Tumor Biology and Microenvironment of Vestibular Schwannoma-Relation to Tumor Growth and Hearing Loss

. 2022 Dec 23 ; 11 (1) : . [epub] 20221223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36672540

Grantová podpora
19-08241S Czech Science Foundation
874120 Charles University
CZ.02.1.01/0.0/0.0/16_019/0000785 Centre for tumour ecology

Odkazy

PubMed 36672540
PubMed Central PMC9856152
DOI 10.3390/biomedicines11010032
PII: biomedicines11010032
Knihovny.cz E-zdroje

Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. It arises from Schwann cells of the vestibular nerve. The first symptoms of vestibular schwannoma include hearing loss, tinnitus, and vestibular symptoms. In the event of further growth, cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves, may be present. Although hearing impairment is present in 95% of patients diagnosed with vestibular schwannoma, most tumors do not progress in size or have low growth rates. However, the clinical picture has unpredictable dynamics, and there are currently no reliable predictors of the tumor's behavior. The etiology of the hearing loss in patients with vestibular schwannoma is unclear. Given the presence of hearing loss in patients with non-growing tumors, a purely mechanistic approach is insufficient. A possible explanation for this may be that the function of the auditory system may be affected by the paracrine activity of the tumor. Moreover, initiation of the development and growth progression of vestibular schwannomas is not yet clearly understood. Biallelic loss of the NF2 gene does not explain the occurrence in all patients; therefore, detection of gene expression abnormalities in cases of progressive growth is required. As in other areas of cancer research, the tumor microenvironment is coming to the forefront, also in vestibular schwannomas. In the paradigm of the tumor microenvironment, the stroma of the tumor actively influences the tumor's behavior. However, research in the area of vestibular schwannomas is at an early stage. Thus, knowledge of the molecular mechanisms of tumorigenesis and interactions between cells present within the tumor is crucial for the diagnosis, prediction of tumor behavior, and targeted therapeutic interventions. In this review, we provide an overview of the current knowledge in the field of molecular biology and tumor microenvironment of vestibular schwannomas, as well as their relationship to tumor growth and hearing loss.

Zobrazit více v PubMed

Constanzo F., Teixeira B.C.D.A., Sens P., Escuissato D., Ramina R. Cerebellopontine Angle Schwannomas Arising from the Intermediate Nerve: A Scoping Review. Neurosurg. Rev. 2020;43:1431–1441. doi: 10.1007/s10143-019-01173-6. PubMed DOI

Koen N., Shapiro C., Kozin E.D., Cunnane M.E., Remenschneider A.K., McKenna M.J., Jung D.H. Location of Small Intracanalicular Vestibular Schwannomas Based on Magnetic Resonance Imaging. Otolaryngol.-Head Neck Surg. 2020;162:211–214. doi: 10.1177/0194599819893106. PubMed DOI

Stangerup S.E., Tos M., Thomsen J., Caye-Thomasen P. True Incidence of Vestibular Schwannoma? Neurosurgery. 2010;67:1335–1340. doi: 10.1227/NEU.0b013e3181f22660. PubMed DOI

Cutfield S.W., Wickremesekera A.C., Mantamadiotis T., Kaye A.H., Tan S.T., Stylli S.S., Itineang T. Tumour Stem Cells in Schwannoma: A Review. J. Clin. Neurosci. 2019;62:21–26. doi: 10.1016/j.jocn.2018.12.022. PubMed DOI

Kim J.S., Cho Y.S. Growth of Vestibular Schwannoma: Long-Term Follow-up Study Using Survival Analysis. Acta Neurochir. 2021;163:2237–2245. doi: 10.1007/s00701-021-04870-8. PubMed DOI

Lees K.A., Tombers N.M., Link M.J., Driscoll C.L., Neff B.A., van Gompel J.J., Lane J.I., Lohse C.M., Carlson M.L. Natural History of Sporadic Vestibular Schwannoma: A Volumetric Study of Tumor Growth. Otolaryngol.-Head Neck Surg. 2018;159:535–542. doi: 10.1177/0194599818770413. PubMed DOI

Hannan C.J., Lewis D., O’Leary C., Donofrio C.A., Evans D.G., Stapleton E., Freeman S.R., Lloyd S.K., Rutherford S.A., Hammerbeck-Ward C., et al. Beyond Antoni: A Surgeon’s Guide to the Vestibular Schwannoma Microenvironment. J. Neurol. Surg. Part B Skull Base. 2022;83:1–10. doi: 10.1055/s-0040-1716688. PubMed DOI PMC

Nisenbaum E., Misztal C., Szczupak M., Thielhelm T., Peña S., Mei C., Goncalves S., Bracho O., Ma R., Ivan M.E., et al. Tumor-Associated Macrophages in Vestibular Schwannoma and Relationship to Hearing. OTO Open. 2021;5:2473974X211059111. doi: 10.1177/2473974X211059111. PubMed DOI PMC

Myrseth E., Pedersen P.H., Møller P., Lund-Johansen M. Treatment of Vestibular Schwannomas. Why, When and How? Acta Neurochir. 2007;149:647–660. doi: 10.1007/s00701-007-1179-0. PubMed DOI

Betka J., Chovanec M., Zverina E., Profant O., Lukes P., Skrivan J., Kluh J., Fik Z. Advances in Endoscopic Surgery. IntechOpen; Rijeka, Croatia: 2011. Minimally Invasive Endoscopic and Endoscopy-Assisted Microsurgery of Vestibular Schwannoma.

