republic
Department of Neurosurgery 2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Constanzo F., Teixeira B.C.D.A., Sens P., Escuissato D., Ramina R. Cerebellopontine Angle Schwannomas Arising from the Intermediate Nerve: A Scoping Review. Neurosurg. Rev. 2020;43:1431–1441. doi: 10.1007/s10143-019-01173-6. PubMed DOI
Koen N., Shapiro C., Kozin E.D., Cunnane M.E., Remenschneider A.K., McKenna M.J., Jung D.H. Location of Small Intracanalicular Vestibular Schwannomas Based on Magnetic Resonance Imaging. Otolaryngol.-Head Neck Surg. 2020;162:211–214. doi: 10.1177/0194599819893106. PubMed DOI
Stangerup S.E., Tos M., Thomsen J., Caye-Thomasen P. True Incidence of Vestibular Schwannoma? Neurosurgery. 2010;67:1335–1340. doi: 10.1227/NEU.0b013e3181f22660. PubMed DOI
Cutfield S.W., Wickremesekera A.C., Mantamadiotis T., Kaye A.H., Tan S.T., Stylli S.S., Itineang T. Tumour Stem Cells in Schwannoma: A Review. J. Clin. Neurosci. 2019;62:21–26. doi: 10.1016/j.jocn.2018.12.022. PubMed DOI
Kim J.S., Cho Y.S. Growth of Vestibular Schwannoma: Long-Term Follow-up Study Using Survival Analysis. Acta Neurochir. 2021;163:2237–2245. doi: 10.1007/s00701-021-04870-8. PubMed DOI
Lees K.A., Tombers N.M., Link M.J., Driscoll C.L., Neff B.A., van Gompel J.J., Lane J.I., Lohse C.M., Carlson M.L. Natural History of Sporadic Vestibular Schwannoma: A Volumetric Study of Tumor Growth. Otolaryngol.-Head Neck Surg. 2018;159:535–542. doi: 10.1177/0194599818770413. PubMed DOI
Hannan C.J., Lewis D., O’Leary C., Donofrio C.A., Evans D.G., Stapleton E., Freeman S.R., Lloyd S.K., Rutherford S.A., Hammerbeck-Ward C., et al. Beyond Antoni: A Surgeon’s Guide to the Vestibular Schwannoma Microenvironment. J. Neurol. Surg. Part B Skull Base. 2022;83:1–10. doi: 10.1055/s-0040-1716688. PubMed DOI PMC
Nisenbaum E., Misztal C., Szczupak M., Thielhelm T., Peña S., Mei C., Goncalves S., Bracho O., Ma R., Ivan M.E., et al. Tumor-Associated Macrophages in Vestibular Schwannoma and Relationship to Hearing. OTO Open. 2021;5:2473974X211059111. doi: 10.1177/2473974X211059111. PubMed DOI PMC
Myrseth E., Pedersen P.H., Møller P., Lund-Johansen M. Treatment of Vestibular Schwannomas. Why, When and How? Acta Neurochir. 2007;149:647–660. doi: 10.1007/s00701-007-1179-0. PubMed DOI
Betka J., Chovanec M., Zverina E., Profant O., Lukes P., Skrivan J., Kluh J., Fik Z. Advances in Endoscopic Surgery. IntechOpen; Rijeka, Croatia: 2011. Minimally Invasive Endoscopic and Endoscopy-Assisted Microsurgery of Vestibular Schwannoma.
