Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine

. 2024 Dec 03 ; 96 (48) : 19084-19092. [epub] 20241119

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39560312

In proteomics, postproline cleaving enzymes (PPCEs), such as Aspergillus niger prolyl endopeptidase (AnPEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using AnPEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed AnPEP sources and conditions that could affect this cleavage preference. Postcysteine cleavage was blocked by cysteine modifications, including disulfide bond formation, oxidation, and alkylation. The last modification explains why this activity has remained undetected so far. In the same experimental paradigm, neprosin mimicked this cleavage specificity. Based on these findings, PPCEs cleavage preferences should be redefined from post-Pro/Ala to post-Pro/Ala/Cys. Moreover, this evidence demands reconsidering PPCEs applications, whether cleaving Cys-rich proteins or assessing Cys status in proteins, and calls for revisiting the proposed enzymatic mechanism of these proteases.

Zobrazit více v PubMed

Giansanti P.; Tsiatsiani L.; Low T. Y.; Heck A. J. R. Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat. Protoc. 2016, 11, 993–1006. 10.1038/nprot.2016.057. PubMed DOI

James E. I.; Murphree T. A.; Vorauer C.; Engen J. R.; Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem. Rev. 2022, 122, 7562–7623. 10.1021/acs.chemrev.1c00279. PubMed DOI PMC

Liu X. R.; Zhang M. M.; Gross M. L. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem. Rev. 2020, 120, 4355–4454. 10.1021/acs.chemrev.9b00815. PubMed DOI PMC

Soh W. T.; Demir F.; Dall E.; Perrar A.; Dahms S. O.; Kuppusamy M.; Brandstetter H.; Huesgen P. F. ExteNDing Proteome Coverage with Legumain as a Highly Specific Digestion Protease. Anal. Chem. 2020, 92, 2961–2971. 10.1021/acs.analchem.9b03604. PubMed DOI PMC

Tsiatsiani L.; Heck A. J. R. Proteomics beyond trypsin. FEBS J. 2015, 282, 2612–2626. 10.1111/febs.13287. PubMed DOI

Swaney D. L.; Wenger C. D.; Coon J. J. Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J. Proteome Res. 2010, 9, 1323–1329. 10.1021/pr900863u. PubMed DOI PMC

Samodova D.; Hosfield C. M.; Cramer C. N.; Giuli M. V.; Cappellini E.; Franciosa G.; Rosenblatt M. M.; Kelstrup C. D.; Olsen J. V. ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping. Molecular & Cellular Proteomics 2020, 19, 2139–2157. 10.1074/mcp.TIR120.002129. PubMed DOI PMC

Schräder C. U.; Lee L.; Rey M.; Sarpe V.; Man P.; Sharma S.; Zabrouskov V.; Larsen B.; Schriemer D. C. Neprosin, a Selective Prolyl Endoprotease for Bottom-up Proteomics and Histone Mapping. Molecular & Cellular Proteomics 2017, 16, 1162–1171. 10.1074/mcp.M116.066803. PubMed DOI PMC

van der Laarse S. A. M.; van Gelder C. A. G. H.; Bern M.; Akeroyd M.; Olsthoorn M. M. A.; Heck A. J. R. Targeting proline in (phospho)proteomics. FEBS J. 2020, 287, 2979–2997. 10.1111/febs.15190. PubMed DOI PMC

Huesgen P. F.; Lange P. F.; Rogers L. D.; Solis N.; Eckhard U.; Kleifeld O.; Goulas T.; Gomis-Rüth F. X.; Overall C. M. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat. Methods 2015, 12, 55–58. 10.1038/nmeth.3177. PubMed DOI

Morsa D.; Baiwir D.; La Rocca R.; Zimmerman T. A.; Hanozin E.; Grifnée E.; Longuespée R.; Meuwis M. A.; Smargiasso N.; Pauw E. D.; et al. Multi-Enzymatic Limited Digestion: The Next-Generation Sequencing for Proteomics?. J. Proteome Res. 2019, 18, 2501–2513. 10.1021/acs.jproteome.9b00044. PubMed DOI

Wilson J. P.; Ipsaro J. J.; Del Giudice S. N.; Turna N. S.; Gauss C. M.; Dusenbury K. H.; Marquart K.; Rivera K. D.; Pappin D. J. Tryp-N: A Thermostable Protease for the Production of N-terminal Argininyl and Lysinyl Peptides. J. Proteome Res. 2020, 19, 1459–1469. 10.1021/acs.jproteome.9b00713. PubMed DOI PMC

Sebela M.; Řehulka P.; Kábrt J.; Řehulková H.; Oždian T.; Raus M.; Franc V.; Chmelík J. Identification of N-glycosylation in prolyl endoprotease from Aspergillus niger and evaluation of the enzyme for its possible application in proteomics. J. Mass Spectrom. 2009, 44, 1587–1595. 10.1002/jms.1667. PubMed DOI

del Amo-Maestro L.; Mendes S. R.; Rodríguez-Banqueri A.; Garzon-Flores L.; Girbal M.; Rodríguez-Lagunas M. J.; Guevara T.; Franch À.; Pérez-Cano F. J.; Eckhard U.; et al. Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nat. Commun. 2022, 13, 4446.10.1038/s41467-022-32215-1. PubMed DOI PMC

Tsiatsiani L.; Akeroyd M.; Olsthoorn M.; Heck A. J. R. Aspergillus niger Prolyl Endoprotease for Hydrogen–Deuterium Exchange Mass Spectrometry and Protein Structural Studies. Anal. Chem. 2017, 89, 7966–7973. 10.1021/acs.analchem.7b01161. PubMed DOI PMC

