Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39560312
PubMed Central
PMC11618732
DOI
10.1021/acs.analchem.4c04277
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In proteomics, postproline cleaving enzymes (PPCEs), such as Aspergillus niger prolyl endopeptidase (AnPEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using AnPEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed AnPEP sources and conditions that could affect this cleavage preference. Postcysteine cleavage was blocked by cysteine modifications, including disulfide bond formation, oxidation, and alkylation. The last modification explains why this activity has remained undetected so far. In the same experimental paradigm, neprosin mimicked this cleavage specificity. Based on these findings, PPCEs cleavage preferences should be redefined from post-Pro/Ala to post-Pro/Ala/Cys. Moreover, this evidence demands reconsidering PPCEs applications, whether cleaving Cys-rich proteins or assessing Cys status in proteins, and calls for revisiting the proposed enzymatic mechanism of these proteases.
AffiPro s r o Nad Safinou 2 366 Vestec 252 00 Czechia
Department of Biochemistry Faculty of Science Charles University Hlavova 6 Prague 2 12843 Czechia
Zobrazit více v PubMed
Giansanti P.; Tsiatsiani L.; Low T. Y.; Heck A. J. R. Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat. Protoc. 2016, 11, 993–1006. 10.1038/nprot.2016.057. PubMed DOI
James E. I.; Murphree T. A.; Vorauer C.; Engen J. R.; Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem. Rev. 2022, 122, 7562–7623. 10.1021/acs.chemrev.1c00279. PubMed DOI PMC
Liu X. R.; Zhang M. M.; Gross M. L. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem. Rev. 2020, 120, 4355–4454. 10.1021/acs.chemrev.9b00815. PubMed DOI PMC
Soh W. T.; Demir F.; Dall E.; Perrar A.; Dahms S. O.; Kuppusamy M.; Brandstetter H.; Huesgen P. F. ExteNDing Proteome Coverage with Legumain as a Highly Specific Digestion Protease. Anal. Chem. 2020, 92, 2961–2971. 10.1021/acs.analchem.9b03604. PubMed DOI PMC
Tsiatsiani L.; Heck A. J. R. Proteomics beyond trypsin. FEBS J. 2015, 282, 2612–2626. 10.1111/febs.13287. PubMed DOI
Swaney D. L.; Wenger C. D.; Coon J. J. Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J. Proteome Res. 2010, 9, 1323–1329. 10.1021/pr900863u. PubMed DOI PMC
Samodova D.; Hosfield C. M.; Cramer C. N.; Giuli M. V.; Cappellini E.; Franciosa G.; Rosenblatt M. M.; Kelstrup C. D.; Olsen J. V. ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping. Molecular & Cellular Proteomics 2020, 19, 2139–2157. 10.1074/mcp.TIR120.002129. PubMed DOI PMC
Schräder C. U.; Lee L.; Rey M.; Sarpe V.; Man P.; Sharma S.; Zabrouskov V.; Larsen B.; Schriemer D. C. Neprosin, a Selective Prolyl Endoprotease for Bottom-up Proteomics and Histone Mapping. Molecular & Cellular Proteomics 2017, 16, 1162–1171. 10.1074/mcp.M116.066803. PubMed DOI PMC
van der Laarse S. A. M.; van Gelder C. A. G. H.; Bern M.; Akeroyd M.; Olsthoorn M. M. A.; Heck A. J. R. Targeting proline in (phospho)proteomics. FEBS J. 2020, 287, 2979–2997. 10.1111/febs.15190. PubMed DOI PMC
Huesgen P. F.; Lange P. F.; Rogers L. D.; Solis N.; Eckhard U.; Kleifeld O.; Goulas T.; Gomis-Rüth F. X.; Overall C. M. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat. Methods 2015, 12, 55–58. 10.1038/nmeth.3177. PubMed DOI
Morsa D.; Baiwir D.; La Rocca R.; Zimmerman T. A.; Hanozin E.; Grifnée E.; Longuespée R.; Meuwis M. A.; Smargiasso N.; Pauw E. D.; et al. Multi-Enzymatic Limited Digestion: The Next-Generation Sequencing for Proteomics?. J. Proteome Res. 2019, 18, 2501–2513. 10.1021/acs.jproteome.9b00044. PubMed DOI
Wilson J. P.; Ipsaro J. J.; Del Giudice S. N.; Turna N. S.; Gauss C. M.; Dusenbury K. H.; Marquart K.; Rivera K. D.; Pappin D. J. Tryp-N: A Thermostable Protease for the Production of N-terminal Argininyl and Lysinyl Peptides. J. Proteome Res. 2020, 19, 1459–1469. 10.1021/acs.jproteome.9b00713. PubMed DOI PMC
Sebela M.; Řehulka P.; Kábrt J.; Řehulková H.; Oždian T.; Raus M.; Franc V.; Chmelík J. Identification of N-glycosylation in prolyl endoprotease from Aspergillus niger and evaluation of the enzyme for its possible application in proteomics. J. Mass Spectrom. 2009, 44, 1587–1595. 10.1002/jms.1667. PubMed DOI
del Amo-Maestro L.; Mendes S. R.; Rodríguez-Banqueri A.; Garzon-Flores L.; Girbal M.; Rodríguez-Lagunas M. J.; Guevara T.; Franch À.; Pérez-Cano F. J.; Eckhard U.; et al. Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nat. Commun. 2022, 13, 4446.10.1038/s41467-022-32215-1. PubMed DOI PMC
Tsiatsiani L.; Akeroyd M.; Olsthoorn M.; Heck A. J. R. Aspergillus niger Prolyl Endoprotease for Hydrogen–Deuterium Exchange Mass Spectrometry and Protein Structural Studies. Anal. Chem. 2017, 89, 7966–7973. 10.1021/acs.analchem.7b01161. PubMed DOI PMC
Miyazono K.; Kubota K.; Takahashi K.; Tanokura M. Crystal structure and substrate recognition mechanism of the prolyl endoprotease PEP from Aspergillus niger. Biochem. Biophys. Res. Commun. 2022, 591, 76–81. 10.1016/j.bbrc.2021.12.114. PubMed DOI
Rey M.; Yang M.; Lee L.; Zhang Y.; Sheff J. G.; Sensen C. W.; Mrazek H.; Halada P.; Man P.; McCarville J. L.; et al. Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease. Sci. Rep. 2016, 6, 30980.10.1038/srep30980. PubMed DOI PMC
Lee L.; Zhang Y.; Ozar B.; Sensen C. W.; Schriemer D. C. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes. J. Proteome Res. 2016, 15, 3108–3117. 10.1021/acs.jproteome.6b00224. PubMed DOI
Ting T.-Y.; Baharin A.; Ramzi A. B.; Ng C.-L.; Goh H.-H. Neprosin belongs to a new family of glutamic peptidase based on in silico evidence. Plant Physiol. Biochem. 2022, 183, 23–35. 10.1016/j.plaphy.2022.04.027. PubMed DOI
Baharin A.; Ting T.-Y.; Goh H.-H. Post-Proline Cleaving Enzymes (PPCEs): Classification, Structure, Molecular Properties, and Applications. Plants 2022, 11, 1330.10.3390/plants11101330. PubMed DOI PMC
Abarca M. L.; Accensi F.; Cano J.; Cabañes F. J. Taxonomy and significance of black aspergilli. Antonie Van Leeuwenhoek 2004, 86, 33–49. 10.1023/B:ANTO.0000024907.85688.05. PubMed DOI
Pijning T.; Vujičić-Žagar A.; van der Laan J.; de Jong R. M.; Ramirez-Palacios C.; Vente A.; Edens L.; Dijkstra B. W. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci. 2024, 33, e485610.1002/pro.4856. PubMed DOI PMC
Lopez M.; Edens L. Effective Prevention of Chill-Haze in Beer Using an Acid Proline-Specific Endoprotease from Aspergillus niger. J. Agric. Food Chem. 2005, 53, 7944–7949. 10.1021/jf0506535. PubMed DOI
Stepniak D.; Spaenij-Dekking L.; Mitea C.; Moester M.; de Ru A.; Baak-Pablo R.; van Veelen P.; Edens L.; Koning F. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am. J. Physiol.: Lung Cell. Mol. Physiol. 2006, 291, G621–G629. 10.1152/ajpgi.00034.2006. PubMed DOI
van Schaick G.; Domínguez-Vega E.; Gstöttner C.; van den Berg-Verleg J. H.; Schouten O.; Akeroyd M.; Olsthoorn M. M. A.; Wuhrer M.; Heck A. J. R.; Abello N.; et al. Native Structural and Functional Proteoform Characterization of the Prolyl-Alanyl-Specific Endoprotease EndoPro from Aspergillus niger. J. Proteome Res. 2021, 20, 4875–4885. 10.1021/acs.jproteome.1c00663. PubMed DOI PMC
Rey M.; Man P.; Brandolin G.; Forest E.; Pelosi L. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3431–3438. 10.1002/rcm.4260. PubMed DOI
Wang L.; Pan H.; Smith D. L. Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Molecular & Cellular Proteomics 2002, 1, 132–138. 10.1074/mcp.M100009-MCP200. PubMed DOI
Kadek A.; Mrazek H.; Halada P.; Rey M.; Schriemer D. C.; Man P. Aspartic Protease Nepenthesin-1 as a Tool for Digestion in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2014, 86, 4287–4294. 10.1021/ac404076j. PubMed DOI
Trcka F.; Durech M.; Vankova P.; Vandova V.; Simoncik O.; Kavan D.; Vojtesek B.; Muller P.; Man P. The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14–3-3 adaptors. J. Biol. Chem. 2020, 295, 8928–8944. 10.1074/jbc.RA120.012624. PubMed DOI PMC
Keil B.Specificity of Proteolysis; Springer: Berlin, Heidelberg, 1992.10.1007/978-3-642-48380-6. DOI
Trcka F.; Durech M.; Vankova P.; Chmelik J.; Martinkova V.; Hausner J.; Kadek A.; Marcoux J.; Klumpler T.; Vojtesek B.; et al. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Molecular & Cellular Proteomics 2019, 18, 320–337. 10.1074/mcp.RA118.001044. PubMed DOI PMC
Piszkiewicz D.; Landon M.; Smith E. L. Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochem. Biophys. Res. Commun. 1970, 40, 1173–1178. 10.1016/0006-291X(70)90918-6. PubMed DOI
Blackburn S.; Lee G. R. The liberation of aspartic acid during the acid hydrolysis of proteins. Biochem. J. 1954, 58, 227–231. 10.1042/bj0580227. PubMed DOI PMC
Schilling O.; Huesgen P. F.; Barré O.; auf dem Keller U.; Overall C. M. Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat. Protoc. 2011, 6, 111–120. 10.1038/nprot.2010.178. PubMed DOI
Schilling O.; Overall C. M. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat. Biotechnol. 2008, 26, 685–694. 10.1038/nbt1408. PubMed DOI
Bär J. W.; et al. Prolyl endopeptidase cleaves the apoptosis rescue peptide humanin and exhibits an unknown post-cysteine cleavage specificity. Adv. Exp. Med. Biol. 2006, 575, 103–108. 10.1007/0-387-32824-6_11. PubMed DOI