Neprosin, a Selective Prolyl Endoprotease for Bottom-up Proteomics and Histone Mapping
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28404794
PubMed Central
PMC5461545
DOI
10.1074/mcp.m116.066803
PII: S1535-9476(20)32377-X
Knihovny.cz E-zdroje
- MeSH
- HeLa buňky MeSH
- histony chemie metabolismus MeSH
- lidé MeSH
- peptidy metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteasy metabolismus MeSH
- proteomika metody MeSH
- rekombinantní proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
- peptidy MeSH
- proteasy MeSH
- rekombinantní proteiny MeSH
Trypsin dominates bottom-up proteomics, but there are reasons to consider alternative enzymes. Improving sequence coverage, exposing proteomic "dark matter," and clustering post-translational modifications in different ways and with higher-order drive the pursuit of reagents complementary to trypsin. Additionally, enzymes that are easy to use and generate larger peptides that capitalize upon newer fragmentation technologies should have a place in proteomics. We expressed and characterized recombinant neprosin, a novel prolyl endoprotease of the DUF239 family, which preferentially cleaves C-terminal to proline residues under highly acidic conditions. Cleavage also occurs C-terminal to alanine with some frequency, but with an intriguingly high "skipping rate." Digestion proceeds to a stable end point, resulting in an average peptide mass of 2521 units and a higher dependence upon electron-transfer dissociation for peptide-spectrum matches. In contrast to most proline-cleaving enzymes, neprosin effectively degrades proteins of any size. For 1251 HeLa cell proteins identified in common using trypsin, Lys-C, and neprosin, almost 50% of the neprosin sequence contribution is unique. The high average peptide mass coupled with cleavage at residues not usually modified provide new opportunities for profiling clusters of post-translational modifications. We show that neprosin is a useful reagent for reading epigenetic marks on histones. It generates peptide 1-38 of histone H3 and peptide 1-32 of histone H4 in a single digest, permitting the analysis of co-occurring post-translational modifications in these important N-terminal tails.
‖Thermo Fisher Scientific San Jose California 95134
§BioCev Institute of Microbiology Czech Academy of Sciences Vestec Czech Republic 117
¶Department of Biochemistry Faculty of Science Charles University Prague Prague Czech Republic 116
**Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto Ontario Canada M5G 1X5; and
‡‡Department of Chemistry University of Calgary Calgary Alberta Canada T2N 4N1
Zobrazit více v PubMed
Aebersold R., and Mann M. (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 PubMed
Olsen J. V., Ong S. E., and Mann M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3, 608–614 PubMed
Swaney D. L., Wenger C. D., and Coon J. J. (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J. Proteome Res. 9, 1323–1329 PubMed PMC
Huesgen P. F., Lange P. F., Rogers L. D., Solis N., Eckhard U., Kleifeld O., Goulas T., Gomis-Rüth F. X., and Overall C. M. (2015) LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat. Methods 12, 55–58 PubMed
Tsiatsiani L., and Heck A. J. (2015) Proteomics beyond trypsin. FEBS J 282, 2612–2626 PubMed
Meyer J. G., Kim S., Maltby D. A., Ghassemian M., Bandeira N., and Komives E. A. (2014) Expanding proteome coverage with orthogonal-specificity α-lytic proteases. Mol. Cell. Proteomics 13, 823–835 PubMed PMC
Laskay Ü. A., Srzentić K., Monod M., and Tsybin Y. O. (2014) Extended bottom-up proteomics with secreted aspartic protease Sap9. J. Proteomics 110, 20–31 PubMed
Wu C., Tran J. C., Zamdborg L., Durbin K. R., Li M., Ahlf D. R., Early B. P., Thomas P. M., Sweedler J. V., and Kelleher N. L. (2012) A protease for ‘middle-down’ proteomics. Nat. Methods 9, 822–824 PubMed PMC