Plotkin S.R., Merker V.L., Halpin C., Jennings D., McKenna M.J., Harris G.J., Barker F.G., 2nd Bevacizumab for Progressive Vestibular Schwannoma in Neurofibromatosis Type 2: A Retrospective Review of 31 Patients. Otol. Neurotol. 2012:1046–1052. doi: 10.1097/MAO.0b013e31825e73f5. PubMed DOI

Kim G., Hullar T.E., Seo J.H. Comparison of Balance Outcomes According to Treatment Modality of Vestibular Schwannoma. Laryngoscope. 2020;130:178–189. doi: 10.1002/lary.27830. PubMed DOI

Yim A.K.Y., Wang P.L., Bermingham J.R., Hackett A., Strickland A., Miller T.M., Ly C., Mitra R.D., Milbrandt J. Disentangling Glial Diversity in Peripheral Nerves at Single-Nuclei Resolution. Nat. Neurosci. 2022;25:238–251. doi: 10.1038/s41593-021-01005-1. PubMed DOI PMC

Xu M., Wang S., Jiang Y., Wang J., Xiong Y., Dong W., Yao Q., Xing Y., Liu F., Chen Z., et al. Single-Cell RNA-Seq Reveals the Heterogeneity of Cell Communications between Schwann Cells and Fibroblasts within the Microenvironment in Vestibular Schwannoma. Am. J. Pathol. 2022;192:1230–1249. doi: 10.1016/j.ajpath.2022.06.006. PubMed DOI

Chen P., Piao X., Bonaldo P. Role of Macrophages in Wallerian Degeneration and Axonal Regeneration after Peripheral Nerve Injury. Acta Neuropathol. 2015;130:605–618. doi: 10.1007/s00401-015-1482-4. PubMed DOI

Zigmond R.E., Echevarria F.D. Macrophage Biology in the Peripheral Nervous System after Injury. Prog. Neurobiol. 2019;173:102–121. doi: 10.1016/j.pneurobio.2018.12.001. PubMed DOI PMC

Gomez-Sanchez J.A., Carty L., Iruarrizaga-Lejarreta M., Palomo-Irigoyen M., Varela-Rey M., Griffith M., Hantke J., Macias-Camara N., Azkargorta M., Aurrekoetxea I., et al. Schwann Cell Autophagy, Myelinophagy, Initiates Myelin Clearance from Injured Nerves. J. Cell Biol. 2015;210:153–168. doi: 10.1083/jcb.201503019. PubMed DOI PMC

Lutz A.B., Chung W.S., Sloan S.A., Carson G.A., Zhou L., Lovelett E., Posada S., Zuchero J.B., Barres B.A. Schwann Cells Use TAM Receptor-Mediated Phagocytosis in Addition to Autophagy to Clear Myelin in a Mouse Model of Nerve Injury. Proc. Natl. Acad. Sci. USA. 2017;114:E8072–E8080. doi: 10.1073/pnas.1710566114. PubMed DOI PMC

Arthur-Farraj P.J., Latouche M., Wilton D.K., Quintes S., Chabrol E., Banerjee A., Woodhoo A., Jenkins B., Rahman M., Turmaine M., et al. C-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration. Neuron. 2012;75:633–647. doi: 10.1016/j.neuron.2012.06.021. PubMed DOI PMC

Hobson M.I., Green C.J., Terenghi G. VEGF Enhances Intraneural Angiogenesis and Improves Nerve Regeneration after Axotomy. J. Anat. 2000;197:591–605. doi: 10.1046/j.1469-7580.2000.19740591.x. PubMed DOI PMC

Cattin A.L., Burden J.J., van Emmenis L., MacKenzie F.E., Hoving J.J.A., Garcia Calavia N., Guo Y., McLaughlin M., Rosenberg L.H., Quereda V., et al. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell. 2015;162:1127–1139. doi: 10.1016/j.cell.2015.07.021. PubMed DOI PMC

Birchmeier C., Nave K.A. Neuregulin-1, a Key Axonal Signal That Drives Schwann Cell Growth and Differentiation. Glia. 2008;56:1491–1497. doi: 10.1002/glia.20753. PubMed DOI

Fry E.J., Ho C., David S. A Role for Nogo Receptor in Macrophage Clearance from Injured Peripheral Nerve. Neuron. 2007;53:649–662. doi: 10.1016/j.neuron.2007.02.009. PubMed DOI

