Prebiotically Plausible Peptides can Self-assemble into β-rich Nanostructures
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
DP2 GM140926
NIGMS NIH HHS - United States
T32 GM135131
NIGMS NIH HHS - United States
PubMed
41292710
PubMed Central
PMC12642478
DOI
10.1101/2025.11.09.687475
PII: 2025.11.09.687475
Knihovny.cz E-zdroje
- Klíčová slova
- Peptide assembly, catalysis, language models, peptide libraries, prebiotic chemistry, protein structure, random sequences,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Modern proteins are remarkable polymers built from a 20-amino-acid alphabet, shaped by billions of years of evolution. Yet in Earth's prebiotic era, several amino acids - particularly the canonical basic residues lysine, arginine, and histidine - were likely scarce, unlike the more readily available acidic amino acids. Moreover, protein-length polymers were inaccessible before ribosomal synthesis emerged, and peptides were probably short, statistical, and non-templated. How the earliest proteins and enzymes emerged under these constraints remains a central question in origins-of-life research. Here, we synthesize random peptide libraries that span a broad electrostatic spectrum and systematically interrogate their properties. The data indicate that a prebiotically plausible acidic alphabet stands out in its propensity for secondary structure and higher-order soluble assembly via formation of β-sheets. These assemblies arise from highly heterogeneous sequences, plausibly reflecting the statistical diversity of early Earth peptides, and differ from amyloid structures in both solubility and morphology. Our results further show that the acidic random peptides have inherent capacity to bind certain metal ions, implying their potential to contribute to prebiotic catalysis. Using a large language model for structural prediction, we further show that peptides composed of this acidic alphabet exhibit a strong propensity for compact conformations. Altogether, this study showcases that unevolved sequences of prebiotically-abundant amino acids can readily produce foldable self-assembling polymers, potentially providing a steppingstone toward the first proteins, prior to the onset of purifying selection.
Department of Biological Sciences University of Maryland Baltimore County Baltimore MD 21250 USA
Department of Cell Biology Faculty of Science Charles University Prague 12800 Czech Republic
Department of Chemistry Johns Hopkins University Baltimore MD 21218 USA
Department of Physical Chemistry Faculty of Science Charles University Prague 12843 Czech Republic
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec 25250 Czech Republic
School of Molecular Sciences Arizona State University Tempe AZ USA
T C Jenkins Department of Biophysics Johns Hopkins University Baltimore MD 21218 USA
Zobrazit více v PubMed
Weber A. L., Miller S. L., Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17, 273–284 (1981). PubMed
Cleaves H. J. II, The origin of the biologically coded amino acids. Journal of Theoretical Biology 263, 490–498 (2010). PubMed
Philip G. K., Freeland S. J., Did Evolution Select a Nonrandom “Alphabet” of Amino Acids? Astrobiology 11, 235–240 (2011). PubMed
Mayer-Bacon C., Agboha N., Muscalli M., Freeland S., Evolution as a Guide to Designing xeno Amino Acid Alphabets. International Journal of Molecular Sciences 22, 2787 (2021). PubMed PMC
Brown S. M., Mayer-Bacon C., Freeland S., Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life 13, 2281 (2023). PubMed PMC
Miller S. L., Urey H. C., Organic Compound Synthesis on the Primitive Earth. Science 130, 245–251 (1959). PubMed
Johnson A. P., et al. , The Miller Volcanic Spark Discharge Experiment. Science 322, 404–404 (2008). PubMed
Blanco C., Bayas M., Yan F., Chen I. A., Analysis of Evolutionarily Independent Protein-RNA Complexes Yields a Criterion to Evaluate the Relevance of Prebiotic Scenarios. Current Biology 28, 526–537.e5 (2018). PubMed
Elsila J. E., et al. , Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories. ACS Cent. Sci. 2, 370–379 (2016). PubMed PMC
Glavin D. P., et al. , Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu. Nat Astron 9, 199–210 (2025). PubMed PMC
Naraoka H., et al. , Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023). PubMed
Higgs P. G., Pudritz R. E., A Thermodynamic Basis for Prebiotic Amino Acid Synthesis and the Nature of the First Genetic Code. Astrobiology 9, 483–490 (2009). PubMed
Despotović D., et al. , Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 59, 4456–4462 (2020). PubMed PMC
Tretyachenko V., et al. , Modern and prebiotic amino acids support distinct structural profiles in proteins. Open Biology 12, 220040 (2022). PubMed PMC
Giacobelli V. G., et al. , In Vitro Evolution Reveals Noncationic Protein–RNA Interaction Mediated by Metal Ions. Mol Biol Evol 39, msac032 (2022). PubMed PMC
Tanaka J., Doi N., Takashima H., Yanagawa H., Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids. Protein Science 19, 786–795 (2010). PubMed PMC
Newton M. S., Morrone D. J., Lee K.-H., Seelig B., Genetic Code Evolution Investigated through the Synthesis and Characterisation of Proteins from Reduced-Alphabet Libraries. ChemBioChem 20, 846–856 (2019). PubMed
Giacobelli V. G., et al. , Ancient amino acid sets enable stable protein folds. [Preprint] (2025). Available at: https://www.biorxiv.org/content/10.1101/2025.10.29.685319v1 [Accessed 30 October 2025]. DOI
Meierhenrich U. J., Muñoz Caro G. M., Bredehöft J. H., Jessberger E. K., Thiemann W. H.-P., Identification of diamino acids in the Murchison meteorite. Proceedings of the National Academy of Sciences 101, 9182–9186 (2004).
Makarov M., et al. , Early Selection of the Amino Acid Alphabet Was Adaptively Shaped by Biophysical Constraints of Foldability. J. Am. Chem. Soc. 145, 5320–5329 (2023). PubMed PMC
Leman L., Orgel L., Ghadiri M. R., Carbonyl Sulfide-Mediated Prebiotic Formation of Peptides. Science 306, 283–286 (2004). PubMed
Forsythe J. G., et al. , Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. Angewandte Chemie International Edition 54, 9871–9875 (2015). PubMed PMC
Canavelli P., Islam S., Powner M. W., Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019). PubMed
Foden C. S., et al. , Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020). PubMed
Zhang Y., Cremer P. S., Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology 10, 658–663 (2006). PubMed
Kherb J., Flores S. C., Cremer P. S., Role of Carboxylate Side Chains in the Cation Hofmeister Series. J. Phys. Chem. B 116, 7389–7397 (2012). PubMed
Greenwald J., Kwiatkowski W., Riek R., Peptide Amyloids in the Origin of Life. Journal of Molecular Biology 430, 3735–3750 (2018). PubMed
Frenkel-Pinter M., Samanta M., Ashkenasy G., Leman L. J., Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem. Rev. 120, 4707–4765 (2020). PubMed
Malkov S. N., Živković M. V., Beljanski M. V., Hall M. B., Zarić S. D., A reexamination of the propensities of amino acids towards a particular secondary structure: classification of amino acids based on their chemical structure. J Mol Model 14, 769–775 (2008). PubMed
Pearson R. G., Hard and Soft Acids and Bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).
Dokmanić I., Šikić M., Tomić S., Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Cryst D 64, 257–263 (2008). PubMed
Lin Z., et al. , Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023). PubMed
Jing X., Wu F., Luo X., Xu J., Single-sequence protein structure prediction by integrating protein language models. Proceedings of the National Academy of Sciences 121, e2308788121 (2024).
Joosten R. P., et al. , A series of PDB related databases for everyday needs. Nucleic Acids Research 39, D411–D419 (2011). PubMed PMC
Abraham M. J., et al. , GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Heffernan R., et al. , Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning. Journal of Computational Chemistry 39, 2210–2216 (2018). PubMed
Cuff J. A., Barton G. J., Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins: Structure, Function, and Bioinformatics 40, 502–511 (2000).
Garnier J., Osguthorpe D. J., Robson B., Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120, 97–120 (1978). PubMed
Cagiada M., Ovchinnikov S., Lindorff-Larsen K., Predicting absolute protein folding stability using generative models. Protein Science 34, e5233 (2025). PubMed PMC
Sanchez-Rocha A. C., Makarov M., Pravda L., Novotný M., Hlouchová K., Coenzyme-Protein Interactions since Early Life. eLife 13 (2024).
Kim Y. E., Hipp M. S., Bracher A., Hayer-Hartl M., Hartl F. U., Molecular Chaperone Functions in Protein Folding and Proteostasis. Annual Review of Biochemistry 82, 323–355 (2013).
Hendricks M. P., Sato K., Palmer L. C., Stupp S. I., Supramolecular Assembly of Peptide Amphiphiles. Acc. Chem. Res. 50, 2440–2448 (2017). PubMed PMC
Greenwald J., Friedmann M. P., Riek R., Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions. Angewandte Chemie International Edition 55, 11609–11613 (2016). PubMed
Rout S. K., Friedmann M. P., Riek R., Greenwald J., A prebiotic template-directed peptide synthesis based on amyloids. Nat Commun 9, 234 (2018). PubMed PMC
Maury C. P. J., Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cell. Mol. Life Sci. 75, 1499–1507 (2018). PubMed PMC
Wieczorek R., Adamala K., Gasperi T., Polticelli F., Stano P., Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life (Basel) 7, 19 (2017). PubMed PMC
Rufo C. M., et al. , Short peptides self-assemble to produce catalytic amyloids. Nature Chem 6, 303–309 (2014). PubMed PMC
Edri R., et al. , From Polymerization-Enabled Folding and Assembly to Chemical Evolution: Key Processes for Emergence of Functional Polymers in the Origin of Life. Astrobiology (2025).
Bordin N., Sillitoe I., Lees J. G., Orengo C., Tracing Evolution Through Protein Structures: Nature Captured in a Few Thousand Folds. Front. Mol. Biosci. 8 (2021).
Udenfriend S., et al. , Fluorescamine: A Reagent for Assay of Amino Acids, Peptides, Proteins, and Primary Amines in the Picomole Range. Science 178, 871–872 (1972). PubMed
Young G., et al. , Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018). PubMed PMC