Plotkin S.R., Merker V.L., Halpin C., Jennings D., McKenna M.J., Harris G.J., Barker F.G., 2nd Bevacizumab for Progressive Vestibular Schwannoma in Neurofibromatosis Type 2: A Retrospective Review of 31 Patients. Otol. Neurotol. 2012:1046–1052. doi: 10.1097/MAO.0b013e31825e73f5. PubMed DOI
Kim G., Hullar T.E., Seo J.H. Comparison of Balance Outcomes According to Treatment Modality of Vestibular Schwannoma. Laryngoscope. 2020;130:178–189. doi: 10.1002/lary.27830. PubMed DOI
Yim A.K.Y., Wang P.L., Bermingham J.R., Hackett A., Strickland A., Miller T.M., Ly C., Mitra R.D., Milbrandt J. Disentangling Glial Diversity in Peripheral Nerves at Single-Nuclei Resolution. Nat. Neurosci. 2022;25:238–251. doi: 10.1038/s41593-021-01005-1. PubMed DOI PMC
Xu M., Wang S., Jiang Y., Wang J., Xiong Y., Dong W., Yao Q., Xing Y., Liu F., Chen Z., et al. Single-Cell RNA-Seq Reveals the Heterogeneity of Cell Communications between Schwann Cells and Fibroblasts within the Microenvironment in Vestibular Schwannoma. Am. J. Pathol. 2022;192:1230–1249. doi: 10.1016/j.ajpath.2022.06.006. PubMed DOI
Chen P., Piao X., Bonaldo P. Role of Macrophages in Wallerian Degeneration and Axonal Regeneration after Peripheral Nerve Injury. Acta Neuropathol. 2015;130:605–618. doi: 10.1007/s00401-015-1482-4. PubMed DOI
Zigmond R.E., Echevarria F.D. Macrophage Biology in the Peripheral Nervous System after Injury. Prog. Neurobiol. 2019;173:102–121. doi: 10.1016/j.pneurobio.2018.12.001. PubMed DOI PMC
Gomez-Sanchez J.A., Carty L., Iruarrizaga-Lejarreta M., Palomo-Irigoyen M., Varela-Rey M., Griffith M., Hantke J., Macias-Camara N., Azkargorta M., Aurrekoetxea I., et al. Schwann Cell Autophagy, Myelinophagy, Initiates Myelin Clearance from Injured Nerves. J. Cell Biol. 2015;210:153–168. doi: 10.1083/jcb.201503019. PubMed DOI PMC
Lutz A.B., Chung W.S., Sloan S.A., Carson G.A., Zhou L., Lovelett E., Posada S., Zuchero J.B., Barres B.A. Schwann Cells Use TAM Receptor-Mediated Phagocytosis in Addition to Autophagy to Clear Myelin in a Mouse Model of Nerve Injury. Proc. Natl. Acad. Sci. USA. 2017;114:E8072–E8080. doi: 10.1073/pnas.1710566114. PubMed DOI PMC
Arthur-Farraj P.J., Latouche M., Wilton D.K., Quintes S., Chabrol E., Banerjee A., Woodhoo A., Jenkins B., Rahman M., Turmaine M., et al. C-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration. Neuron. 2012;75:633–647. doi: 10.1016/j.neuron.2012.06.021. PubMed DOI PMC
Hobson M.I., Green C.J., Terenghi G. VEGF Enhances Intraneural Angiogenesis and Improves Nerve Regeneration after Axotomy. J. Anat. 2000;197:591–605. doi: 10.1046/j.1469-7580.2000.19740591.x. PubMed DOI PMC
Cattin A.L., Burden J.J., van Emmenis L., MacKenzie F.E., Hoving J.J.A., Garcia Calavia N., Guo Y., McLaughlin M., Rosenberg L.H., Quereda V., et al. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell. 2015;162:1127–1139. doi: 10.1016/j.cell.2015.07.021. PubMed DOI PMC
Birchmeier C., Nave K.A. Neuregulin-1, a Key Axonal Signal That Drives Schwann Cell Growth and Differentiation. Glia. 2008;56:1491–1497. doi: 10.1002/glia.20753. PubMed DOI
Fry E.J., Ho C., David S. A Role for Nogo Receptor in Macrophage Clearance from Injured Peripheral Nerve. Neuron. 2007;53:649–662. doi: 10.1016/j.neuron.2007.02.009. PubMed DOI
Helbing D.L., Schulz A., Morrison H. Pathomechanisms in Schwannoma Development and Progression. Oncogene. 2020;39:5421–5429. doi: 10.1038/s41388-020-1374-5. PubMed DOI PMC
Wippold F.J., Lubner M., Perrin R.J., Lämmle M., Perry A. Neuropathology for the Neuroradiologist: Antoni A and Antoni B Tissue Patterns. Am. J. Neuroradiol. 2007;28:1633–1638. doi: 10.3174/ajnr.A0682. PubMed DOI PMC
Abe M., Kawase T., Urano M., Mizoguchi Y., Kuroda M., Kasahara M., Suzuki H., Kanno T. Analyses of Proliferative Potential in Schwannomas. Brain Tumor Pathol. 2000;17:35–40. doi: 10.1007/BF02478916. PubMed DOI
Sian C.S., Ryan S.F. The ultrastructure of neurilemoma with emphasis on antoni B tissue. Hum. Pathol. 1981;12:145–160. doi: 10.1016/S0046-8177(81)80102-5. PubMed DOI
Evans D.G.R. Neurofibromatosis Type 2 (NF2): A Clinical and Molecular Review. Orphanet J. Rare Dis. 2009;4:1–11. doi: 10.1186/1750-1172-4-16. PubMed DOI PMC
Petrilli A.M., Fernández-Valle C. Role of Merlin/NF2 Inactivation in Tumor Biology. Oncogene. 2016;35:537–548. doi: 10.1038/onc.2015.125. PubMed DOI PMC
Neff B.A., Bradley Welling D., Akhmametyeva E., Chang L.-S. The Molecular Biology of Vestibular Schwannomas: Dissecting the Pathogenic Process at the Molecular Level. Otol. Neurotol. 2006;27:197–208. doi: 10.1097/01.mao.0000180484.24242.54. PubMed DOI
Morrison H., Sherman L.S., Legg J., Banine F., Isacke C., Haipek C.A., Gutmann D.H., Ponta H., Herrlich P. The NF2 Tumor Suppressor Gene Product, Merlin, Mediates Contact Inhibition of Growth through Interactions with CD44. Genes Dev. 2001;15:968–980. doi: 10.1101/gad.189601. PubMed DOI PMC
Morrison H., Sperka T., Manent J., Giovannini M., Ponta H., Herrlich P. Merlin/Neurofibromatosis Type 2 Suppresses Growth by Inhibiting the Activation of Ras and Rac. Cancer Res. 2007;67:520–527. doi: 10.1158/0008-5472.CAN-06-1608. PubMed DOI
Zhao F., Yang Z., Chen Y., Zhou Q., Zhang J., Liu J., Wang B., He Q., Zhang L., Yu Y., et al. Deregulation of the Hippo Pathway Promotes Tumor Cell Proliferation Through YAP Activity in Human Sporadic Vestibular Schwannoma. World Neurosurg. 2018;117:e269–e279. doi: 10.1016/j.wneu.2018.06.010. PubMed DOI
Hilton D.A., Hanemann C.O. Schwannomas and Their Pathogenesis. Brain Pathol. 2014;24:205–220. doi: 10.1111/bpa.12125. PubMed DOI PMC
Schulz A., Büttner R., Hagel C., Baader S.L., Kluwe L., Salamon J., Mautner V.F., Mindos T., Parkinson D.B., Gehlhausen J.R., et al. The Importance of Nerve Microenvironment for Schwannoma Development. Acta Neuropathol. 2016;132:289–307. doi: 10.1007/s00401-016-1583-8. PubMed DOI PMC
Schulz A., Kyselyova A., Baader S.L., Jung M.J., Zoch A., Mautner V.F., Hagel C., Morrison H. Neuronal Merlin Influences ERBB2 Receptor Expression on Schwann Cells through Neuregulin 1 Type III Signalling. Brain. 2014;137:420–432. doi: 10.1093/brain/awt327. PubMed DOI PMC
Carlson M.L., Smadbeck J.B., Link M.J., Klee E.W., Vasmatzis G., Schimmenti L.A. Next Generation Sequencing of Sporadic Vestibular Schwannoma: Necessity of Biallelic NF2 Inactivation and Implications of Accessory Non-NF2 Variants. Otol. Neurotol. 2018;39:E860–E871. doi: 10.1097/MAO.0000000000001932. PubMed DOI
Cayé-Thomasen P., Borup R., Stangerup S.-E., Thomsen J., Cilius Nielsen F. Deregulated Genes in Sporadic Vestibular Schwannomas. Otol. Neurotol. 2010;31:256–266. doi: 10.1097/MAO.0b013e3181be6478. PubMed DOI
Welling D.B., Lasak J.M., Akhmametyeva E., Ghaheri B., Chang L.-S. CDNA Microarray Analysis of Vestibular Schwannomas. Otol. Neurotol. 2002;23:736–748. doi: 10.1097/00129492-200209000-00022. PubMed DOI
Aarhus M., Bruland O., Sætran H.A., Mork S.J., Lund-Johansen M., Knappskog P.M. Global Gene Expression Profiling and Tissue Microarray Reveal Novel Candidate Genes and Down-Regulation of the Tumor Suppressor Gene CAV1 in Sporadic Vestibular Schwannomas. Neurosurgery. 2010;67:998–1019. doi: 10.1227/NEU.0b013e3181ec7b71. PubMed DOI
Torres-Martin M., Lassaletta L., San-Roman-Montero J., de Campos J.M., Isla A., Gavilan J., Melendez B., Pinto G.R., Burbano R.R., Castresana J.S., et al. Microarray Analysis of Gene Expression in Vestibular Schwannomas Reveals SPP1/MET Signaling Pathway and Androgen Receptor Deregulation. Int. J. Oncol. 2013;42:848–862. doi: 10.3892/ijo.2013.1798. PubMed DOI PMC
Casalino L., Verde P. Multifaceted Roles of DNA Methylation in Neoplastic Transformation, from Tumor Suppressors to EMT and Metastasis. Genes. 2020;11:922. doi: 10.3390/genes11080922. PubMed DOI PMC
Madakashira B.P., Sadler K.C. DNA Methylation, Nuclear Organization, and Cancer. Front. Genet. 2017;8:76. doi: 10.3389/fgene.2017.00076. PubMed DOI PMC
Gonzalez-Gomez P., Bello M.J., Alonso M.E., Lomas J., Arjona D., de Campos J.M., Vaquero J., Isla A., Lassaletta L., Gutierrez M., et al. CpG Island Methylation in Sporadic and Neurofibromatis Type 2-Associated Schwannomas. Clin. Cancer Res. 2003;9:5601–5606. PubMed