Rietschel B., Arrey T. N., Meyer B., Bornemann S., Schuerken M., Karas M., and Poetsch A. (2009) Elastase digests: new ammunition for shotgun membrane proteomics. Mol. Cell. Proteomics 8, 1029–1043 PubMed PMC
Vandermarliere E., Mueller M., and Martens L. (2013) Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrom. Rev. 32, 453–465 PubMed
Ahn J., Cao M. J., Yu Y. Q., and Engen J. R. (2013) Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim. Biophys. Acta 1834, 1222–1229 PubMed PMC
Pappin D. J., Hojrup P., and Bleasby A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327–332 PubMed
Kapp E., and Schutz F. (2007) Overview of tandem mass spectrometry (MS/MS) database search algorithms. Curr. Protoc. Protein Sci. Chapter 25, Unit 25.22 PubMed
Morgan A. A., and Rubenstein E. (2013) Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS ONE 8, e53785. PubMed PMC
Gass J., and Khosla C. (2007) Prolyl endopeptidases. Cell. Mol. Life Sci. 64, 345–355 PubMed PMC
Moriyama A., Nakanishi M., and Sasaki M. (1988) Porcine muscle prolyl endopeptidase and its endogenous substrates. J. Biochem. 104, 112–117 PubMed
Shan L., Marti T., Sollid L. M., Gray G. M., and Khosla C. (2004) Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem. J. 383, 311–318 PubMed PMC
Sebela M., Rehulka P., Kábrt J., Rehulková H., Ozdian T., Raus M., Franc V., and Chmelík J. (2009) Identification of N-glycosylation in prolyl endoprotease from Aspergillus niger and evaluation of the enzyme for its possible application in proteomics. J. Mass Spectrom. 44, 1587–1595 PubMed
Biterge B., and Schneider R. (2014) Histone variants: key players of chromatin. Cell Tissue Res. 356, 457–466 PubMed
Probst A. V., Dunleavy E., and Almouzni G. (2009) Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 PubMed
Audia J. E., and Campbell R. M. (2016) Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521. PubMed PMC
Garcia B. A., Mollah S., Ueberheide B. M., Busby S. A., Muratore T. L., Shabanowitz J., and Hunt D. F. (2007) Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat. Protoc. 2, 933–938 PubMed PMC
Phanstiel D., Brumbaugh J., Berggren W. T., Conard K., Feng X., Levenstein M. E., McAlister G. C., Thomson J. A., and Coon J. J. (2008) Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 105, 4093–4098 PubMed PMC
Young N. L., DiMaggio P. A., Plazas-Mayorca M. D., Baliban R. C., Floudas C. A., and Garcia B. A. (2009) High throughput characterization of combinatorial histone codes. Mol. Cell. Proteomics 8, 2266–2284 PubMed PMC
Lee L., Zhang Y., Ozar B., Sensen C. W., and Schriemer D. C. (2016) Carnivorous nutrition in pitcher plants (Nepenthes spp.) via an unusual complement of endogenous enzymes. J. Proteome Res. 15, 3108–3117 PubMed
Rey M., Yang M., Lee L., Zhang Y., Sheff J. G., Sensen C. W., Mrazek H., Halada P., Man P., McCarville J. L., Verdu E. F., and Schriemer D. C. (2016) Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease. Sci. Rep. 6, 30980. PubMed PMC
Malik A., Rudolph R., and Söhling B. (2005) Use of enhanced green fluorescent protein to determine pepsin at high sensitivity. Anal. Biochem. 340, 252–258 PubMed
Wiśniewski J. R., Zougman A., Nagaraj N., and Mann M. (2009) Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 PubMed
Rappsilber J., Mann M., and Ishihama Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 PubMed
Swaney D. L., McAlister G. C., and Coon J. J. (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods 5, 959–964 PubMed PMC
Zhang J., Xin L., Shan B., Chen W., Xie M., Yuen D., Zhang W., Zhang Z., Lajoie G. A., and Ma B. (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics 11, M111.010587 PubMed PMC
Rodriguez J., Gupta N., Smith R. D., and Pevzner P. A. (2008) Does trypsin cut before proline? J. Proteome Res. 7, 300–305 PubMed
Huang H., Sabari B. R., Garcia B. A., Allis C. D., and Zhao Y. (2014) SnapShot: histone modifications. Cell 159, 458–458 e451 PubMed PMC
