6FDA-DAM:DABA Co-Polyimide Mixed Matrix Membranes with GO and ZIF-8 Mixtures for Effective CO2/CH4 Separation

. 2021 Mar 08 ; 11 (3) : . [epub] 20210308

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800502

Grantová podpora
project SPETEP (CZ.02.1.01/0.0/0.0/16; 026/0008413) Ministry of Education, Youth and Sports of the Czech Republic and EU - European Structural and Investment Funds - Operational Programme Research, Devel-opment, and Education

This work presents the gas separation evaluation of 6FDA-DAM:DABA (3:1) co-polyimide and its enhanced mixed matrix membranes (MMMs) with graphene oxide (GO) and ZIF-8 (particle size of <40 nm). The 6FDA-copolyimide was obtained through two-stage poly-condensation polymerization, while the ZIF-8 nanoparticles were synthesized using the dry and wet method. The MMMs were preliminarily prepared with 1-4 wt.% GO and 5-15 wt.% ZIF-8 filler loading independently. Based on the best performing GO MMM, the study proceeded with making MMMs based on the mixtures of GO and ZIF-8 with a fixed 1 wt.% GO content (related to the polymer matrix) and varied ZIF-8 loadings. All the materials were characterized thoroughly using TGA, FTIR, XRD, and FESEM. The gas separation was measured with 50:50 vol.% CO2:CH4 binary mixture at 2 bar feed pressure and 25 °C. The pristine 6FDA-copolyimide showed CO2 permeability (PCO2) of 147 Barrer and CO2/CH4 selectivity (αCO2/CH4) of 47.5. At the optimum GO loading (1 wt.%), the PCO2 and αCO2/CH4 were improved by 22% and 7%, respectively. A combination of GO (1 wt.%)/ZIF-8 fillers tremendously improves its PCO2; by 990% for GO/ZIF-8 (5 wt.%) and 1.124% for GO/ZIF-8 (10 wt.%). Regrettably, the MMMs lost their selectivity by 16-55% due to the non-selective filler-polymer interfacial voids. However, the hybrid MMM performances still resided close to the 2019 upper bound and showed good performance stability when tested at different feed pressure conditions.

Zobrazit více v PubMed

IPCC . In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Plattner G.-K., Xia Y., Bex V., et al., editors. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2013. 1535p

The Keeling Curve: Latest CO2 Reading. Scripps Institution of Oceanography; San Diego, CA, USA: 2020.

Koros W.J., Mahajan R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2000;175:181–196. doi: 10.1016/S0376-7388(00)00418-X. DOI

Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991;62:165–185. doi: 10.1016/0376-7388(91)80060-J. DOI

Ahmad M.Z., Castro-Muñoz R., Budd P.M. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale. 2020;12:23333–23370. doi: 10.1039/D0NR07042D. PubMed DOI

Goh P., Ismail A., Sanip S., Ng B., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI

Etxeberria-Benavides M., David O., Johnson T., Łozińska M.M., Orsi A., Wright P.A., Mastel S., Hillenbrand R., Kapteijn F., Gascon J. High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J. Membr. Sci. 2018;550:198–207. doi: 10.1016/j.memsci.2017.12.033. DOI

Martin-Gil V., Ahmad M., Castro-Muñoz R., Fila V. Economic framework of membrane technologies for natural gas applications. Sep. Purif. Rev. 2018;48:298–324. doi: 10.1080/15422119.2018.1532911. DOI

Moore T.T., Koros W.J. Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct. 2005;739:87–98. doi: 10.1016/j.molstruc.2004.05.043. DOI

Melgar V.M.A., Kim J., Othman M.R. Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. J. Ind. Eng. Chem. 2015;28:1–15. doi: 10.1016/j.jiec.2015.03.006. DOI

Cravillon J., Schröder C.A., Bux H., Rothkirch A., Caro J., Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm. 2011;14:492–498. doi: 10.1039/C1CE06002C. DOI

McEwen J., Hayman J.-D., Yazaydin A.O. A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem. Phys. 2013;412:72–76. doi: 10.1016/j.chemphys.2012.12.012. DOI

Tanaka S., Fujita K., Miyake Y., Miyamoto M., Hasegawa Y., Makino T., Van Der Perre S., Remi J.C.S., Van Assche T., Baron G.V., et al. Adsorption and diffusion phenomena in crystal size engineered ZIF-8 MOF. J. Phys. Chem. C. 2015;119:28430–28439. doi: 10.1021/acs.jpcc.5b09520. DOI

Venna S.R., Zhu M., Li S., Carreon M.A. Knudsen diffusion through ZIF-8 membranes synthesized by secondary seeded growth. J. Porous Mater. 2013;21:235–240. doi: 10.1007/s10934-013-9768-1. DOI

Ibrahim A., Lin Y. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. J. Membr. Sci. 2018;550:238–245. doi: 10.1016/j.memsci.2017.12.081. DOI

Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI

Yang Y.-H., Bolling L., Priolo M.A., Grunlan J.C. Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater. 2012;25:503–508. doi: 10.1002/adma.201202951. PubMed DOI

Wang S., Xie Y., He G., Xin Q., Zhang J., Yang L., Li Y., Wu H., Zhang Y., Guiver M.D., et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angew. Chem. Int. Ed. 2017;56:14246–14251. doi: 10.1002/anie.201708048. PubMed DOI

Yang K., Dai Y., Ruan X., Zheng W., Yang X., Ding R., He G. Stretched ZIF-8@GO flake-like fillers via pre-Zn(II)-doping strategy to enhance CO2 permeation in mixed matrix membranes. J. Membr. Sci. 2020;601 doi: 10.1016/j.memsci.2020.117934. DOI

Chen B., Wan C., Kang X., Chen M., Zhang C., Bai Y., Dong L. Enhanced CO2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO. Sep. Purif. Technol. 2019;223:113–122. doi: 10.1016/j.seppur.2019.04.063. DOI

Anastasiou S., Bhoria N., Pokhrel J., Reddy K.S.K., Srinivasakannan C., Wang K., Karanikolos G.N. Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation. Mater. Chem. Phys. 2018;212:513–522. doi: 10.1016/j.matchemphys.2018.03.064. DOI

Sarfraz M., Ba-Shammakh M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. J. Membr. Sci. 2016;514:35–43. doi: 10.1016/j.memsci.2016.04.029. DOI

Kratochvil A.M., Koros W.J. Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance. Macromolecules. 2008;41:7920–7927. doi: 10.1021/ma801586f. DOI

Ahmad M.Z., Pelletier H., Martin-Gil V., Castro-Muñoz R., Fila V. Chemical crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for improved CO2/CH4 separation. Membrane. 2018;8:67. doi: 10.3390/membranes8030067. PubMed DOI PMC

Qiu W., Chen C.-C., Kincer M.R., Koros W.J. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation. Polymers. 2011;52:4073–4082. doi: 10.1016/j.polymer.2011.07.002. DOI

Ahmad M.Z., Navarro M., Lhotka M., Zornoza B., Téllez C., Fila V., Coronas J. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Sep. Purif. Technol. 2018;192:465–474. doi: 10.1016/j.seppur.2017.10.039. DOI

Castro-Muñoz R., Ahmad M.Z., Fíla V. Tuning of nano-based materials for embedding into low-permeability polyimides for a featured gas separation. Front. Chem. 2020;7:897. doi: 10.3389/fchem.2019.00897. PubMed DOI PMC

Ahmad M.Z., Peters T.A., Konnertz N.M., Visser T., Téllez C., Coronas J., Fila V., de Vos W.M., Benes N.E. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Sep. Purif. Technol. 2020;230:115858. doi: 10.1016/j.seppur.2019.115858. DOI

Majumdar S., Tokay B., Martin-Gil V., Campbell J., Castro-Muñoz R., Ahmad M.Z., Fila V. Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Sep. Purif. Technol. 2020;238:116411. doi: 10.1016/j.seppur.2019.116411. DOI

Kawakami H., Mikawa M., Nagaoka S. Gas transport properties in thermally cured aromatic polyimide membranes. J. Membr. Sci. 1996;118:223–230. doi: 10.1016/0376-7388(96)00115-9. DOI

Ahmad M.Z., Martin-Gil V., Supinkova T., Lambert P., Castro-Muñoz R., Hrabanek P., Kocirik M., Fila V. Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation. Sep. Purif. Technol. 2021;254:117582. doi: 10.1016/j.seppur.2020.117582. DOI

Castro-Muñoz R., Fíla V., Martin-Gil V., Muller C. Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures. Sep. Purif. Technol. 2019;210:553–562. doi: 10.1016/j.seppur.2018.08.046. DOI

Jankovský O., Marvan P., Nováček M., Luxa J., Mazánek V., Klímová K., Sedmidubský D., Sofer Z. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl. Mater. Today. 2016;4:45–53. doi: 10.1016/j.apmt.2016.06.001. DOI

Ahmad M.Z., Martin-Gil V., Perfilov V., Sysel P., Fila V. Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Sep. Purif. Technol. 2018;207:523–534. doi: 10.1016/j.seppur.2018.06.067. DOI

Martin-Gil V., Dujardin W., Sysel P., Koeckelberghs G., Vankelecom I., Fila V. Effect of benzoic acid content on aging of 6FDA copolyimides based thin film composite (TFC) membranes in CO2/CH4 environment. Sep. Purif. Technol. 2019;210:616–626. doi: 10.1016/j.seppur.2018.08.047. DOI

Hrabanek P., Zikanova A., Bernauer B., Fila V., Kočiřík M. Butane isomer separation with composite zeolite MFI mebranes. Desalination. 2009;245:437–443. doi: 10.1016/j.desal.2009.02.006. DOI

Pryde C.A. IR studies of polyimides. I. Effects of chemical and physical changes during cure. J. Polym. Sci. Part A Polym. Chem. 1989;27:711–724. doi: 10.1002/pola.1989.080270229. DOI

Qiu W., Xu L., Chen C.-C., Paul D.R., Koros W.J. Gas separation performance of 6FDA-based polyimides with different chemical structures. Polymers. 2013;54:6226–6235. doi: 10.1016/j.polymer.2013.09.007. DOI

Ahmad M.Z., Navarro M., Lhotka M., Zornoza B., Téllez C., de Vos W.M., Benes N.E., Konnertz N.M., Visser T., Semino R., et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. J. Membr. Sci. 2018;558:64–77. doi: 10.1016/j.memsci.2018.04.040. DOI

Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O’Keeffe M., Yaghi O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA. 2006;103:10186–10191. doi: 10.1073/pnas.0602439103. PubMed DOI PMC

Kaur H., Mohanta G.C., Gupta V., Kukkar D., Tyagi S. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J. Drug Deliv. Sci. Technol. 2017;41:106–112. doi: 10.1016/j.jddst.2017.07.004. DOI

Kim J., Koros W., Paul D. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranesPart Without crosslinking. J. Membr. Sci. 2006;282:21–31. doi: 10.1016/j.memsci.2006.05.004. DOI

Zornoza B., Tellez C., Coronas J., Gascon J., Kapteijn F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013;166:67–78. doi: 10.1016/j.micromeso.2012.03.012. DOI

Huang F., Rad A.T., Zheng W., Nieh M.-P., Cornelius C. Hybrid organic-inorganic 6FDA-6pFDA and multi-block 6FDA-DABA polyimide SiO2–TiO2 nanocomposites: Synthesis, FFV, FTIR, swelling, stability, and X-ray scattering. Polymers. 2017;108:105–120. doi: 10.1016/j.polymer.2016.11.046. DOI

Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V., Geim A.K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science. 2012;335:442–444. doi: 10.1126/science.1211694. PubMed DOI

Shin J.E., Lee S.K., Cho Y.H., Park H.B. Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation. J. Membr. Sci. 2019;572:300–308. doi: 10.1016/j.memsci.2018.11.025. DOI

Alberto M., Bhavsar R., Luque-Alled J.M., Vijayaraghavan A., Budd P.M., Gorgojo P. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. J. Membr. Sci. 2018;563:513–520. doi: 10.1016/j.memsci.2018.06.026. DOI

Chen M., Soyekwo F., Zhang Q., Hu C., Zhu A., Liu Q. Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J. Ind. Eng. Chem. 2018;63:296–302. doi: 10.1016/j.jiec.2018.02.030. DOI

Gonciaruk A., Althumayri K., Harrison W.J., Budd P.M., Siperstein F.R. PIM-1/graphene composite: A combined experimental and molecular simulation study. Microporous Mesoporous Mater. 2015;209:126–134. doi: 10.1016/j.micromeso.2014.07.007. DOI

Lively R.P., Dose M.E., Xu L., Vaughn J.T., Johnson J., Thompson J.A., Zhang K., Lydon M.E., Lee J.-S., Liu L., et al. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. J. Membr. Sci. 2012;423–424:302–313. doi: 10.1016/j.memsci.2012.08.026. DOI

Wind J.D., Paul D.R., Koros W.J. Natural gas permeation in polyimide membranes. J. Membr. Sci. 2004;228:227–236. doi: 10.1016/j.memsci.2003.10.011. DOI

Eguchi H., Kim D.J., Koros W.J. Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polymers. 2015;58:121–129. doi: 10.1016/j.polymer.2014.12.064. DOI

Song Q., Cao S., Pritchard R.H., Qiblawey H., Terentjev E.M., Cheetham A.K., Sivaniah E. Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. J. Mater. Chem. A. 2015;4:270–279. doi: 10.1039/C5TA09060A. DOI

Xiang S., Zhou W., Gallegos J.M., Liu Y., Chen B. Exceptionally high acetylene uptake in a microporous metal−organic framework with open metal sites. J. Am. Chem. Soc. 2009;131:12415–12419. doi: 10.1021/ja904782h. PubMed DOI

Zornoza B., Seoane B., Zamaro J.M., Téllez C., Coronas J. Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem. 2011;12:2781–2785. doi: 10.1002/cphc.201100583. PubMed DOI

Knebel A., Bavykina A., Datta S.J., Sundermann L., Garzon-Tovar L., Lebedev Y., Durini S., Ahmad R., Kozlov S.M., Shterk G., et al. Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 2020;19:1346–1353. doi: 10.1038/s41563-020-0764-y. PubMed DOI

Ahmad M.Z., Fuoco A. Porous liquids—Future for CO2 capture and separation? Curr. Res. Green Sustain. Chem. 2021;4:100070. doi: 10.1016/j.crgsc.2021.100070. DOI

Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI

Comesaña-Gándara B., Chen J., Bezzu C.G., Carta M., Rose I., Ferrari M.-C., Esposito E., Fuoco A., Jansen J.C., McKeown N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019;12:2733–2740. doi: 10.1039/C9EE01384A. DOI

Park S., Bang J., Choi J., Lee S.H., Lee J.-H., Lee J.S. 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations. Sep. Purif. Technol. 2014;136:286–295. doi: 10.1016/j.seppur.2014.09.016. DOI

Jusoh N., Yeong Y.F., Cheong W.L., Lau K.K., Shariff A.M. Facile fabrication of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 nanofillers for CO2 capture. J. Ind. Eng. Chem. 2016;44:164–173. doi: 10.1016/j.jiec.2016.08.030. DOI

Wijenayake S.N., Panapitiya N.P., Versteeg S.H., Nguyen C.N., Goel S., Balkus J.K.J., Musselman I.H., Ferraris J.P. Surface cross-linking of ZIF-8/polyimide Mixed Matrix Membranes (MMMs) for gas separation. Ind. Eng. Chem. Res. 2013;52:6991–7001. doi: 10.1021/ie400149e. DOI

Visser T., Masetto N., Wessling M. Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J. Membr. Sci. 2007;306:16–28. doi: 10.1016/j.memsci.2007.07.048. DOI

Vinh-Thang H., Kaliaguine S. Predictive models for Mixed-Matrix Membrane performance: A review. Chem. Rev. 2013;113:4980–5028. doi: 10.1021/cr3003888. PubMed DOI

Ogieglo W., Wessling M., Benes N.E. Polymer relaxations in thin films in the vicinity of a penetrant- or temperature-induced glass transition. Macromolecules. 2014;47:3654–3660. doi: 10.1021/ma5002707. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Removal of Ibuprofen from Water by Different Types Membranes

. 2021 Nov 24 ; 13 (23) : . [epub] 20211124

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...