Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO₂/CH₄ Separation

. 2018 Aug 20 ; 8 (3) : . [epub] 20180820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30127269

Chemical grafting or crosslinking of polyimide chains are known to be feasible approaches to increase polymer gas-pair selectivity and specific gas permeance. Different co-polyimides; 6FDA-ODA and 6FDA-ODA:DABA were synthesized using a two-step condensation method. Six different cross-linkers were used: (i) m-xylylene diamine; (ii) n-ethylamine; and (iii) n-butylamine, by reacting with 6FDA-ODA's imide groups in a solid state crosslinking; while (iv) ethylene glycol monosalicylate (EGmSal); (v) ethylene glycol anhydrous (EGAn); and (vi) thermally labile iron (III) acetylacetonate (FeAc), by reacting with DABA carboxyl groups in 6FDA-ODA:DABA. The gas separation performances were evaluated by feeding an equimolar CO₂ and CH₄ binary mixture, at a constant feed pressure of 5 bar, at 25 °C. Fractional free volume (FFV) was calculated using Bondi's contribution method by considering the membrane solid density property, measured by pycnometer. Other characterization techniques: thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) were performed accordingly. Depending on the type of amine, the CO₂/CH₄ selectivity of 6FDA-ODA increased between 25 to 100% at the expense of CO₂ permeance. We observed the similar trend for 6FDA-ODA:DABA EGmSal-crosslinked with 143% selectivity enhancement. FeAc-crosslinked membranes showed an increment in both selectivity and CO₂ permeability by 126% and 29% respectively. Interestingly, FeAc acted as both cross-linker which reduces chain mobility; consequently improving the selectivity and as micro-pore former; thus increases the gas permeability. The separation stability was further evaluated using 25⁻75% CO₂ in the feed with CH₄ as the remaining, between 2 and 8 bar at 25 °C. We also observed no CO₂-induced plasticization to the measured pressure with high CO₂ content (max. 75%).

Zobrazit více v PubMed

Vanherck K., Koeckelberghs G., Vankelecom I.F.J. Crosslinking polyimides for membrane applications: A review. Prog. Polym. Sci. 2013;38:874–896. doi: 10.1016/j.progpolymsci.2012.11.001. DOI

Chua M.L., Xiao Y.C., Chung T.S. Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification. Chem. Eng. Sci. 2013;104:1056–1064. doi: 10.1016/j.ces.2013.10.034. DOI

Castro-Muñoz R., Martin-Gil V., Ahmad M.Z., Fíla V. Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art. Chem. Eng. Commun. 2018;205:161–196. doi: 10.1080/00986445.2017.1378647. DOI

Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI

Wind J.D., Paul D.R., Koros W.J. Natural gas permeation in polyimide membranes. J. Membr. Sci. 2004;228:227–236. doi: 10.1016/j.memsci.2003.10.011. DOI

Xiao S., Huang R.Y.M., Feng X. Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: Functional groups and separation properties. Polymer. 2007;48:5355–5368. doi: 10.1016/j.polymer.2007.07.010. DOI

Le N.L., Wang Y., Chung T.S. Synthesis, cross-linking modifications of 6FDA-NDA/DABA polyimide membranes for ethanol dehydration via pervaporation. J. Membr. Sci. 2012;415–416:109–121. doi: 10.1016/j.memsci.2012.04.042. DOI

Ahmad M.Z., Navarro M., Lhotka M., Zornoza B., Téllez C., de Vos W.M., Benes N.E., Konnertz N.M., Visser T., Semino R., et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. J. Membr. Sci. 2018;558:64–77. doi: 10.1016/j.memsci.2018.04.040. DOI

Kim J.H., Koros W.J., Paul D.R. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes. Part 1. Without crosslinking. J. Membr. Sci. 2006;282:21–31. doi: 10.1016/j.memsci.2006.05.004. DOI

Visser T., Masetto N., Wessling M. Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J. Membr. Sci. 2007;306:16–28. doi: 10.1016/j.memsci.2007.07.048. DOI

Zhao H., Cao Y., Ding X., Zhou M., Yuan Q. Effects of cross-linkers with different molecular weights in cross-linked Matrimid 5218 and test temperature on gas transport properties. J. Membr. Sci. 2008;323:176–184. doi: 10.1016/j.memsci.2008.06.026. DOI

Eguchi H., Kim D.J., Koros W.J. Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polym. J. 2015;58:121–129. doi: 10.1016/j.polymer.2014.12.064. DOI

Low B.T., Xiao Y., Chung T.S., Liu Y. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules. 2008;41:1297–1309. doi: 10.1021/ma702360p. DOI

Staudt-bickel C., Koros W.J. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J. Membr. Sci. 1999;155:145–154. doi: 10.1016/S0376-7388(98)00306-8. DOI

Hess S., Staudt C. Variation of esterfication conditions to optimize solid-state crosslinking reaction of DABA-containing copolyimide membranes for gas separations. Desalination. 2007;217:8–16. doi: 10.1016/j.desal.2007.01.011. DOI

Wind J.D., Staudt-Bickel C., Paul D.R., Koros W.J. Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules. 2003;36:1882–1888. doi: 10.1021/ma025938m. DOI

Chua M.-L., Xiao Y., Chung T. Using iron (III) acetylacetonate as both a cross-linker and micropore former to develop polyimide membranes with enhanced gas separation performance. Sep. Purif. Technol. 2014;133:120–128. doi: 10.1016/j.seppur.2014.06.039. DOI

Qiu W., Chen C.C., Xu L., Cui L., Paul D.R., Koros W.J. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules. 2011;44:6046–6056. doi: 10.1021/ma201033j. DOI

Cao C., Wang R., Chung T.S., Liu Y. Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation. J. Membr. Sci. 2002;209:309–319. doi: 10.1016/S0376-7388(02)00359-9. DOI

Horn N.R. A critical review of free volume and occupied volume calculation methods. J. Membr. Sci. 2016;518:289–294. doi: 10.1016/j.memsci.2016.07.014. DOI

Hrabánek P., Zikánová A., Bernauer B., Fíla V., Kočiřík M. Butane isomer separation with composite zeolite MFI mebranes. Desalination. 2009;245:437–443. doi: 10.1016/j.desal.2009.02.006. DOI

Ahmad M.Z., Martin-gil V., Perfilov V., Sysel P., Fila V. Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Sep. Purif. Technol. 2018;207:523–534. doi: 10.1016/j.seppur.2018.06.067. DOI

Zornoza B., Tellez C., Coronas J., Gascon J., Kapteijn F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013;166:67–78. doi: 10.1016/j.micromeso.2012.03.012. DOI

Ahmad M.Z., Navarro M., Lhotka M., Zornoza B., Téllez C., Fila V., Coronas J. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Sep. Purif. Technol. 2018;192:465–474. doi: 10.1016/j.seppur.2017.10.039. DOI

Nik O.G., Chen X.Y., Kaliaguine S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2012;413–414:48–61. doi: 10.1016/j.memsci.2012.04.003. DOI

Park J., Paul D.R. Correlation and Prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J. Membr. Sci. 1997;125:23–39. doi: 10.1016/S0376-7388(96)00061-0. DOI

Lin R., Ge L., Hou L., Strounina E., Rudolph V., Zhu Z. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. ACS Appl. Mater. Interfaces. 2014;6:5609–5618. doi: 10.1021/am500081e. PubMed DOI

Cacho-Bailo F., Caro G., Etxeberria M., Karvan O., Tellez C., Coronas J. MOF-polymer enhanced compatibility: Post-annealed zeolite imidazolate framework membranes inside polyimide hollow fibers. RSC Adv. 2016;6:5881–5889. doi: 10.1039/C5RA26076K. DOI

Albo J., Hagiwara H., Yanagishita H., Ito K., Tsuru T. Structural characterization of thin-film polyamide reverse osmosis membranes. Ind. Eng. Chem. Res. 2014;53:1442–1451. doi: 10.1021/ie403411w. DOI

Albo J., Wang J., Tsuru T. Gas transport properties of interfacially polymerized polyamide composite membranes under different pre-treatments and temperatures. J. Membr. Sci. 2014;449:109–118. doi: 10.1016/j.memsci.2013.08.026. DOI

Hashemifard S.A., Ismail A.F., Matsuura T. Prediction of gas permeability in mixed matrix membranes using theoretical models. J. Membr. Sci. 2010;347:53–61. doi: 10.1016/j.memsci.2009.10.005. DOI

Cmarik G.E., Kim M., Cohen S.M., Walton K.S. Tuning the adsorption properties of uio-66 via ligand functionalization. Langmuir. 2012;28:15606–15613. doi: 10.1021/la3035352. PubMed DOI

Hong D.H., Suh M.P. Enhancing CO2 separation ability of a metal-organic framework by post-synthetic ligand exchange with flexible aliphatic carboxylates. Chem. Eur. J. 2014;20:426–434. doi: 10.1002/chem.201303801. PubMed DOI

Chua M.L., Xiao Y.C., Chung T.S. Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes. J. Membr. Sci. 2012;415–416:375–382. doi: 10.1016/j.memsci.2012.05.022. DOI

Bachman J.E., Smith Z.P., Li T., Xu T., Long J.R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 2016;15:845–849. doi: 10.1038/nmat4621. PubMed DOI

Visser T., Koops G.H., Wessling M. On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes. J. Membr. Sci. 2005;252:265–277. doi: 10.1016/j.memsci.2004.12.015. DOI

Shahid S., Nijmeijer K. Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures. J. Membr. Sci. 2014;470:166–177. doi: 10.1016/j.memsci.2014.07.034. DOI

Stannett V. The transport of gases in synthetic polymeric membranes—An historic perspective. J. Membr. Sci. 1978;3:97–115. doi: 10.1016/S0376-7388(00)83016-1. DOI

Shahid S., Nijmeijer K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe(BTC) J. Membr. Sci. 2014;459:33–44. doi: 10.1016/j.memsci.2014.02.009. DOI

Cakal U., Yilmaz L., Kalipcilar H. Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes. J. Membr. Sci. 2012;417–418:45–51. doi: 10.1016/j.memsci.2012.06.011. DOI

Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer. 2013;54:4729–4761. doi: 10.1016/j.polymer.2013.05.075. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...