Helbing D.L., Schulz A., Morrison H. Pathomechanisms in Schwannoma Development and Progression. Oncogene. 2020;39:5421–5429. doi: 10.1038/s41388-020-1374-5. PubMed DOI PMC

Wippold F.J., Lubner M., Perrin R.J., Lämmle M., Perry A. Neuropathology for the Neuroradiologist: Antoni A and Antoni B Tissue Patterns. Am. J. Neuroradiol. 2007;28:1633–1638. doi: 10.3174/ajnr.A0682. PubMed DOI PMC

Abe M., Kawase T., Urano M., Mizoguchi Y., Kuroda M., Kasahara M., Suzuki H., Kanno T. Analyses of Proliferative Potential in Schwannomas. Brain Tumor Pathol. 2000;17:35–40. doi: 10.1007/BF02478916. PubMed DOI

Sian C.S., Ryan S.F. The ultrastructure of neurilemoma with emphasis on antoni B tissue. Hum. Pathol. 1981;12:145–160. doi: 10.1016/S0046-8177(81)80102-5. PubMed DOI

Evans D.G.R. Neurofibromatosis Type 2 (NF2): A Clinical and Molecular Review. Orphanet J. Rare Dis. 2009;4:1–11. doi: 10.1186/1750-1172-4-16. PubMed DOI PMC

Petrilli A.M., Fernández-Valle C. Role of Merlin/NF2 Inactivation in Tumor Biology. Oncogene. 2016;35:537–548. doi: 10.1038/onc.2015.125. PubMed DOI PMC

Neff B.A., Bradley Welling D., Akhmametyeva E., Chang L.-S. The Molecular Biology of Vestibular Schwannomas: Dissecting the Pathogenic Process at the Molecular Level. Otol. Neurotol. 2006;27:197–208. doi: 10.1097/01.mao.0000180484.24242.54. PubMed DOI

Morrison H., Sherman L.S., Legg J., Banine F., Isacke C., Haipek C.A., Gutmann D.H., Ponta H., Herrlich P. The NF2 Tumor Suppressor Gene Product, Merlin, Mediates Contact Inhibition of Growth through Interactions with CD44. Genes Dev. 2001;15:968–980. doi: 10.1101/gad.189601. PubMed DOI PMC

Morrison H., Sperka T., Manent J., Giovannini M., Ponta H., Herrlich P. Merlin/Neurofibromatosis Type 2 Suppresses Growth by Inhibiting the Activation of Ras and Rac. Cancer Res. 2007;67:520–527. doi: 10.1158/0008-5472.CAN-06-1608. PubMed DOI

Zhao F., Yang Z., Chen Y., Zhou Q., Zhang J., Liu J., Wang B., He Q., Zhang L., Yu Y., et al. Deregulation of the Hippo Pathway Promotes Tumor Cell Proliferation Through YAP Activity in Human Sporadic Vestibular Schwannoma. World Neurosurg. 2018;117:e269–e279. doi: 10.1016/j.wneu.2018.06.010. PubMed DOI

Hilton D.A., Hanemann C.O. Schwannomas and Their Pathogenesis. Brain Pathol. 2014;24:205–220. doi: 10.1111/bpa.12125. PubMed DOI PMC

Schulz A., Büttner R., Hagel C., Baader S.L., Kluwe L., Salamon J., Mautner V.F., Mindos T., Parkinson D.B., Gehlhausen J.R., et al. The Importance of Nerve Microenvironment for Schwannoma Development. Acta Neuropathol. 2016;132:289–307. doi: 10.1007/s00401-016-1583-8. PubMed DOI PMC

Schulz A., Kyselyova A., Baader S.L., Jung M.J., Zoch A., Mautner V.F., Hagel C., Morrison H. Neuronal Merlin Influences ERBB2 Receptor Expression on Schwann Cells through Neuregulin 1 Type III Signalling. Brain. 2014;137:420–432. doi: 10.1093/brain/awt327. PubMed DOI PMC

Carlson M.L., Smadbeck J.B., Link M.J., Klee E.W., Vasmatzis G., Schimmenti L.A. Next Generation Sequencing of Sporadic Vestibular Schwannoma: Necessity of Biallelic NF2 Inactivation and Implications of Accessory Non-NF2 Variants. Otol. Neurotol. 2018;39:E860–E871. doi: 10.1097/MAO.0000000000001932. PubMed DOI

Cayé-Thomasen P., Borup R., Stangerup S.-E., Thomsen J., Cilius Nielsen F. Deregulated Genes in Sporadic Vestibular Schwannomas. Otol. Neurotol. 2010;31:256–266. doi: 10.1097/MAO.0b013e3181be6478. PubMed DOI

Welling D.B., Lasak J.M., Akhmametyeva E., Ghaheri B., Chang L.-S. CDNA Microarray Analysis of Vestibular Schwannomas. Otol. Neurotol. 2002;23:736–748. doi: 10.1097/00129492-200209000-00022. PubMed DOI

Aarhus M., Bruland O., Sætran H.A., Mork S.J., Lund-Johansen M., Knappskog P.M. Global Gene Expression Profiling and Tissue Microarray Reveal Novel Candidate Genes and Down-Regulation of the Tumor Suppressor Gene CAV1 in Sporadic Vestibular Schwannomas. Neurosurgery. 2010;67:998–1019. doi: 10.1227/NEU.0b013e3181ec7b71. PubMed DOI

Torres-Martin M., Lassaletta L., San-Roman-Montero J., de Campos J.M., Isla A., Gavilan J., Melendez B., Pinto G.R., Burbano R.R., Castresana J.S., et al. Microarray Analysis of Gene Expression in Vestibular Schwannomas Reveals SPP1/MET Signaling Pathway and Androgen Receptor Deregulation. Int. J. Oncol. 2013;42:848–862. doi: 10.3892/ijo.2013.1798. PubMed DOI PMC

Casalino L., Verde P. Multifaceted Roles of DNA Methylation in Neoplastic Transformation, from Tumor Suppressors to EMT and Metastasis. Genes. 2020;11:922. doi: 10.3390/genes11080922. PubMed DOI PMC

Madakashira B.P., Sadler K.C. DNA Methylation, Nuclear Organization, and Cancer. Front. Genet. 2017;8:76. doi: 10.3389/fgene.2017.00076. PubMed DOI PMC

Gonzalez-Gomez P., Bello M.J., Alonso M.E., Lomas J., Arjona D., de Campos J.M., Vaquero J., Isla A., Lassaletta L., Gutierrez M., et al. CpG Island Methylation in Sporadic and Neurofibromatis Type 2-Associated Schwannomas. Clin. Cancer Res. 2003;9:5601–5606. PubMed

Lassaletta L., Bello M.J., Río L.D., Alfonso C., Roda M., Rey A., Gavilan J. DNA Methylation of Multiple Genes in Vestibular Schwannoma: Relationship With Clinical and Radiological Findings. Otol. Neurotol. 2006;27:1180–1185. doi: 10.1097/01.mao.0000226291.42165.22. PubMed DOI

Sass H., Cayé-Thomasen P. Contemporary Molecular Biology of Sporadic Vestibular Schwannomas: A Systematic Review and Clinical Implications. J. Int. Adv. Otol. 2018;14:322–329. doi: 10.5152/iao.2018.4929. PubMed DOI PMC

Ahmed S.G., Abdelnabi A., Maguire C.A., Doha M., Sagers J.E., Lewis R.M., Muzikansky A., Giovannini M., Stemmer-Rachamimov A., Stankovic K.M., et al. Gene Therapy with Apoptosis-Associated Speck-like Protein, a Newly Described Schwannoma Tumor Suppressor, Inhibits Schwannoma Growth in Vivo. Neuro-Oncol. 2019;21:855–866. doi: 10.1093/neuonc/noz065. PubMed DOI PMC

Håvik A.L., Bruland O., Myrseth E., Miletic H., Aarhus M., Knappskog P.M., Lund-Johansen M. Genetic Landscape of Sporadic Vestibular Schwannoma. J. Neurosurg. 2018;128:911–922. doi: 10.3171/2016.10.JNS161384. PubMed DOI

Shi J., Lu D., Gu R., Xu Y., Pan R., Bo F., Zhang Y. Identification of Key Biomarkers and Immune Infiltration in Sporadic Vestibular Schwannoma Basing Transcriptome-Wide Profiling. World Neurosurg. 2022;160:e591–e600. doi: 10.1016/j.wneu.2022.01.077. PubMed DOI

Seo J.-H., Park K.-H., Jeon E.-J., Chang K.-H., Lee H., Lee W., Park Y.-S. Proteomic Analysis of Vestibular Schwannoma: Conflicting Role of Apoptosis on the Pathophysiology of Sporadic Vestibular Schwannoma. Otol. Neurotol. 2015;36:714–719. doi: 10.1097/MAO.0000000000000643. PubMed DOI

Taurone S., Bianchi E., Attanasio G., di Gioia C., Ierinó R., Carubbi C., Galli D., Pastore F.S., Giangaspero F., Filipo R., et al. Immunohistochemical Profile of Cytokines and Growth Factors Expressed in Vestibular Schwannoma and in Normal Vestibular Nerve Tissue. Mol. Med. Rep. 2015;12:737–745. doi: 10.3892/mmr.2015.3415. PubMed DOI

Sagers J.E., Sahin M.I., Moon I.S., Ahmed S.G., Stemmer-Rachamimov A., Brenner G.J., Stankovic K.M. NLRP3 Inflammasome Activation in Human Vestibular Schwannoma: Implications for Tumor-Induced Hearing Loss. Hear. Res. 2019;381:107770. doi: 10.1016/j.heares.2019.07.007. PubMed DOI

Breun M., Schwerdtfeger A., Daniel Martellotta D., Kessler A.F., Perez J.M., Monoranu C.M., Ernestus R.-I., Matthies C., Löhr M., Hagemann C. CXCR4: A New Player in Vestibular Schwannoma Pathogenesis. Oncotarget. 2018;9:9940–9950. doi: 10.18632/oncotarget.24119. PubMed DOI PMC

Xu J., Zhang Y., Shi Y., Yin D., Dai P., Zhao W., Zhang T. Identification of Predictive Proteins and Biological Pathways for the Tumorigenicity of Vestibular Schwannoma by Proteomic Profiling. Proteom. Clin. Appl. 2019;13:e1800175. doi: 10.1002/prca.201800175. PubMed DOI

Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Čada Z., Szabo P., Šáchová J., Hroudová M., Urbanová M., et al. Smooth Muscle Actin-Expressing Stromal Fibroblasts in Head and Neck Squamous Cell Carcinoma: Increased Expression of Galectin-1 and Induction of Poor Prognosis Factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI

Fík Z., Dvořánková B., Kodet O., Bouček J., Betka J.A., Betka J., André S., Gabius H.-J., Šnajdr P., Smetana K., et al. Towards Dissecting Molecular Routes of Intercellular Communication in the Tumour Microenvironment: Phenotypic Plasticity of Stem Cell-Associated Markers in Co-Culture (Carcinoma Cell/Fibroblast) Systems. Folia Biol. 2014;60:205–212. PubMed

Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.J., Strnad H., Šáchová J., Vlček Č., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 Production in Dermal Fibroblasts by Normal/Malignant Epithelial Cells in Vitro: Immunohistochemical and Transcriptomic Analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC

Novák Š., Bandurová V., Mifková A., Kalfeřt D., Fík Z., Lukeš P., Szabo P., Plzák J., Smetana K., Jr. Nádorové Mikroprostředí. Otoronolarygologie a Foniatrie. 2019;68:41–51.

Solinas G., Germano G., Mantovani A., Allavena P. Tumor-Associated Macrophages (TAM) as Major Players of the Cancer-Related Inflammation. J. Leukoc. Biol. 2009;86:1065–1073. doi: 10.1189/jlb.0609385. PubMed DOI

Pan Y., Yu Y., Wang X., Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084. PubMed DOI PMC

Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. J. Biomed. Sci. 2019;26:78. doi: 10.1186/s12929-019-0568-z. PubMed DOI PMC

Chen B., Khodadoust M.S., Liu C.L., Newman A.M., Alizadeh A.A. Methods in Molecular Biology. Volume 1711. Humana Press Inc.; Totowa, NJ, USA: 2018. Profiling Tumor Infiltrating Immune Cells with CIBERSORT; pp. 243–259. PubMed PMC

Filippou P.S., Karagiannis G.S., Constantinidou A. Midkine (MDK) Growth Factor: A Key Player in Cancer Progression and a Promising Therapeutic Target. Oncogene. 2020;39:2040–2054. doi: 10.1038/s41388-019-1124-8. PubMed DOI

Nwabo Kamdje A.H., Seke Etet P.F., Kipanyula M.J., Vecchio L., Tagne Simo R., Njamnshi A.K., Lukong K.E., Mimche P.N. Insulin-like Growth Factor-1 Signaling in the Tumor Microenvironment: Carcinogenesis, Cancer Drug Resistance, and Therapeutic Potential. Front. Endocrinol. 2022;13:927390. doi: 10.3389/fendo.2022.927390. PubMed DOI PMC

Grassivaro F., Menon R., Acquaviva M., Ottoboni L., Ruffini F., Andrea Bergamaschi X., Muzio L., Farina C., Gianvito Martino X. Convergence between Microglia and Peripheral Macrophages Phenotype during Development and Neuroinflammation. J. Neurosci. 2020;40:784–795. doi: 10.1523/JNEUROSCI.1523-19.2019. PubMed DOI PMC

Jin N., Gao L., Fan X., Xu H. Friend or Foe? Resident Microglia vs Bone Marrow-Derived Microglia and Their Roles in the Retinal Degeneration. Mol. Neurobiol. 2017;54:4094–4112. doi: 10.1007/s12035-016-9960-9. PubMed DOI

Lisi L., Ciotti G.M.P., Braun D., Kalinin S., Currò D., dello Russo C., Coli A., Mangiola A., Anile C., Feinstein D.L., et al. Expression of INOS, CD163 and ARG-1 Taken as M1 and M2 Markers of Microglial Polarization in Human Glioblastoma and the Surrounding Normal Parenchyma. Neurosci. Lett. 2017;645:106–112. doi: 10.1016/j.neulet.2017.02.076. PubMed DOI

Held-Feindt J., Rehmke B., Mentlein R., Hattermann K., Knerlich F., Hugo H.H., Ludwig A., Mehdorn H.M. Overexpression of CXCL16 and Its Receptor CXCR6/Bonzo Promotes Growth of Human Schwannomas. Glia. 2008;56:764–774. doi: 10.1002/glia.20651. PubMed DOI

Hong B., Krusche C.A., Schwabe K., Friedrich S., Klein R., Krauss J.K., Nakamura M. Cyclooxygenase-2 Supports Tumor Proliferation in Vestibular Schwannomas. Neurosurgery. 2011;68:1112–1117. doi: 10.1227/NEU.0b013e318208f5c7. PubMed DOI

Hannan C.J., Lewis D., O’Leary C., Donofrio C.A., Evans D.G., Roncaroli F., Brough D., King A.T., Coope D., Pathmanaban O.N. The Inflammatory Microenvironment in Vestibular Schwannoma. Neurooncol. Adv. 2020;2:vdaa023. doi: 10.1093/noajnl/vdaa023. PubMed DOI PMC

Plotkin S.R., Stemmer-Rachamimov A.O., Barker F.G., Halpin C., Padera T.P., Tyrrell A., Sorensen A.G., Jain R.K., di Tomaso E. Hearing Improvement after Bevacizumab in Patients with Neurofibromatosis Type 2. New Engl. J. Med. 2009;361:358–367. doi: 10.1056/NEJMoa0902579. PubMed DOI PMC

Lewis D., Donofrio C.A., O’Leary C., Li K.L., Zhu X., Williams R., Djoukhadar I., Agushi E., Hannan C.J., Stapleton E., et al. The Microenvironment in Sporadic and Neurofibromatosis Type II–Related Vestibular Schwannoma: The Same Tumor or Different? A Comparative Imaging and Neuropathology Study. J. Neurosurg. 2021;134:1419–1429. doi: 10.3171/2020.3.JNS193230. PubMed DOI

Sass H.C.R., Borup R., Alanin M., Nielsen F.C., Cayé-Thomasen P. Gene Expression, Signal Transduction Pathways and Functional Networks Associated with Growth of Sporadic Vestibular Schwannomas. J. Neurooncol. 2017;131:283–292. doi: 10.1007/s11060-016-2292-9. PubMed DOI

de Vries M., Hogendoorn P.C.W., de Bruyn I.B., Malessy M.J.A., van der Mey A.G.L. Intratumoral Hemorrhage, Vessel Density, and the Inflammatory Reaction Contribute to Volume Increase of Sporadic Vestibular Schwannomas. Virchows Arch. 2012;460:629–636. doi: 10.1007/s00428-012-1236-9. PubMed DOI PMC

Vries M.d., Briaire-De Bruijn I., Malessy J.A., de Brubne F.T., van der Mey G.L., Hogendoorn P.C.W. Tumor-Associated Macrophages Are Related to Volumetric Growth of Vestibular Schwannomas. Otol. Neurotol. 2013;34:347–352. doi: 10.1097/MAO.0b013e31827c9fbf. PubMed DOI

Lewis D., Roncaroli F., Agushi E., Mosses D., Williams R., Li K.L., Zhu X., Hinz R., Atkinson R., Wadeson A., et al. Inflammation and Vascular Permeability Correlate with Growth in Sporadic Vestibular Schwannoma. Neuro-Oncol. 2019;21:314–325. doi: 10.1093/neuonc/noy177. PubMed DOI PMC

Graffeo C.S., Perry A., Raghunathan A., Kroneman T.N., Jentoft M., Driscoll C.L., Neff B.A., Carlson M.L., Jacob J., Link M.J., et al. Macrophage Density Predicts Facial Nerve Outcome and Tumor Growth after Subtotal Resection of Vestibular Schwannoma. J. Neurol. Surg. Part B Skull Base. 2018;79:482–488. doi: 10.1055/s-0038-1627474. PubMed DOI PMC

Perry A., Graffeo C.S., Carlstrom L.P., Raghunathan A., Driscoll C.L.W., Neff B.A., Carlson M.L., Parney I.F., Link M.J., van Gompel J.J. Predominance of M1 Subtype among Tumor-Associated Macrophages in Phenotypically Aggressive Sporadic Vestibular Schwannoma. J. Neurosurg. 2020;133:1637–1645. doi: 10.3171/2019.7.JNS19879. PubMed DOI

Gonçalves V.M., Suhm E.M., Ries V., Skardelly M., Tabatabai G., Tatagiba M., Schittenhelm J., Behling F. Macrophage and Lymphocyte Infiltration Is Associated with Volumetric Tumor Size but Not with Volumetric Growth in the Tübingen Schwannoma Cohort. Cancers. 2021;13:466. doi: 10.3390/cancers13030466. PubMed DOI PMC

de Vries W.M., Briaire-de Bruijn I.H., van Benthem P.P.G., van der Mey A.G.L., Hogendoorn P.C.W. M-CSF and IL-34 Expression as Indicators for Growth in Sporadic Vestibular Schwannoma. Virchows Arch. 2019;474:375–381. doi: 10.1007/s00428-018-2503-1. PubMed DOI PMC

Behling F., Suhm E., Ries V., Gonçalves V.M., Tabatabai G., Tatagiba M., Schittenhelm J. COX2 Expression Is Associated with Preoperative Tumor Volume but Not with Volumetric Tumor Growth in Vestibular Schwannoma. Neurol. Res. Pr. 2021;3:11. doi: 10.1186/s42466-021-00111-6. PubMed DOI PMC

Cayé-Thomasen P., Werther K., Nalla A., Bøg-Hansen T.C., Jørgen Nielsen H., Stangerup S.-E., Thomsen J. VEGF and VEGF Receptor-1 Concentration in Vestibular Schwannoma Homogenates Correlates to Tumor Growth Rate. Otol. Neurotol. 2005;26:98–101. doi: 10.1097/00129492-200501000-00017. PubMed DOI

Cayé-Thomasen P., Baandrup L., Jacobsen G.K., Thomsen J., Stangerup S.-E. Immunohistochemical Demonstration of Vascular Endothelial Growth Factor in Vestibular Schwannomas Correlates to Tumor Growth Rate. Laryngoscope. 2003;113:2129–2134. doi: 10.1097/00005537-200312000-00014. PubMed DOI

Møller M.N., Werther K., Nalla A., Stangerup S.E., Thomsen J., Bøg-Hansen T.C., Nielsen H.J., Cayé-Thomasen P. Angiogenesis in Vestibular Schwannomas: Expression of Extracellular Matrix Factors MMP-2, MMP-9, and TIMP-1. Laryngoscope. 2010;120:657–662. doi: 10.1002/lary.20834. PubMed DOI

Graamans K., van Dijk J.E., Janssen L.W. Hearing Deterioration in Patients with a Non-Growing Vestibular Schwannoma. Acta Otolaryngol. 2003;123:51–54. doi: 10.1080/0036554021000028075. PubMed DOI

Fisher L.M., Doherty J.K., Lev M.H., Slattery W.H. Concordance of Bilateral Vestibular Schwannoma Growth and Hearing Changes in Neurofibromatosis 2: Neurofibromatosis 2 Natural History Consortium. Otol. Neurotol. 2009;30:835–841. doi: 10.1097/MAO.0b013e3181b2364c. PubMed DOI

Lassaletta L., Calvino M., Morales-Puebla J.M., Lapunzina P., Rodriguez-de la Rosa L., Varela-Nieto I., Martinez-Glez V. Biomarkers in Vestibular Schwannoma–Associated Hearing Loss. Front. Neurol. 2019;10:978. doi: 10.3389/fneur.2019.00978. PubMed DOI PMC

Asthagiri A.R., Vasquez R.A., Butman J.A., Wu T., Morgan K., Brewer C.C., King K., Zalewski C., Kim H.J., Lonser R.R. Mechanisms of Hearing Loss in Neurofibromatosis Type 2. PLoS ONE. 2012;7:e46132. doi: 10.1371/journal.pone.0046132. PubMed DOI PMC

Karch-Georges A., Veillon F., Vuong H., Rohmer D., Karol A., Charpiot A., Meyer N., Venkatasamy A. MRI of Endolymphatic Hydrops in Patients with Vestibular Schwannomas: A Case-Controlled Study Using Non-Enhanced T2-Weighted Images at 3 Teslas. Eur. Arch. Oto-Rhino-Laryngol. 2019;276:1591–1599. doi: 10.1007/s00405-019-05395-8. PubMed DOI

Gan J., Zhang Y., Wu J., Lei D., Zhang F., Zhao H., Wang L. Current Understanding of Hearing Loss in Sporadic Vestibular Schwannomas: A Systematic Review. Front. Oncol. 2021:11, 687201. doi: 10.3389/fonc.2021.687201. PubMed DOI PMC

Carlson M.L., Vivas E.X., McCracken D.J., Sweeney A.D., Neff B.A., Shepard N.T., Olson J.J. Proceedings of the Clinical Neurosurgery. Volume 82. Oxford University Press; Oxford, UK: 2018. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Hearing Preservation Outcomes in Patients with Sporadic Vestibular Schwannomas; pp. E35–E39. PubMed

Lassaletta L., Patrón M., del Río L., Alfonso C., Maria Roda J., Rey J.A., Gavilan J. Cyclin D1 Expression and Histopathologic Features in Vestibular Schwannomas. Otol. Neurotol. 2007;28:939–941. doi: 10.1097/MAO.0b013e31814b2285. PubMed DOI

Stankovic K.M., Mrugala M., Martuza L., Silver K., Betensky A., Nadol B., Stemmer-Rachamimov O., Stankovic K.M. Genetic Determinants of Hearing Loss Associated With Vestibular Schwannomas. Otol. Neurotol. 2009;30:661–667. doi: 10.1097/MAO.0b013e3181a66ece. PubMed DOI

Lassaletta L., Torres-Martín M., Peña-Granero C., Roda J.M., Santa-Cruz-Ruiz S., Castresana J.S., Gavilan J., Rey J.A. NF2 Genetic Alterations in Sporadic Vestibular Schwannomas: Clinical Implications. Otol. Neurotol. 2013;34:1355–1361. doi: 10.1097/MAO.0b013e318298ac79. PubMed DOI

Dilwali S., Lysaght A., Roberts D., Barker F.G., 2nd, Mckenna J., Stankovic M. Sporadic Vestibular Schwannomas Associated With Good Hearing Secrete Higher Levels of Fibroblast Growth Factor 2 Than Those Associated With Poor Hearing Irrespective of Tumor Size. Otol. Neurotol. 2013;34:748–754. doi: 10.1097/MAO.0b013e31828048ec. PubMed DOI PMC

Dilwali S., Landegger L.D., Soares V.Y.R., Deschler D.G., Stankovic K.M. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage. Sci. Rep. 2015;5:18599. doi: 10.1038/srep18599. PubMed DOI PMC

Plotkin S.R., Duda D.G., Muzikansky A., Allen J., Blakeley J., Rosser T., Campian J.L., Clapp D.W., Fisher M.J., Tonsgard J., et al. Multicenter, Prospective, Phase II and Biomarker Study of High-Dose Bevacizumab as Induction Therapy in Patients With Neurofibromatosis Type 2 and Progressive Vestibular Schwannoma. J. Clin. Oncol. 2019;37:3446–3454. doi: 10.1200/JCO.19.01367. PubMed DOI PMC

Soares V.Y.R., Atai N.A., Fujita T., Dilwali S., Sivaraman S., Landegger L.D., Hochberg F.H., Oliveira C.A.P.C., Bahmad F., Breakefield X.O., et al. Extracellular Vesicles Derived from Human Vestibular Schwannomas Associated with Poor Hearing Damage Cochlear Cells. Neuro Oncol. 2016;18:1498–1507. doi: 10.1093/neuonc/now099. PubMed DOI PMC

Ren Y., Hyakusoku H., Sagers J.E., Landegger L.D., Welling D.B., Stankovic K.M. MMP-14 (MT1-MMP) Is a Biomarker of Surgical Outcome and a Potential Mediator of Hearing Loss in Patients With Vestibular Schwannomas. Front. Cell. Neurosci. 2020;14:191. doi: 10.3389/fncel.2020.00191. PubMed DOI PMC

Breun M., Monoranu C.M., Kessler A.F., Matthies C., Löhr M., Hagemann C., Schirbel A., Rowe S.P., Pomper M.G., Buck A.K., et al. [68Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Front. Oncol. 2019:9, 503. doi: 10.3389/fonc.2019.00503. PubMed DOI PMC

Fujii M., Ichikawa M., Iwatate K., Bakhit M., Yamada M., Kuromi Y., Sato T., Sakuma J., Saito K. Bevacizumab Therapy of Neurofibromatosis Type 2 Associated Vestibular Schwannoma in Japanese Patients. Neurol. Med. Chir. 2020;60:75–82. doi: 10.2176/nmc.oa.2019-0194. PubMed DOI PMC

Xu Y., Li Q., Ma H., Sun T., Xiang R., Di F. Therapeutic Effect and Side Effects of Bevacizumab Combined with Irinotecan in the Treatment of Paediatric Intracranial Tumours: Meta-Analysis and Systematic Review. J. Clin. Pharm. Ther. 2020;45:1363–1371. doi: 10.1111/jcpt.13228. PubMed DOI PMC

Fujii M., Kobayakawa M., Saito K., Inano A., Morita A., Hasegawa M., Mukasa A., Mitsuhara T., Goto T., Yamaguchi S., et al. Rationale and Design of Beatnf2 Trial: A Clinical Trial to Assess the Efficacy and Safety of Bevacizumab in Patients with Neurofibromatosis Type 2 Related Vestibular Schwannoma. Curr. Oncol. 2021;28:726–739. doi: 10.3390/curroncol28010071. PubMed DOI PMC

Tamura R., Toda M. A Critical Overview of Targeted Therapies for Vestibular Schwannoma. Int. J. Mol. Sci. 2022;23:5462. doi: 10.3390/ijms23105462. PubMed DOI PMC

Kandathil C.K., Cunnane M.E., McKenna M.J., Curtin H.D., Stankovic K.M. Correlation Between Aspirin Intake and Reduced Growth of Human Vestibular Schwannoma: Volumetric Analysis. Otol. Neurotol. 2016;37:1428–1434. doi: 10.1097/MAO.0000000000001180. PubMed DOI

Marinelli J.P., Lees K.A., Tombers N.M., Lohse C.M., Carlson M.L. Impact of Aspirin and Other NSAID Use on Volumetric and Linear Growth in Vestibular Schwannoma. Otolaryngol. Neck Surg. 2019;160:1081–1086. doi: 10.1177/0194599819827812. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...