Han X., He L., Xin L., Shan B., and Ma B. (2011) PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. J. Proteome Res. 10, 2930–2936 PubMed
Choo K. H., Tan T. W., and Ranganathan S. (2005) SPdb–a signal peptide database. BMC Bioinformatics 6, PubMed PMC
Yang M., Hoeppner M., Rey M., Kadek A., Man P., and Schriemer D. C. (2015) Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 87, 6681–6687 PubMed
Colaert N., Helsens K., Martens L., Vandekerckhove J., and Gevaert K. (2009) Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 PubMed
Wilhelm M., Schlegl J., Hahne H., Gholami A. M., Lieberenz M., Savitski M. M., Ziegler E., Butzmann L., Gessulat S., Marx H., Mathieson T., Lemeer S., Schnatbaum K., Reimer U., Wenschuh H., et al. (2014) Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 PubMed
Rey M., Yang M., Burns K. M., Yu Y., Lees-Miller S. P., and Schriemer D. C. (2013) Nepenthesin from monkey cups for hydrogen/deuterium exchange mass spectrometry. Mol. Cell. Proteomics 12, 464–472 PubMed PMC
Frese C. K., Altelaar A. F., Hennrich M. L., Nolting D., Zeller M., Griep-Raming J., Heck A. J., and Mohammed S. (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J. Proteome Res. 10, 2377–2388 PubMed
Keil B. (1992) Specificity of Proteolysis, Springer-Verlag, New York, 8–10
Delete in proof
Giansanti P., Tsiatsiani L., Low T. Y., and Heck A. J. (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat. Protoc. 11, 993–1006 PubMed
Rodríguez-Paredes M., and Esteller M. (2011) Cancer epigenetics reaches mainstream oncology. Nat. Med. 17, 330–339 PubMed
Frese C. K., Altelaar A. F., van den Toorn H., Nolting D., Griep-Raming J., Heck A. J., and Mohammed S. (2012) Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal. Chem. 84, 9668–9673 PubMed
Piszkiewicz D., Landon M., and Smith E. L. (1970) Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochem. Biophys. Res. Commun. 40, 1173–1178 PubMed
Chick J. M., Kolippakkam D., Nusinow D. P., Zhai B., Rad R., Huttlin E. L., and Gygi S. P. (2015) A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat. Biotechnol. 33, 743–749 PubMed PMC
Greer S. M., Parker W. R., and Brodbelt J. S. (2015) Impact of protease on ultraviolet photodissociation mass spectrometry for bottom-up proteomics. J. Proteome Res. 14, 2626–2632 PubMed
Grewal R. N., El Aribi H., Harrison A. G., Siu K. W. M., and Hopkinson A. C. (2004) Fragmentation of protonated tripeptides: the proline effect revisited. J. Phys. Chem. B 108, 4899–4908
Karch K. R., Denizio J. E., Black B. E., and Garcia B. A. (2013) Identification and interrogation of combinatorial histone modifications. Front. Genet. 4, 264. PubMed PMC
Weinhold B. (2006) Epigenetics: the science of change. Environ. Health Perspect. 114, A160–167 PubMed PMC
Yuan Z. F., Arnaudo A. M., and Garcia B. A. (2014) Mass spectrometric analysis of histone proteoforms. Annu. Rev. Anal. Chem. 7, 113–128 PubMed PMC
Sidoli S., Yuan Z. F., Lin S., Karch K., Wang X., Bhanu N., Arnaudo A. M., Britton L. M., Cao X. J., Gonzales-Cope M., Han Y., Liu S., Molden R. C., Wein S., Afjehi-Sadat L., and Garcia B. A. (2015) Drawbacks in the use of unconventional hydrophobic anhydrides for histone derivatization in bottom-up proteomics PTM analysis. Proteomics 15, 1459–1469 PubMed PMC
Moradian A., Kalli A., Sweredoski M. J., and Hess S. (2014) The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics 14, 489–497 PubMed
Sidoli S., Schwämmle V., Ruminowicz C., Hansen T. A., Wu X., Helin K., and Jensen O. N. (2014) Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones. Proteomics 14, 2200–2211 PubMed
Schwämmle V., Sidoli S., Ruminowicz C., Wu X., Lee C. F., Helin K., and Jensen O. N. (2016) Systems level analysis of histone H3 post-translational modifications (PTMs) reveals features of PTM crosstalk in chromatin regulation. Mol. Cell. Proteomics 15, 2715–2729 PubMed PMC
Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine