• This record comes from PubMed

A protein-specific priority code in presequences determines the efficiency of mitochondrial protein import

. 2025 Jul ; 23 (7) : e3003298. [epub] 20250721

Language English Country United States Media electronic-ecollection

Document type Journal Article

The biogenesis of mitochondria relies on the import of hundreds of different precursor proteins from the cytosol. Most of these proteins are synthesized with N-terminal presequences which serve as mitochondrial targeting signals. Presequences consistently form amphipathic helices, but they considerably differ with respect to their primary structure and length. Here we show that presequences can be classified into seven different groups based on their specific features. Using a test set of different presequences, we observed that group A presequences endow precursor proteins with improved in vitro import characteristics. We developed IQ-Compete (for Import and de-Quenching Competition assay), a novel assay based on fluorescence de-quenching, to monitor the import efficiencies of mitochondrial precursors in vivo. With this assay, we confirmed the increased import competence of group A presequences. Using mass spectrometry, we found that the presequence of the group A protein Oxa1 specifically recruits the tetratricopeptide repeat (TPR)-containing protein TOMM34 to the cytosolic precursor protein. TOMM34, and the structurally related yeast co-chaperone Cns1, apparently serve as presequence-specific targeting factors which increases the import efficiency of a specific subset of mitochondrial precursor proteins. Our results suggest that presequences contain a protein-specific priority code that encrypts the targeting mechanism of individual mitochondrial precursor proteins.

See more in PubMed

Morgenstern M, Stiller SB, Lübbert P, Peikert CD, Dannenmaier S, Drepper F, et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 2017;19(13):2836–52. doi: 10.1016/j.celrep.2017.06.014 PubMed DOI PMC

Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541–7. doi: 10.1093/nar/gkaa1011 PubMed DOI PMC

Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138(4):628–44. doi: 10.1016/j.cell.2009.08.005 PubMed DOI PMC

Herrmann JM, Bykov Y. Protein translocation in mitochondria: sorting out the Toms, Tims, Pams, Sams and Mia. FEBS Lett. 2023;597(12):1553–4. doi: 10.1002/1873-3468.14614 PubMed DOI

Araiso Y, Imai K, Endo T. Structural snapshot of the mitochondrial protein import gate. FEBS J. 2021;288(18):5300–10. doi: 10.1111/febs.15661 PubMed DOI

von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986;5(6):1335–42. doi: 10.1002/j.1460-2075.1986.tb04364.x PubMed DOI PMC

Vögtle F-N, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell. 2009;139(2):428–39. doi: 10.1016/j.cell.2009.07.045 PubMed DOI

Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005–16. doi: 10.1006/jmbi.2000.3903 PubMed DOI

Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14(4):1113–26. doi: 10.1074/mcp.M114.043083 PubMed DOI PMC

Savojardo C, Martelli PL, Fariselli P, Casadio R. TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins. Bioinformatics. 2015;31(20):3269–75. doi: 10.1093/bioinformatics/btv367 PubMed DOI

Savojardo C, Bruciaferri N, Tartari G, Martelli PL, Casadio R. DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics. 2020;36(1):56–64. doi: 10.1093/bioinformatics/btz512 PubMed DOI PMC

Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, et al. Comparative analysis of mitochondrial N-termini from mouse, human, and yeast. Mol Cell Proteomics. 2017;16(4):512–23. doi: 10.1074/mcp.M116.063818 PubMed DOI PMC

Hurt EC, Pesold-Hurt B, Schatz G. The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett. 1984;178(2):306–10. doi: 10.1016/0014-5793(84)80622-5 PubMed DOI

van Loon AP, Brändli AW, Schatz G. The presequences of two imported mitochondrial proteins contain information for intracellular and intramitochondrial sorting. Cell. 1986;44(5):801–12. doi: 10.1016/0092-8674(86)90846-9 PubMed DOI

Ornelas P, Bausewein T, Martin J, Morgner N, Nussberger S, Kühlbrandt W. Two conformations of the Tom20 preprotein receptor in the TOM holo complex. Proc Natl Acad Sci U S A. 2023;120(34):e2301447120. doi: 10.1073/pnas.2301447120 PubMed DOI PMC

Yamamoto H, Itoh N, Kawano S, Yatsukawa Y, Momose T, Makio T, et al. Dual role of the receptor Tom20 in specificity and efficiency of protein import into mitochondria. Proc Natl Acad Sci U S A. 2011;108(1):91–6. doi: 10.1073/pnas.1014918108 PubMed DOI PMC