Lassaletta L., Bello M.J., Río L.D., Alfonso C., Roda M., Rey A., Gavilan J. DNA Methylation of Multiple Genes in Vestibular Schwannoma: Relationship With Clinical and Radiological Findings. Otol. Neurotol. 2006;27:1180–1185. doi: 10.1097/01.mao.0000226291.42165.22. PubMed DOI
Sass H., Cayé-Thomasen P. Contemporary Molecular Biology of Sporadic Vestibular Schwannomas: A Systematic Review and Clinical Implications. J. Int. Adv. Otol. 2018;14:322–329. doi: 10.5152/iao.2018.4929. PubMed DOI PMC
Ahmed S.G., Abdelnabi A., Maguire C.A., Doha M., Sagers J.E., Lewis R.M., Muzikansky A., Giovannini M., Stemmer-Rachamimov A., Stankovic K.M., et al. Gene Therapy with Apoptosis-Associated Speck-like Protein, a Newly Described Schwannoma Tumor Suppressor, Inhibits Schwannoma Growth in Vivo. Neuro-Oncol. 2019;21:855–866. doi: 10.1093/neuonc/noz065. PubMed DOI PMC
Håvik A.L., Bruland O., Myrseth E., Miletic H., Aarhus M., Knappskog P.M., Lund-Johansen M. Genetic Landscape of Sporadic Vestibular Schwannoma. J. Neurosurg. 2018;128:911–922. doi: 10.3171/2016.10.JNS161384. PubMed DOI
Shi J., Lu D., Gu R., Xu Y., Pan R., Bo F., Zhang Y. Identification of Key Biomarkers and Immune Infiltration in Sporadic Vestibular Schwannoma Basing Transcriptome-Wide Profiling. World Neurosurg. 2022;160:e591–e600. doi: 10.1016/j.wneu.2022.01.077. PubMed DOI
Seo J.-H., Park K.-H., Jeon E.-J., Chang K.-H., Lee H., Lee W., Park Y.-S. Proteomic Analysis of Vestibular Schwannoma: Conflicting Role of Apoptosis on the Pathophysiology of Sporadic Vestibular Schwannoma. Otol. Neurotol. 2015;36:714–719. doi: 10.1097/MAO.0000000000000643. PubMed DOI
Taurone S., Bianchi E., Attanasio G., di Gioia C., Ierinó R., Carubbi C., Galli D., Pastore F.S., Giangaspero F., Filipo R., et al. Immunohistochemical Profile of Cytokines and Growth Factors Expressed in Vestibular Schwannoma and in Normal Vestibular Nerve Tissue. Mol. Med. Rep. 2015;12:737–745. doi: 10.3892/mmr.2015.3415. PubMed DOI
Sagers J.E., Sahin M.I., Moon I.S., Ahmed S.G., Stemmer-Rachamimov A., Brenner G.J., Stankovic K.M. NLRP3 Inflammasome Activation in Human Vestibular Schwannoma: Implications for Tumor-Induced Hearing Loss. Hear. Res. 2019;381:107770. doi: 10.1016/j.heares.2019.07.007. PubMed DOI
Breun M., Schwerdtfeger A., Daniel Martellotta D., Kessler A.F., Perez J.M., Monoranu C.M., Ernestus R.-I., Matthies C., Löhr M., Hagemann C. CXCR4: A New Player in Vestibular Schwannoma Pathogenesis. Oncotarget. 2018;9:9940–9950. doi: 10.18632/oncotarget.24119. PubMed DOI PMC
Xu J., Zhang Y., Shi Y., Yin D., Dai P., Zhao W., Zhang T. Identification of Predictive Proteins and Biological Pathways for the Tumorigenicity of Vestibular Schwannoma by Proteomic Profiling. Proteom. Clin. Appl. 2019;13:e1800175. doi: 10.1002/prca.201800175. PubMed DOI
Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Čada Z., Szabo P., Šáchová J., Hroudová M., Urbanová M., et al. Smooth Muscle Actin-Expressing Stromal Fibroblasts in Head and Neck Squamous Cell Carcinoma: Increased Expression of Galectin-1 and Induction of Poor Prognosis Factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI
Fík Z., Dvořánková B., Kodet O., Bouček J., Betka J.A., Betka J., André S., Gabius H.-J., Šnajdr P., Smetana K., et al. Towards Dissecting Molecular Routes of Intercellular Communication in the Tumour Microenvironment: Phenotypic Plasticity of Stem Cell-Associated Markers in Co-Culture (Carcinoma Cell/Fibroblast) Systems. Folia Biol. 2014;60:205–212. PubMed
Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.J., Strnad H., Šáchová J., Vlček Č., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 Production in Dermal Fibroblasts by Normal/Malignant Epithelial Cells in Vitro: Immunohistochemical and Transcriptomic Analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI
Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC
Novák Š., Bandurová V., Mifková A., Kalfeřt D., Fík Z., Lukeš P., Szabo P., Plzák J., Smetana K., Jr. Nádorové Mikroprostředí. Otoronolarygologie a Foniatrie. 2019;68:41–51.
Solinas G., Germano G., Mantovani A., Allavena P. Tumor-Associated Macrophages (TAM) as Major Players of the Cancer-Related Inflammation. J. Leukoc. Biol. 2009;86:1065–1073. doi: 10.1189/jlb.0609385. PubMed DOI
Pan Y., Yu Y., Wang X., Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084. PubMed DOI PMC
Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. J. Biomed. Sci. 2019;26:78. doi: 10.1186/s12929-019-0568-z. PubMed DOI PMC
Chen B., Khodadoust M.S., Liu C.L., Newman A.M., Alizadeh A.A. Methods in Molecular Biology. Volume 1711. Humana Press Inc.; Totowa, NJ, USA: 2018. Profiling Tumor Infiltrating Immune Cells with CIBERSORT; pp. 243–259. PubMed PMC
Filippou P.S., Karagiannis G.S., Constantinidou A. Midkine (MDK) Growth Factor: A Key Player in Cancer Progression and a Promising Therapeutic Target. Oncogene. 2020;39:2040–2054. doi: 10.1038/s41388-019-1124-8. PubMed DOI
Nwabo Kamdje A.H., Seke Etet P.F., Kipanyula M.J., Vecchio L., Tagne Simo R., Njamnshi A.K., Lukong K.E., Mimche P.N. Insulin-like Growth Factor-1 Signaling in the Tumor Microenvironment: Carcinogenesis, Cancer Drug Resistance, and Therapeutic Potential. Front. Endocrinol. 2022;13:927390. doi: 10.3389/fendo.2022.927390. PubMed DOI PMC
Grassivaro F., Menon R., Acquaviva M., Ottoboni L., Ruffini F., Andrea Bergamaschi X., Muzio L., Farina C., Gianvito Martino X. Convergence between Microglia and Peripheral Macrophages Phenotype during Development and Neuroinflammation. J. Neurosci. 2020;40:784–795. doi: 10.1523/JNEUROSCI.1523-19.2019. PubMed DOI PMC
Jin N., Gao L., Fan X., Xu H. Friend or Foe? Resident Microglia vs Bone Marrow-Derived Microglia and Their Roles in the Retinal Degeneration. Mol. Neurobiol. 2017;54:4094–4112. doi: 10.1007/s12035-016-9960-9. PubMed DOI
Lisi L., Ciotti G.M.P., Braun D., Kalinin S., Currò D., dello Russo C., Coli A., Mangiola A., Anile C., Feinstein D.L., et al. Expression of INOS, CD163 and ARG-1 Taken as M1 and M2 Markers of Microglial Polarization in Human Glioblastoma and the Surrounding Normal Parenchyma. Neurosci. Lett. 2017;645:106–112. doi: 10.1016/j.neulet.2017.02.076. PubMed DOI
Held-Feindt J., Rehmke B., Mentlein R., Hattermann K., Knerlich F., Hugo H.H., Ludwig A., Mehdorn H.M. Overexpression of CXCL16 and Its Receptor CXCR6/Bonzo Promotes Growth of Human Schwannomas. Glia. 2008;56:764–774. doi: 10.1002/glia.20651. PubMed DOI
Hong B., Krusche C.A., Schwabe K., Friedrich S., Klein R., Krauss J.K., Nakamura M. Cyclooxygenase-2 Supports Tumor Proliferation in Vestibular Schwannomas. Neurosurgery. 2011;68:1112–1117. doi: 10.1227/NEU.0b013e318208f5c7. PubMed DOI
Hannan C.J., Lewis D., O’Leary C., Donofrio C.A., Evans D.G., Roncaroli F., Brough D., King A.T., Coope D., Pathmanaban O.N. The Inflammatory Microenvironment in Vestibular Schwannoma. Neurooncol. Adv. 2020;2:vdaa023. doi: 10.1093/noajnl/vdaa023. PubMed DOI PMC
Plotkin S.R., Stemmer-Rachamimov A.O., Barker F.G., Halpin C., Padera T.P., Tyrrell A., Sorensen A.G., Jain R.K., di Tomaso E. Hearing Improvement after Bevacizumab in Patients with Neurofibromatosis Type 2. New Engl. J. Med. 2009;361:358–367. doi: 10.1056/NEJMoa0902579. PubMed DOI PMC
Lewis D., Donofrio C.A., O’Leary C., Li K.L., Zhu X., Williams R., Djoukhadar I., Agushi E., Hannan C.J., Stapleton E., et al. The Microenvironment in Sporadic and Neurofibromatosis Type II–Related Vestibular Schwannoma: The Same Tumor or Different? A Comparative Imaging and Neuropathology Study. J. Neurosurg. 2021;134:1419–1429. doi: 10.3171/2020.3.JNS193230. PubMed DOI
Sass H.C.R., Borup R., Alanin M., Nielsen F.C., Cayé-Thomasen P. Gene Expression, Signal Transduction Pathways and Functional Networks Associated with Growth of Sporadic Vestibular Schwannomas. J. Neurooncol. 2017;131:283–292. doi: 10.1007/s11060-016-2292-9. PubMed DOI
de Vries M., Hogendoorn P.C.W., de Bruyn I.B., Malessy M.J.A., van der Mey A.G.L. Intratumoral Hemorrhage, Vessel Density, and the Inflammatory Reaction Contribute to Volume Increase of Sporadic Vestibular Schwannomas. Virchows Arch. 2012;460:629–636. doi: 10.1007/s00428-012-1236-9. PubMed DOI PMC
Vries M.d., Briaire-De Bruijn I., Malessy J.A., de Brubne F.T., van der Mey G.L., Hogendoorn P.C.W. Tumor-Associated Macrophages Are Related to Volumetric Growth of Vestibular Schwannomas. Otol. Neurotol. 2013;34:347–352. doi: 10.1097/MAO.0b013e31827c9fbf. PubMed DOI
Lewis D., Roncaroli F., Agushi E., Mosses D., Williams R., Li K.L., Zhu X., Hinz R., Atkinson R., Wadeson A., et al. Inflammation and Vascular Permeability Correlate with Growth in Sporadic Vestibular Schwannoma. Neuro-Oncol. 2019;21:314–325. doi: 10.1093/neuonc/noy177. PubMed DOI PMC
Graffeo C.S., Perry A., Raghunathan A., Kroneman T.N., Jentoft M., Driscoll C.L., Neff B.A., Carlson M.L., Jacob J., Link M.J., et al. Macrophage Density Predicts Facial Nerve Outcome and Tumor Growth after Subtotal Resection of Vestibular Schwannoma. J. Neurol. Surg. Part B Skull Base. 2018;79:482–488. doi: 10.1055/s-0038-1627474. PubMed DOI PMC
Perry A., Graffeo C.S., Carlstrom L.P., Raghunathan A., Driscoll C.L.W., Neff B.A., Carlson M.L., Parney I.F., Link M.J., van Gompel J.J. Predominance of M1 Subtype among Tumor-Associated Macrophages in Phenotypically Aggressive Sporadic Vestibular Schwannoma. J. Neurosurg. 2020;133:1637–1645. doi: 10.3171/2019.7.JNS19879. PubMed DOI
Gonçalves V.M., Suhm E.M., Ries V., Skardelly M., Tabatabai G., Tatagiba M., Schittenhelm J., Behling F. Macrophage and Lymphocyte Infiltration Is Associated with Volumetric Tumor Size but Not with Volumetric Growth in the Tübingen Schwannoma Cohort. Cancers. 2021;13:466. doi: 10.3390/cancers13030466. PubMed DOI PMC
de Vries W.M., Briaire-de Bruijn I.H., van Benthem P.P.G., van der Mey A.G.L., Hogendoorn P.C.W. M-CSF and IL-34 Expression as Indicators for Growth in Sporadic Vestibular Schwannoma. Virchows Arch. 2019;474:375–381. doi: 10.1007/s00428-018-2503-1. PubMed DOI PMC
Behling F., Suhm E., Ries V., Gonçalves V.M., Tabatabai G., Tatagiba M., Schittenhelm J. COX2 Expression Is Associated with Preoperative Tumor Volume but Not with Volumetric Tumor Growth in Vestibular Schwannoma. Neurol. Res. Pr. 2021;3:11. doi: 10.1186/s42466-021-00111-6. PubMed DOI PMC
Cayé-Thomasen P., Werther K., Nalla A., Bøg-Hansen T.C., Jørgen Nielsen H., Stangerup S.-E., Thomsen J. VEGF and VEGF Receptor-1 Concentration in Vestibular Schwannoma Homogenates Correlates to Tumor Growth Rate. Otol. Neurotol. 2005;26:98–101. doi: 10.1097/00129492-200501000-00017. PubMed DOI
Cayé-Thomasen P., Baandrup L., Jacobsen G.K., Thomsen J., Stangerup S.-E. Immunohistochemical Demonstration of Vascular Endothelial Growth Factor in Vestibular Schwannomas Correlates to Tumor Growth Rate. Laryngoscope. 2003;113:2129–2134. doi: 10.1097/00005537-200312000-00014. PubMed DOI
Møller M.N., Werther K., Nalla A., Stangerup S.E., Thomsen J., Bøg-Hansen T.C., Nielsen H.J., Cayé-Thomasen P. Angiogenesis in Vestibular Schwannomas: Expression of Extracellular Matrix Factors MMP-2, MMP-9, and TIMP-1. Laryngoscope. 2010;120:657–662. doi: 10.1002/lary.20834. PubMed DOI
Graamans K., van Dijk J.E., Janssen L.W. Hearing Deterioration in Patients with a Non-Growing Vestibular Schwannoma. Acta Otolaryngol. 2003;123:51–54. doi: 10.1080/0036554021000028075. PubMed DOI
Fisher L.M., Doherty J.K., Lev M.H., Slattery W.H. Concordance of Bilateral Vestibular Schwannoma Growth and Hearing Changes in Neurofibromatosis 2: Neurofibromatosis 2 Natural History Consortium. Otol. Neurotol. 2009;30:835–841. doi: 10.1097/MAO.0b013e3181b2364c. PubMed DOI
Lassaletta L., Calvino M., Morales-Puebla J.M., Lapunzina P., Rodriguez-de la Rosa L., Varela-Nieto I., Martinez-Glez V. Biomarkers in Vestibular Schwannoma–Associated Hearing Loss. Front. Neurol. 2019;10:978. doi: 10.3389/fneur.2019.00978. PubMed DOI PMC
Asthagiri A.R., Vasquez R.A., Butman J.A., Wu T., Morgan K., Brewer C.C., King K., Zalewski C., Kim H.J., Lonser R.R. Mechanisms of Hearing Loss in Neurofibromatosis Type 2. PLoS ONE. 2012;7:e46132. doi: 10.1371/journal.pone.0046132. PubMed DOI PMC
Karch-Georges A., Veillon F., Vuong H., Rohmer D., Karol A., Charpiot A., Meyer N., Venkatasamy A. MRI of Endolymphatic Hydrops in Patients with Vestibular Schwannomas: A Case-Controlled Study Using Non-Enhanced T2-Weighted Images at 3 Teslas. Eur. Arch. Oto-Rhino-Laryngol. 2019;276:1591–1599. doi: 10.1007/s00405-019-05395-8. PubMed DOI
Gan J., Zhang Y., Wu J., Lei D., Zhang F., Zhao H., Wang L. Current Understanding of Hearing Loss in Sporadic Vestibular Schwannomas: A Systematic Review. Front. Oncol. 2021:11, 687201. doi: 10.3389/fonc.2021.687201. PubMed DOI PMC
Carlson M.L., Vivas E.X., McCracken D.J., Sweeney A.D., Neff B.A., Shepard N.T., Olson J.J. Proceedings of the Clinical Neurosurgery. Volume 82. Oxford University Press; Oxford, UK: 2018. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Hearing Preservation Outcomes in Patients with Sporadic Vestibular Schwannomas; pp. E35–E39. PubMed
Lassaletta L., Patrón M., del Río L., Alfonso C., Maria Roda J., Rey J.A., Gavilan J. Cyclin D1 Expression and Histopathologic Features in Vestibular Schwannomas. Otol. Neurotol. 2007;28:939–941. doi: 10.1097/MAO.0b013e31814b2285. PubMed DOI
Stankovic K.M., Mrugala M., Martuza L., Silver K., Betensky A., Nadol B., Stemmer-Rachamimov O., Stankovic K.M. Genetic Determinants of Hearing Loss Associated With Vestibular Schwannomas. Otol. Neurotol. 2009;30:661–667. doi: 10.1097/MAO.0b013e3181a66ece. PubMed DOI
Lassaletta L., Torres-Martín M., Peña-Granero C., Roda J.M., Santa-Cruz-Ruiz S., Castresana J.S., Gavilan J., Rey J.A. NF2 Genetic Alterations in Sporadic Vestibular Schwannomas: Clinical Implications. Otol. Neurotol. 2013;34:1355–1361. doi: 10.1097/MAO.0b013e318298ac79. PubMed DOI
Dilwali S., Lysaght A., Roberts D., Barker F.G., 2nd, Mckenna J., Stankovic M. Sporadic Vestibular Schwannomas Associated With Good Hearing Secrete Higher Levels of Fibroblast Growth Factor 2 Than Those Associated With Poor Hearing Irrespective of Tumor Size. Otol. Neurotol. 2013;34:748–754. doi: 10.1097/MAO.0b013e31828048ec. PubMed DOI PMC
Dilwali S., Landegger L.D., Soares V.Y.R., Deschler D.G., Stankovic K.M. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage. Sci. Rep. 2015;5:18599. doi: 10.1038/srep18599. PubMed DOI PMC
Plotkin S.R., Duda D.G., Muzikansky A., Allen J., Blakeley J., Rosser T., Campian J.L., Clapp D.W., Fisher M.J., Tonsgard J., et al. Multicenter, Prospective, Phase II and Biomarker Study of High-Dose Bevacizumab as Induction Therapy in Patients With Neurofibromatosis Type 2 and Progressive Vestibular Schwannoma. J. Clin. Oncol. 2019;37:3446–3454. doi: 10.1200/JCO.19.01367. PubMed DOI PMC
Soares V.Y.R., Atai N.A., Fujita T., Dilwali S., Sivaraman S., Landegger L.D., Hochberg F.H., Oliveira C.A.P.C., Bahmad F., Breakefield X.O., et al. Extracellular Vesicles Derived from Human Vestibular Schwannomas Associated with Poor Hearing Damage Cochlear Cells. Neuro Oncol. 2016;18:1498–1507. doi: 10.1093/neuonc/now099. PubMed DOI PMC
Ren Y., Hyakusoku H., Sagers J.E., Landegger L.D., Welling D.B., Stankovic K.M. MMP-14 (MT1-MMP) Is a Biomarker of Surgical Outcome and a Potential Mediator of Hearing Loss in Patients With Vestibular Schwannomas. Front. Cell. Neurosci. 2020;14:191. doi: 10.3389/fncel.2020.00191. PubMed DOI PMC
Breun M., Monoranu C.M., Kessler A.F., Matthies C., Löhr M., Hagemann C., Schirbel A., Rowe S.P., Pomper M.G., Buck A.K., et al. [68Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Front. Oncol. 2019:9, 503. doi: 10.3389/fonc.2019.00503. PubMed DOI PMC
Fujii M., Ichikawa M., Iwatate K., Bakhit M., Yamada M., Kuromi Y., Sato T., Sakuma J., Saito K. Bevacizumab Therapy of Neurofibromatosis Type 2 Associated Vestibular Schwannoma in Japanese Patients. Neurol. Med. Chir. 2020;60:75–82. doi: 10.2176/nmc.oa.2019-0194. PubMed DOI PMC
Xu Y., Li Q., Ma H., Sun T., Xiang R., Di F. Therapeutic Effect and Side Effects of Bevacizumab Combined with Irinotecan in the Treatment of Paediatric Intracranial Tumours: Meta-Analysis and Systematic Review. J. Clin. Pharm. Ther. 2020;45:1363–1371. doi: 10.1111/jcpt.13228. PubMed DOI PMC
Fujii M., Kobayakawa M., Saito K., Inano A., Morita A., Hasegawa M., Mukasa A., Mitsuhara T., Goto T., Yamaguchi S., et al. Rationale and Design of Beatnf2 Trial: A Clinical Trial to Assess the Efficacy and Safety of Bevacizumab in Patients with Neurofibromatosis Type 2 Related Vestibular Schwannoma. Curr. Oncol. 2021;28:726–739. doi: 10.3390/curroncol28010071. PubMed DOI PMC
Tamura R., Toda M. A Critical Overview of Targeted Therapies for Vestibular Schwannoma. Int. J. Mol. Sci. 2022;23:5462. doi: 10.3390/ijms23105462. PubMed DOI PMC
Kandathil C.K., Cunnane M.E., McKenna M.J., Curtin H.D., Stankovic K.M. Correlation Between Aspirin Intake and Reduced Growth of Human Vestibular Schwannoma: Volumetric Analysis. Otol. Neurotol. 2016;37:1428–1434. doi: 10.1097/MAO.0000000000001180. PubMed DOI
Marinelli J.P., Lees K.A., Tombers N.M., Lohse C.M., Carlson M.L. Impact of Aspirin and Other NSAID Use on Volumetric and Linear Growth in Vestibular Schwannoma. Otolaryngol. Neck Surg. 2019;160:1081–1086. doi: 10.1177/0194599819827812. PubMed DOI