Immunogenicity of coiled-coil based drug-free macromolecular therapeutics
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM095606
NIGMS NIH HHS - United States
GM095606
NIGMS NIH HHS - United States
PubMed
24767787
PubMed Central
PMC4019077
DOI
10.1016/j.biomaterials.2014.03.063
PII: S0142-9612(14)00323-8
Knihovny.cz E-zdroje
- Klíčová slova
- Coiled-coil peptides, Drug-free macromolecular therapeutics, Enantiomers, Fab' fragment, HPMA copolymer, Immunogenicity,
- MeSH
- akrylamidy aplikace a dávkování chemie imunologie MeSH
- buněčné linie MeSH
- imunoglobuliny - Fab fragmenty aplikace a dávkování chemie imunologie MeSH
- makrofágy účinky léků imunologie MeSH
- molekulární sekvence - údaje MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- peptidy aplikace a dávkování chemie imunologie MeSH
- sekvence aminokyselin MeSH
- T-lymfocyty účinky léků imunologie MeSH
- tvorba protilátek účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- akrylamidy MeSH
- imunoglobuliny - Fab fragmenty MeSH
- N-(2-hydroxypropyl)methacrylamide MeSH Prohlížeč
- peptidy MeSH
A two-component CD20 (non-internalizing) receptor crosslinking system based on the biorecognition of complementary coiled-coil forming peptides was evaluated. Exposure of B cells to Fab'-peptide1 conjugate decorates the cell surface with peptide1; further exposure of the decorated cells to P-(peptide2)x (P is the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone) results in the formation of coiled-coil heterodimers at the cell surface with concomitant induction of apoptosis. The aim of this study was to determine the potential immunogenicity of this therapeutic system that does not contain low molecular weight drugs. Enantiomeric peptides (L- and D-CCE and L- and D-CCK), HPMA copolymer-peptide conjugates, and Fab' fragment-peptide conjugates were synthesized and the immunological properties of peptide conjugates evaluated in vitro on RAW264.7 macrophages and in vivo on immunocompetent BALB/c mice. HPMA copolymer did not induce immune response in vitro and in vivo. Administration of P-peptide conjugates with strong adjuvant resulted in antibody response directed to the peptide. Fab' was responsible for macrophage activation of Fab'-peptide conjugates and a major factor in the antibody induction following i.v. administration of Fab'-conjugates. There was no substantial difference in the ability of conjugates of D-peptides and conjugates of L-peptides to induce Ab response.
Zobrazit více v PubMed
Kopeček J, Yang J. Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed Engl. 2012;51(30):7396–7417. PubMed PMC
Kopeček J, Yang J. Peptide-directed self-assembly of hydrogels. Acta Biomater. 2009;5(3):805–816. PubMed PMC
Yang J, Wu K, Koňák Č , Kopeček J. Dynamic light scattering study of self-assembly of HPMA hybrid graft copolymers. Biomacromolecules. 2008;9(2):510–517. PubMed
Yang J, Xu C, Wang C, Kopeček J. Refolding hydrogels self-assembled from N-(2- hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules. 2006;7(4):1187–1195. PubMed PMC
Hofmeister JK, Cooney D, Coggeshall KM. Clustered CD20 induced apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis. 2000;26(2):133–143. PubMed
Zhang N, Khawli LA, Hu P, Epstein AL. Generation of rituximab polymer may cause hyper-cross-linking-induced apoptosis in non-Hodgkin’s lymphomas. Clin Cancer Res. 2005;11(16):5971–5980. PubMed
Wu K, Liu J, Johnson RN, Yang J, Kopeček J. Drug-free macromolecular therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. Angew Chem Int Ed Engl. 2010;49(8):1451–1455. PubMed PMC
Wu K, Yang J, Liu J, Kopeček J. Coiled-coil based drug-free macromolecular therapeutics: in vivo efficacy. J Control Release. 2012;157(1):126–131. PubMed PMC
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469–478. PubMed
Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23(9):1137–1146. PubMed
Korčáková L, Paluska E, Hašková V, Kopeček J. Asimple test for immunogenicity of colloidal infusion solutions - the draining lymph node activation. Z Immunitätsforsch. 1976;151(3):219–223. PubMed
Říhová B, Ulbrich K, Kopeček J, Mančal P. Immunogenicity of N-(2-hydroxypropyl)- methacrylamide copolymers--potential hapten or drug carriers. Folia Microbiol (Praha) 1983;28(3):217–227. PubMed
Říhová B, Bilej M, Větvička V, Ulbrich K, Strohalm J, Kopeček J, et al. Biocompatibility of N-(2-hydroxypropyl)methacrylamide copolymers containing adriamycin. Immunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials. 1989;10(5):335–342. PubMed
Kopeček J. Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev. 2013;65(1):49–59. PubMed PMC
Kopeček J, Kopečková P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev. 2010;62(2):122–149. PubMed PMC
Vicent MJ, Ringsdorf H, Duncan R. Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev. 2009;61(13):1117–1120. PubMed
Goodman-Snitkoff G, Eisele LE, Heimer EP, Felix AM, Andersen TT, Fuerst TR, et al. Defining minimal requirements for antibody production to peptide antigens. Vaccine. 1990;8(3):257–262. PubMed
Říhová B. Biocompatibility of biomaterials: hemocompatibility, immunocompatiblity and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers. Adv Drug Deliv Rev. 1996;21(2):157–176.
Říhová B, Kopeček J, Ulbrich K, Chytrý V. Immunogenicity of N-(2-hydroxypropyl) methacrylamide copolymers. Makromol Chem. 1985;9(Suppl):13–24.
Rudra JS, Tripathi PK, Hildeman DA, Jung JP, Collier JH. Immune responses to coiled coil supramolecular biomaterials. Biomaterials. 2010;31(32):8475–8483. PubMed PMC
Gras-Masse H, Jolivet M, Drobecq H, Aubert JP, Beachey EH, Audibert F, et al. Influence of helical organization on immunogenicity and antigenicity of synthetic peptides. Mol Immunol. 1988;25(7):673–678. PubMed
Lu SM, Hodges RS. A de novo designed template for generating conformation-specific antibodies that recognize alpha-helices in proteins. J Biol Chem. 2002;277(26):23515–23524. PubMed
Dintzis HM, Symer DE, Dintzis RZ, Zawadzke LE, Berg JM. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins. 1993;16(3):306–308. PubMed
Chong P, Sia C, Tripet B, James O, Klein M. Comparative immunological properties of enantiomeric peptides. Lett Pept Sci. 1996;3(2):99–106.
Sela M, Zisman E. Different roles of D-amino acids in immune phenomena. FASEB J. 1997;11(6):449–456. PubMed
Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules. 2001;34(7):2248–2256.
Kopeček J, Bažilová H. Pol [N-(2-hydroxypropyl)methacrylamide] — I. Radical polymerization and copolymerization. Europ Polym J. 1973;9(1):7–14.
Chu TW, Yang J, Kopeček J. Anti-CD20 multivalent HPMA copolymer-Fab’ conjugates for the direct induction of apoptosis. Biomaterials. 2012;33(29):7174–7181. PubMed PMC
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77. PubMed
Starcher B. A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem. 2001;292(1):125–129. PubMed
Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274(16):10689–10692. PubMed
Wang WW, Jenkinson CP, Griscavage JM, Kern RM, Arabolos NS, Byrns RE, et al. Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun. 1995;210(3):1009–1016. PubMed
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374(Pt 1):1–20. PubMed PMC
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–238. PubMed
Clahsen T, Schaper F. Interleukin-6 acts in the fashion of a classical chemokine on monocytic cells by inducing integrin activation, cell adhesion, actin polymerization, chemotaxis, and transmigration. J Leukoc Biol. 2008;84(6):1521–1529. PubMed
Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol. 2009;21(1):10–16. PubMed PMC
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–555. PubMed
Pelegrin P, Barroso-Gutierrez C, Surprenant A. P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol. 2008;180(11):7147–7157. PubMed
Scheibel M, Klein B, Merkle H, Schulz M, Fritsch R, Greten FR, et al. IkappaBbeta is an essential co-activator for LPS-induced IL-1beta transcription in vivo. J Exp Med. 2010;207(12):2621–2630. PubMed PMC
Kim JK, Lee SM, Suk K, Lee WH. A novel pathway responsible for lipopolysaccharide-induced translational regulation of TNF-alpha and IL-6 expression involves protein kinase C and fascin. J Immunol. 2011;187(12):6327–6334. PubMed
Radtke S, Wuller S, Yang XP, Lippok BE, Mutze B, Mais C, et al. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation. J Cell Sci. 2010;123(Pt 6):947–959. PubMed
Peroval MY, Boyd AC, Young JR, Smith AL. A critical role for MAPK signalling pathways in the transcriptional regulation of toll like receptors. PLoS One. 2013;8(2):e51243. PubMed PMC
Lei M, Jiao H, Liu T, Du L, Cheng Y, Zhang D, et al. siRNA targeting mCD14 inhibits TNF-alpha, MIP-2, and IL-6 secretion and NO production from LPS-induced RAW264.7 cells. Appl Microbiol Biotechnol. 2011;92(1):115–124. PubMed
Jeannin P, Delneste Y, Buisine E, Le Mao J, Didierlaurent A, Stewart GA, et al. Immunogenicity and antigenicity of synthetic peptides derived from the mite allergen Der p I. Mol Immunol. 1993;30(16):1511–1518. PubMed
Dintzis HM, Dintzis RZ, Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci USA. 1976;73(10):3671–3675. PubMed PMC
Lymberi P, Blancher A, Calvas P, Avrameas S. Natural autoantibodies in nude and normal outbred (Swiss) and inbred (BALB/c) mice. J Autoimmun. 1989;2(3):283–295. PubMed
Jensen PE, Kapp JA. Bystander help in primary immune responses in vivo. J Exp Med. 1986;164(3):841–854. PubMed PMC
Johnson TA, Press OW. Therapy of B-cell lymphomas with monoclonal antibodies and radioimmunoconjugates: the Seattle experience. Ann Hematol. 2000;79(4):175–182. PubMed
Press OW, Appelbaum F, Ledbetter JA, Martin PJ, Zarling J, Kidd P, et al. Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood. 1987;69(2):584–591. PubMed
van Dam GJ, Verheul AF, Zigterman GJ, de Reuver MJ, Snippe H. Estimation of the avidity of antibodies in polyclonal antisera against Streptococcus pneumoniae type 3 by inhibition ELISA. Mol Immunol. 1989;26(3):269–274. PubMed