Characterization of new cristamonad species from kalotermitid termites including a novel genus, Runanympha

. 2021 Mar 31 ; 11 (1) : 7270. [epub] 20210331

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33790354
Odkazy

PubMed 33790354
PubMed Central PMC8012604
DOI 10.1038/s41598-021-86645-w
PII: 10.1038/s41598-021-86645-w
Knihovny.cz E-zdroje

Cristamonadea is a large class of parabasalian protists that reside in the hindguts of wood-feeding insects, where they play an essential role in the digestion of lignocellulose. This group of symbionts boasts an impressive array of complex morphological characteristics, many of which have evolved multiple times independently. However, their diversity is understudied and molecular data remain scarce. Here we describe seven new species of cristamonad symbionts from Comatermes, Calcaritermes, and Rugitermes termites from Peru and Ecuador. To classify these new species, we examined cells by light and scanning electron microscopy, sequenced the symbiont small subunit ribosomal RNA (rRNA) genes, and carried out barcoding of the mitochondrial large subunit rRNA gene of the hosts to confirm host identification. Based on these data, five of the symbionts characterized here represent new species within described genera: Devescovina sapara n. sp., Devescovina aymara n. sp., Macrotrichomonas ashaninka n. sp., Macrotrichomonas secoya n. sp., and Macrotrichomonas yanesha n. sp. Additionally, two symbionts with overall morphological characteristics similar to the poorly-studied and probably polyphyletic 'joeniid' Parabasalia are classified in a new genus Runanympha n. gen.: Runanympha illapa n. sp., and Runanympha pacha n. sp.

Zobrazit více v PubMed

Čepička, I., Dolan, M. F. & Gile, G. H. Parabasalia. In Handbook of the Protists: Second Edition (eds. Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H.) 1175–1218 (Springer International Publishing, 2017).

Brugerolle, G. & Lee, J. J. Phylum parabasalia. In An Illustrated Guide to the Protozoa: Organisms Traditionally Referred to as Protozoa, or Newly Discovered Groups (eds. Lee, J. J., Leedale, G. F. & Bradbury, P.) 1196–1250 (Society of Protozoologists, 2000).

Brugerolle G, Patterson DJ. Ultrastructure of Joenina pulchella Grassi, 1917 (Protista, Parabasalia), a reassessment of evolutionary trends in the parabasalids, and a new order Cristamonadida for devescovinid, calonymphid and lophomonad flagellates. Org. Divers. Evol. 2001;1:147–160. doi: 10.1078/1439-6092-00012. DOI

Čepička I, Hampl V, Kulda J. Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist. 2010;161:400–433. doi: 10.1016/j.protis.2009.11.005. PubMed DOI

Noda S, et al. Molecular phylogeny of parabasalids with emphasis on the order Cristamonadida and its complex morphological evolution. Mol. Phylogenet. Evol. 2009;52:217–224. doi: 10.1016/j.ympev.2009.03.011. PubMed DOI

Yamin MA. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi & Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae) Sociobiology. 1979;4:3–119.

Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014;12:168–180. doi: 10.1038/nrmicro3182. PubMed DOI

Cleveland LR. Symbiosis between termites and their intestinal protozoa. Proc. Natl. Acad. Sci. U.S.A. 1923;9:424–428. doi: 10.1073/pnas.9.12.424. PubMed DOI PMC

Kirby H. Devescovinid flagellates of termites I. The genus Devescovina. Univ. Calif. Publ. Zool. 1941;45:1–92.

Hollande A, Valentin J. La cinétide et ses dépendences dans le genre Macrotrichomonas Grassi. Considérations générales sur la sous famille des Macrotrichomonadinae. Protistologica. 1969;5:335–343.

Kirby H. Devescovinid flagellates of termites II. The genera Caduceia and Macrotrichomonas. Univ. Calif. Publ. Zool. 1942;45:93–166.

Hollande A, Valentin J. Appareil de golgi, pinocytose, lysosomes, mitochondries, bacteries symbiotiques, atractophores et pleuromitose chez les hypermastigines du genre Joenia. Affinités entre Joeniides et Trichomonadines. Protistologica. 1969;5:39–86.

Janicki C. Untersuchungen an parasitischen flagellaten. II. Teil: Die gattungen Devescovina, Parajoenia, Stephanonympha, Calonympha. Z. Wiss. Zool. 1915;112:573–691.

Gerbod D, et al. Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea) Mol. Phylogenet. Evol. 2002;25:545–556. doi: 10.1016/S1055-7903(02)00300-7. PubMed DOI

Tai V, et al. The phylogenetic position of Kofoidia loriculata (Parabasalia) and its implications for the evolution of the Cristamonadea. J. Eukaryot. Microbiol. 2015;62:255–259. doi: 10.1111/jeu.12163. PubMed DOI

James ER, Burki F, Harper JT, Scheffrahn RH, Keeling PJ. Molecular characterization of parabasalian symbionts Coronympha clevelandii and Trichonympha subquasilla from the Hawaiian lowland tree termite Incisitermes immigrans. J. Eukaryot. Microbiol. 2013;60:313–316. doi: 10.1111/jeu.12027. PubMed DOI

Foà A. Due nuovi flagellati parassiti. Atti d. R. Accad. D. Lincei. 1905;14:542–546.

Grassi B. Flagellati viventi nei termiti. Mem. d. R. Accad. d. Lincei. 1917;12:331–394.

Silvestri, F. Nota preliminare sui termitidi sud-americani. Boll. d. Mus. di Zool. ed Anat. Comp. d. R. Univ. di Torino16, 1–8 (1901).

Boscaro V, et al. Molecular characterization and phylogeny of four new species of the genus Trichonympha (Parabasalia, Trichonymphea) from lower termite hindguts. Int. J. Syst. Evol. Microbiol. 2017;67:3570–3575. doi: 10.1099/ijsem.0.002169. PubMed DOI

Snyder TE. A new Rugitermes from Bolivia (Isoptera, Kalotermitidae) Proc. Entomol. Soc. Wash. 1957;59:81–82.

Hagen HA. Monographie der termiten. Part 2. Linnean Entomol. 1858;12:1–324.

Krishna K. New species and a hitherto undescribed imago caste of the genus Calcaritermes Snyder (Isoptera, Kalotermitidae) Am. Mus. Novit. 1962;2098:1–13.

Bourguignon T, et al. The Evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 2014;32:406–421. doi: 10.1093/molbev/msu308. PubMed DOI

Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl. Environ. Microbiol. 2015;81:1059–1070. doi: 10.1128/AEM.02945-14. PubMed DOI PMC

Gile GH, James ER, Okamoto N, Carpenter KJ, Scheffrahn RH, Keeling PJ. Molecular evidence for the polyphyly of Macrotrichomonas (Parabasalia: Cristamonadea) and a proposal for Macrotrichomonoides n. gen. J. Eukaryot. Microbiol. 2015;62:494–504. doi: 10.1111/jeu.12204. PubMed DOI

Noël C, et al. Molecular phylogenetic position of the genera Stephanonympha and Caduceia (Parabasalia) inferred from nuclear small subunit rRNA gene sequences. J. Eukaryot. Microbiol. 2007;54:93–99. doi: 10.1111/j.1550-7408.2006.00234.x. PubMed DOI

Keeling PJ, Poulsen N, McFadden GI. Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J. Eukaryot. Microbiol. 1998;45:643–650. doi: 10.1111/j.1550-7408.1998.tb04561.x. PubMed DOI

Ohkuma M, et al. Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites. J. Eukaryot. Microbiol. 2000;47:249–259. doi: 10.1111/j.1550-7408.2000.tb00044.x. PubMed DOI

Grassi B. Intorno ad alcuni protozoi parassiti delle termiti. Atti Accad. Gioenia Sci. Nat. Catania. 1885;3:235–240.

Fabricius, J. C. Entomologia systematica emendata et aucta. Secundum: classes, ordines, genera, species. adjectis: synonimis, locis, observationibus, descriptionibus. Hafniae vol. 2 (Impensis Christ. Gottl. Proft., 1793).

Kitade O. Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes Environ. 2004;19:215–220. doi: 10.1264/jsme2.19.215. DOI

Harper JT, Gile GH, James ER, Carpenter KJ, Keeling PJ. The inadequacy of morphology for species and genus delineation in microbial eukaryotes: An example from the parabasalian termite symbiont Coronympha. PLoS ONE. 2009;4:e6577. doi: 10.1371/journal.pone.0006577. PubMed DOI PMC

Taerum SJ, de Martini F, Liebig J, Gile GH. Incomplete co-cladogenesis between Zootermopsis termites and their associated protists. Environ. Entomol. 2018;47:184–195. doi: 10.1093/ee/nvx193. PubMed DOI

Leidy J. On intestinal parasites of Termes flavipes. Proc. Acad. Nat. Sci. Philadelphia. 1877;29:146–149.

D’Ambrosio U, Dolan M, Wier AM, Margulis L. Devescovinid trichomonad with axostyle-based rotary motor (“Rubberneckia”): Taxonomic assignment as Caduceia versatilis sp. nov. Eur. J. Protistol. 1999;35:327–337. doi: 10.1016/S0932-4739(99)80011-X. PubMed DOI

Tamm SL, Tamm S. Rotary movements and fluid membranes in termite flagellates. J. Cell Sci. 1976;20:619–639. PubMed

Scheffrahn RH, et al. Global elevational, latitudinal, and climatic limits for termites and the redescription of Rugitermes laticollis Snyder (Isoptera: Kalotermitidae) from the Andean highlands. Sociobiology. 2015;62:426–438. doi: 10.13102/sociobiology.v62i3.793. DOI

Simon C, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 1994;87:651–701. doi: 10.1093/aesa/87.6.651. DOI

Kambhampati S, Smith PT. PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 1995;4:233–236. doi: 10.1111/j.1365-2583.1995.tb00028.x. PubMed DOI

Trager W. The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol. Bull. 1934;66:182–190. doi: 10.2307/1537331. DOI

Keeling PJ. Molecular phylogenetic position of Trichomitopsis termopsidis (Parabasalia) and evidence for the Trichomitopsiinae. Eur. J. Protistol. 2002;38:279–286. doi: 10.1078/0932-4739-00874. DOI

Deane JA, Hill DRA, Brett SJ, McFadden GI. Hanusia phi gen. et sp. nov. (Cryptophyceae): Characterization of ‘Cryptomonas sp. Φ’. Eur. J. Phycol. 1998;33:149–154. doi: 10.1080/09670269810001736643. DOI

Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988;71:491–499. doi: 10.1016/0378-1119(88)90066-2. PubMed DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Capella-Guttiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. Modelfinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Ronquist F, et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...