Komiya T, Rospert S, Schatz G, Mihara K. Binding of mitochondrial precursor proteins to the cytoplasmic domains of the import receptors Tom70 and Tom20 is determined by cytoplasmic chaperones. EMBO J. 1997;16(14):4267–75. doi: 10.1093/emboj/16.14.4267 PubMed DOI PMC

Rimmer KA, Foo JH, Ng A, Petrie EJ, Shilling PJ, Perry AJ, et al. Recognition of mitochondrial targeting sequences by the import receptors Tom20 and Tom22. J Mol Biol. 2011;405(3):804–18. doi: 10.1016/j.jmb.2010.11.017 PubMed DOI

Backes S, Bykov YS, Flohr T, Räschle M, Zhou J, Lenhard S, et al. The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Rep. 2021;35(1):108936. doi: 10.1016/j.celrep.2021.108936 PubMed DOI PMC

Backes S, Hess S, Boos F, Woellhaf MW, Gödel S, Jung M, et al. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J Cell Biol. 2018;217(4):1369–82. doi: 10.1083/jcb.201708044 PubMed DOI PMC

Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. 2003;112(1):41–50. doi: 10.1016/s0092-8674(02)01250-3 PubMed DOI

Opaliński Ł, Song J, Priesnitz C, Wenz L-S, Oeljeklaus S, Warscheid B, et al. Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep. 2018;25(8):2036-2043.e5. doi: 10.1016/j.celrep.2018.10.083 PubMed DOI PMC

Hansen KG, Aviram N, Laborenz J, Bibi C, Meyer M, Spang A, et al. An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science. 2018;361(6407):1118–22. doi: 10.1126/science.aar8174 PubMed DOI

Koch C, Lenhard S, Räschle M, Prescianotto-Baschong C, Spang A, Herrmann JM. The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria. EMBO Rep. 2024;25(4):2071–96. doi: 10.1038/s44319-024-00113-w PubMed DOI PMC

Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988;332(6167):800–5. doi: 10.1038/332800a0 PubMed DOI

Döring K, Ahmed N, Riemer T, Suresh HG, Vainshtein Y, Habich M, et al. Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell. 2017;170(2):298-311.e20. doi: 10.1016/j.cell.2017.06.038 PubMed DOI PMC

Juszkiewicz S, Peak-Chew S-Y, Hegde RS. Mechanism of chaperone recruitment and retention on mitochondrial precursors. Mol Biol Cell. 2025;36(4):ar39. doi: 10.1091/mbc.E25-01-0035 PubMed DOI PMC

Schulte U, den Brave F, Haupt A, Gupta A, Song J, Müller CS, et al. Mitochondrial complexome reveals quality-control pathways of protein import. Nature. 2023;614(7946):153–9. doi: 10.1038/s41586-022-05641-w PubMed DOI PMC

Krämer L, Dalheimer N, Räschle M, Storchová Z, Pielage J, Boos F, et al. MitoStores: chaperone-controlled protein granules store mitochondrial precursors in the cytosol. EMBO J. 2023;42(7):e112309. doi: 10.15252/embj.2022112309 PubMed DOI PMC

Shakya VP, Barbeau WA, Xiao T, Knutson CS, Schuler MH, Hughes AL. A nuclear-based quality control pathway for non-imported mitochondrial proteins. Elife. 2021;10:e61230. doi: 10.7554/eLife.61230 PubMed DOI PMC

Okamoto K, Brinker A, Paschen SA, Moarefi I, Hayer-Hartl M, Neupert W, et al. The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation. EMBO J. 2002;21(14):3659–71. doi: 10.1093/emboj/cdf358 PubMed DOI PMC

Demishtein-Zohary K, Günsel U, Marom M, Banerjee R, Neupert W, Azem A, et al. Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase. Elife. 2017;6:e22696. doi: 10.7554/eLife.22696 PubMed DOI PMC

Schiller D, Cheng YC, Liu Q, Walter W, Craig EA. Residues of Tim44 involved in both association with the translocon of the inner mitochondrial membrane and regulation of mitochondrial Hsp70 tethering. Mol Cell Biol. 2008;28(13):4424–33. doi: 10.1128/MCB.00007-08 PubMed DOI PMC

Vowinckel J, Hartl J, Butler R, Ralser M. MitoLoc: a method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells. Mitochondrion. 2015;24:77–86. doi: 10.1016/j.mito.2015.07.001 PubMed DOI PMC

Yamamoto H, Fukui K, Takahashi H, Kitamura S, Shiota T, Terao K, et al. Roles of Tom70 in import of presequence-containing mitochondrial proteins. J Biol Chem. 2009;284(46):31635–46. doi: 10.1074/jbc.M109.041756 PubMed DOI PMC

Pfanner N, Müller HK, Harmey MA, Neupert W. Mitochondrial protein import: involvement of the mature part of a cleavable precursor protein in the binding to receptor sites. EMBO J. 1987;6(11):3449–54. doi: 10.1002/j.1460-2075.1987.tb02668.x PubMed DOI PMC

Pérez-Martínez X, Vazquez-Acevedo M, Tolkunova E, Funes S, Claros MG, Davidson E, et al. Unusual location of a mitochondrial gene. Subunit III of cytochrome C oxidase is encoded in the nucleus of Chlamydomonad algae. J Biol Chem. 2000;275(39):30144–52. doi: 10.1074/jbc.M003940200 PubMed DOI

Hegde RS, Bernstein HD. The surprising complexity of signal sequences. Trends Biochem Sci. 2006;31(10):563–71. doi: 10.1016/j.tibs.2006.08.004 PubMed DOI

Trcka F, Durech M, Man P, Hernychova L, Muller P, Vojtesek B. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem. 2014;289(14):9887–901. doi: 10.1074/jbc.M113.526046 PubMed DOI PMC

Faou P, Hoogenraad NJ. Tom34: a cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import. Biochim Biophys Acta. 2012;1823(2):348–57. doi: 10.1016/j.bbamcr.2011.12.001 PubMed DOI

Bykov YS, Flohr T, Boos F, Zung N, Herrmann JM, Schuldiner M. Widespread use of unconventional targeting signals in mitochondrial ribosome proteins. EMBO J. 2022;41(1):e109519. doi: 10.15252/embj.2021109519 PubMed DOI PMC

Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2(4):953–71. doi: 10.1038/nprot.2007.131 PubMed DOI

Daum G, Bohni PC, Schatz G. Import of proteins into mitochondria—cytochrome-B2 and cytochrome-C peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem. 1982;257(21):3028–33. PubMed

Bertgen L, Flohr T, Herrmann JM. Methods to study the biogenesis of mitoribosomal proteins in yeast. Methods Mol Biol. 2023;2661:143–61. doi: 10.1007/978-1-0716-3171-3_10 PubMed DOI

Fischer M, Horn S, Belkacemi A, Kojer K, Petrungaro C, Habich M, et al. Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Mol Biol Cell. 2013;24(14):2160–70. doi: 10.1091/mbc.E12-12-0862 PubMed DOI PMC

Saladi S, Boos F, Poglitsch M, Meyer H, Sommer F, Mühlhaus T, et al. The NADH dehydrogenase Nde1 executes cell death after integrating signals from metabolism and proteostasis on the mitochondrial surface. Mol Cell. 2020;77(1):189-202.e6. doi: 10.1016/j.molcel.2019.09.027 PubMed DOI

Schäfer JA, Bozkurt S, Michaelis JB, Klann K, Münch C. Global mitochondrial protein import proteomics reveal distinct regulation by translation and translocation machinery. Mol Cell. 2022;82(2):435-446.e7. doi: 10.1016/j.molcel.2021.11.004 PubMed DOI PMC

Needs HI, Lorriman JS, Pereira GC, Henley JM, Collinson I. The MitoLuc assay system for accurate real-time monitoring of mitochondrial protein import within mammalian cells. J Mol Biol. 2023;435(13):168129. doi: 10.1016/j.jmb.2023.168129 PubMed DOI PMC

Nicholls SB, Chu J, Abbruzzese G, Tremblay KD, Hardy JA. Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. J Biol Chem. 2011;286(28):24977–86. doi: 10.1074/jbc.M111.221648 PubMed DOI PMC

Sanchez MI, Ting AY. Directed evolution improves the catalytic efficiency of TEV protease. Nat Methods. 2020;17(2):167–74. doi: 10.1038/s41592-019-0665-7 PubMed DOI PMC

Matouschek A, Azem A, Ratliff K, Glick BS, Schmid K, Schatz G. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 1997;16(22):6727–36. doi: 10.1093/emboj/16.22.6727 PubMed DOI PMC

Endo T, Mitsui S, Roise D. Mitochondrial presequences can induce aggregation of unfolded proteins. FEBS Lett. 1995;359(1):93–6. doi: 10.1016/0014-5793(95)00015-2 PubMed DOI

Liu Q, Fong B, Yoo S, Unruh JR, Guo F, Yu Z, et al. Nascent mitochondrial proteins initiate the localized condensation of cytosolic protein aggregates on the mitochondrial surface. Proc Natl Acad Sci U S A. 2023;120(31):e2300475120. doi: 10.1073/pnas.2300475120 PubMed DOI PMC

Lithgow T, Schatz G. Import of the cytochrome oxidase subunit Va precursor into yeast mitochondria is mediated by the outer membrane receptor Mas20p. J Biol Chem. 1995;270(24):14267–9. doi: 10.1074/jbc.270.24.14267 PubMed DOI

Stiller SB, Höpker J, Oeljeklaus S, Schütze C, Schrempp SG, Vent-Schmidt J, et al. Mitochondrial OXA translocase plays a major role in biogenesis of inner-membrane proteins. Cell Metab. 2016;23(5):901–8. doi: 10.1016/j.cmet.2016.04.005 PubMed DOI PMC

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 PubMed DOI

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. doi: 10.1093/nar/gkh340 PubMed DOI PMC

Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS. Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell. 2016;63(1):21–33. doi: 10.1016/j.molcel.2016.05.020 PubMed DOI PMC

Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T. The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J Mol Biol. 2006;358(4):1010–22. doi: 10.1016/j.jmb.2006.02.062 PubMed DOI

Schopf FH, Huber EM, Dodt C, Lopez A, Biebl MM, Rutz DA, et al. The Co-chaperone Cns1 and the recruiter protein Hgh1 link Hsp90 to translation elongation via chaperoning elongation factor 2. Mol Cell. 2019;74(1):73-87.e8. doi: 10.1016/j.molcel.2019.02.011 PubMed DOI

Hilpert K, Winkler DFH, Hancock REW. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc. 2007;2(6):1333–49. doi: 10.1038/nprot.2007.160 PubMed DOI

Brix J, Rüdiger S, Bukau B, Schneider-Mergener J, Pfanner N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem. 1999;274(23):16522–30. doi: 10.1074/jbc.274.23.16522 PubMed DOI

Hurt EC, Pesold-Hurt B, Schatz G. The amino-terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dihydrofolate reductase into the mitochondrial matrix. EMBO J. 1984;3(13):3149–56. doi: 10.1002/j.1460-2075.1984.tb02272.x PubMed DOI PMC

Baysal C, Pérez-González A, Eseverri Á, Jiang X, Medina V, Caro E, et al. Recognition motifs rather than phylogenetic origin influence the ability of targeting peptides to import nuclear-encoded recombinant proteins into rice mitochondria. Transgenic Res. 2020;29(1):37–52. doi: 10.1007/s11248-019-00176-9 PubMed DOI PMC

Supekova L, Supek F, Greer JE, Schultz PG. A single mutation in the first transmembrane domain of yeast COX2 enables its allotopic expression. Proc Natl Acad Sci U S A. 2010;107(11):5047–52. doi: 10.1073/pnas.1000735107 PubMed DOI PMC

Vázquez-Acevedo M, Rubalcava-Gracia D, González-Halphen D. In vitro import and assembly of the nucleus-encoded mitochondrial subunit III of cytochrome c oxidase (Cox3). Mitochondrion. 2014;19 Pt B:314–22. doi: 10.1016/j.mito.2014.02.005 PubMed DOI

Esaki M, Shimizu H, Ono T, Yamamoto H, Kanamori T, Nishikawa S-I, et al. Mitochondrial protein import. Requirement of presequence elements and tom components for precursor binding to the TOM complex. J Biol Chem. 2004;279(44):45701–7. doi: 10.1074/jbc.M404591200 PubMed DOI

Bohnert M, Rehling P, Guiard B, Herrmann JM, Pfanner N, van der Laan M. Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport. Curr Biol. 2010;20(13):1227–32. doi: 10.1016/j.cub.2010.05.058 PubMed DOI

Melin J, Kilisch M, Neumann P, Lytovchenko O, Gomkale R, Schendzielorz A, et al. A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria. Biochim Biophys Acta. 2015;1853(8):1850–9. doi: 10.1016/j.bbamcr.2015.04.021 PubMed DOI

Stan T, Ahting U, Dembowski M, Künkele KP, Nussberger S, Neupert W, et al. Recognition of preproteins by the isolated TOM complex of mitochondria. EMBO J. 2000;19(18):4895–902. doi: 10.1093/emboj/19.18.4895 PubMed DOI PMC

Yano M, Terada K, Mori M. Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity. J Biol Chem. 2004;279(11):10808–13. doi: 10.1074/jbc.M311710200 PubMed DOI

Trcka F, Durech M, Vankova P, Vandova V, Simoncik O, Kavan D, et al. The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors. J Biol Chem. 2020;295(27):8928–44. doi: 10.1074/jbc.RA120.012624 PubMed DOI PMC

Mukhopadhyay A, Avramova LV, Weiner H. Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins. Arch Biochem Biophys. 2002;400(1):97–104. doi: 10.1006/abbi.2002.2777 PubMed DOI

Dahiya V, Rutz DA, Moessmer P, Mühlhofer M, Lawatscheck J, Rief M, et al. The switch from client holding to folding in the Hsp70/Hsp90 chaperone machineries is regulated by a direct interplay between co-chaperones. Mol Cell. 2022;82(8):1543-1556.e6. doi: 10.1016/j.molcel.2022.01.016 PubMed DOI

Eckl JM, Richter K. Functions of the Hsp90 chaperone system: lifting client proteins to new heights. Int J Biochem Mol Biol. 2013;4(4):157–65. PubMed PMC

Hainzl O, Wegele H, Richter K, Buchner J. Cns1 is an activator of the Ssa1 ATPase activity. J Biol Chem. 2004;279(22):23267–73. doi: 10.1074/jbc.M402189200 PubMed DOI

Rak M, Tetaud E, Duvezin-Caubet S, Ezkurdia N, Bietenhader M, Rytka J, et al. A yeast model of the neurogenic ataxia retinitis pigmentosa (NARP) T8993G mutation in the mitochondrial ATP synthase-6 gene. J Biol Chem. 2007;282(47):34039–47. doi: 10.1074/jbc.M703053200 PubMed DOI

Simakin P, Koch C, Herrmann JM. A modular cloning (MoClo) toolkit for reliable intracellular protein targeting in the yeast PubMed DOI PMC

Harsman A, Kopp A, Wagner R, Zimmermann R, Jung M. Calmodulin regulation of the calcium-leak channel Sec61 is unique to vertebrates. Channels (Austin). 2011;5(4):293–8. doi: 10.4161/chan.5.4.16160 PubMed DOI

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2(8):1896–906. doi: 10.1038/nprot.2007.261 PubMed DOI

Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014;11(3):319–24. doi: 10.1038/nmeth.2834 PubMed DOI

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007 PubMed DOI PMC

Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18 Suppl 1:S96-104. doi: 10.1093/bioinformatics/18.suppl_1.s96 PubMed DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Methodol. 1995;57(1):289–300.

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–7. doi: 10.1093/bioinformatics/btm069 PubMed DOI

Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 2015;13(4):e1002128. doi: 10.1371/journal.pbio.1002128 PubMed DOI PMC

Elnaggar A, Essam H, Salah-Eldin W, Moustafa W, Elkerdawy M, Rochereau C. Ankh: optimized protein language model unlocks general-purpose modelling. arXiv. 2023. doi: 10.48550/arXiv.2301.06568 DOI

McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv. 2020. doi: 10.48550/arXiv.1802.03426 DOI

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72. doi: 10.1038/s41592-019-0686-2 PubMed DOI PMC

Balakrishnan R, Park J, Karra K, Hitz BC, Binkley G, Hong EL, et al. YeastMine—an integrated data warehouse for PubMed DOI PMC

Jung F, Frey K, Zimmer D, Mühlhaus T. DeepSTABp: a deep learning approach for the prediction of thermal protein stability. Int J Mol Sci. 2023;24(8):7444. doi: 10.3390/ijms24087444 PubMed DOI PMC

UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–31. doi: 10.1093/nar/gkac1052 PubMed DOI PMC

Boos F, Krämer L, Groh C, Jung F, Haberkant P, Stein F, et al. Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat Cell Biol. 2019;21(4):442–51. doi: 10.1038/s41556-019-0294-5 PubMed DOI

Schlagowski AM, Knöringer K, Morlot S, Sánchez Vicente A, Flohr T, Krämer L, et al. Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol. EMBO J. 2021;40(16):e107913. doi: 10.15252/embj.2021107913 PubMed DOI PMC

Gomkale R, Cruz-Zaragoza LD, Suppanz I, Guiard B, Montoya J, Callegari S, et al. Defining the substrate spectrum of the TIM22 complex identifies pyruvate carrier subunits as unconventional cargos. Curr Biol. 2020;30(6):1119-1127.e5. doi: 10.1016/j.cub.2020.01.024 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...