Miyazono K.; Kubota K.; Takahashi K.; Tanokura M. Crystal structure and substrate recognition mechanism of the prolyl endoprotease PEP from Aspergillus niger. Biochem. Biophys. Res. Commun. 2022, 591, 76–81. 10.1016/j.bbrc.2021.12.114. PubMed DOI

Rey M.; Yang M.; Lee L.; Zhang Y.; Sheff J. G.; Sensen C. W.; Mrazek H.; Halada P.; Man P.; McCarville J. L.; et al. Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease. Sci. Rep. 2016, 6, 30980.10.1038/srep30980. PubMed DOI PMC

Lee L.; Zhang Y.; Ozar B.; Sensen C. W.; Schriemer D. C. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes. J. Proteome Res. 2016, 15, 3108–3117. 10.1021/acs.jproteome.6b00224. PubMed DOI

Ting T.-Y.; Baharin A.; Ramzi A. B.; Ng C.-L.; Goh H.-H. Neprosin belongs to a new family of glutamic peptidase based on in silico evidence. Plant Physiol. Biochem. 2022, 183, 23–35. 10.1016/j.plaphy.2022.04.027. PubMed DOI

Baharin A.; Ting T.-Y.; Goh H.-H. Post-Proline Cleaving Enzymes (PPCEs): Classification, Structure, Molecular Properties, and Applications. Plants 2022, 11, 1330.10.3390/plants11101330. PubMed DOI PMC

Abarca M. L.; Accensi F.; Cano J.; Cabañes F. J. Taxonomy and significance of black aspergilli. Antonie Van Leeuwenhoek 2004, 86, 33–49. 10.1023/B:ANTO.0000024907.85688.05. PubMed DOI

Pijning T.; Vujičić-Žagar A.; van der Laan J.; de Jong R. M.; Ramirez-Palacios C.; Vente A.; Edens L.; Dijkstra B. W. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci. 2024, 33, e485610.1002/pro.4856. PubMed DOI PMC

Lopez M.; Edens L. Effective Prevention of Chill-Haze in Beer Using an Acid Proline-Specific Endoprotease from Aspergillus niger. J. Agric. Food Chem. 2005, 53, 7944–7949. 10.1021/jf0506535. PubMed DOI

Stepniak D.; Spaenij-Dekking L.; Mitea C.; Moester M.; de Ru A.; Baak-Pablo R.; van Veelen P.; Edens L.; Koning F. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am. J. Physiol.: Lung Cell. Mol. Physiol. 2006, 291, G621–G629. 10.1152/ajpgi.00034.2006. PubMed DOI

van Schaick G.; Domínguez-Vega E.; Gstöttner C.; van den Berg-Verleg J. H.; Schouten O.; Akeroyd M.; Olsthoorn M. M. A.; Wuhrer M.; Heck A. J. R.; Abello N.; et al. Native Structural and Functional Proteoform Characterization of the Prolyl-Alanyl-Specific Endoprotease EndoPro from Aspergillus niger. J. Proteome Res. 2021, 20, 4875–4885. 10.1021/acs.jproteome.1c00663. PubMed DOI PMC

Rey M.; Man P.; Brandolin G.; Forest E.; Pelosi L. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3431–3438. 10.1002/rcm.4260. PubMed DOI

Wang L.; Pan H.; Smith D. L. Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Molecular & Cellular Proteomics 2002, 1, 132–138. 10.1074/mcp.M100009-MCP200. PubMed DOI

Kadek A.; Mrazek H.; Halada P.; Rey M.; Schriemer D. C.; Man P. Aspartic Protease Nepenthesin-1 as a Tool for Digestion in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2014, 86, 4287–4294. 10.1021/ac404076j. PubMed DOI

Trcka F.; Durech M.; Vankova P.; Vandova V.; Simoncik O.; Kavan D.; Vojtesek B.; Muller P.; Man P. The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14–3-3 adaptors. J. Biol. Chem. 2020, 295, 8928–8944. 10.1074/jbc.RA120.012624. PubMed DOI PMC

Keil B.Specificity of Proteolysis; Springer: Berlin, Heidelberg, 1992.10.1007/978-3-642-48380-6. DOI

Trcka F.; Durech M.; Vankova P.; Chmelik J.; Martinkova V.; Hausner J.; Kadek A.; Marcoux J.; Klumpler T.; Vojtesek B.; et al. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Molecular & Cellular Proteomics 2019, 18, 320–337. 10.1074/mcp.RA118.001044. PubMed DOI PMC

Piszkiewicz D.; Landon M.; Smith E. L. Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochem. Biophys. Res. Commun. 1970, 40, 1173–1178. 10.1016/0006-291X(70)90918-6. PubMed DOI

Blackburn S.; Lee G. R. The liberation of aspartic acid during the acid hydrolysis of proteins. Biochem. J. 1954, 58, 227–231. 10.1042/bj0580227. PubMed DOI PMC

Schilling O.; Huesgen P. F.; Barré O.; auf dem Keller U.; Overall C. M. Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat. Protoc. 2011, 6, 111–120. 10.1038/nprot.2010.178. PubMed DOI

Schilling O.; Overall C. M. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat. Biotechnol. 2008, 26, 685–694. 10.1038/nbt1408. PubMed DOI

Bär J. W.; et al. Prolyl endopeptidase cleaves the apoptosis rescue peptide humanin and exhibits an unknown post-cysteine cleavage specificity. Adv. Exp. Med. Biol. 2006, 575, 103–108. 10.1007/0-387-32824-6_11. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace