Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32039141
PubMed Central
PMC6985281
DOI
10.3389/fchem.2019.00897
Knihovny.cz E-zdroje
- Klíčová slova
- chemical modification, fillers, gas separation, membrane preparation, mixed matrix membranes (MMMs), polyimides,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Several concepts of membranes have emerged, aiming at the enhancement of separation performance, as well as some other physicochemical properties, of the existing membrane materials. One of these concepts is the well-known mixed matrix membranes (MMMs), which combine the features of inorganic (e.g., zeolites, metal-organic frameworks, graphene, and carbon-based materials) and polymeric (e.g., polyimides, polymers of intrinsic microporosity, polysulfone, and cellulose acetate) materials. To date, it is likely that such a concept has been widely explored and developed toward low-permeability polyimides for gas separation, such as oxydianiline (ODA), tetracarboxylic dianhydride-diaminophenylindane (BTDA-DAPI), m-phenylenediamine (m-PDA), and hydroxybenzoic acid (HBA). When dealing with the gas separation performance of polyimide-based MMMs, these membranes tend to display some deficiency according to the poor polyimide-filler compatibility, which has promoted the tuning of chemical properties of those filling materials. This approach has indeed enhanced the polymer-filler interfaces, providing synergic MMMs with superior gas separation performance. Herein, the goal of this review paper is to give a critical overview of the current insights in fabricating MMMs based on chemically modified filling nanomaterials and low-permeability polyimides for selective gas separation. Special interest has been paid to the chemical modification protocols of the fillers (including good filler dispersion) and thus the relevant experimental results provoked by such approaches. Moreover, some principles, as well as the main drawbacks, occurring during the MMM preparation are also given.
Organic Materials Innovation Center University of Manchester Manchester United Kingdom
Tecnologico de Monterrey Toluca de Lerdo Mexico
University of Chemistry and Technology Prague Prague Czechia
Zobrazit více v PubMed
Adams R., Carson C., Ward J., Tannenbaum R., Koros W. (2010). Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater. 131, 13–20. 10.1016/j.micromeso.2009.11.035 DOI
Ahmad M. Z., Martin-Gil V., Perfilov V., Sysel P., Fila V. (2018a). Investigation of a new co-polyimide. 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Separat. Purif. Technol. 207, 523–534. 10.1016/j.seppur.2018.06.067 DOI
Ahmad M. Z., Pelletier H., Martin-Gil V., Castro-Muñoz R., Fila V. (2018b). Chemical crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for improved CO2/CH4 separation. Membranes 8, 1–16. 10.3390/membranes8030067 PubMed DOI PMC
Ahmad M. Z., Peters T. A., Konnertz N. M., Visser T., Téllez C., Coronas J., et al. (2020). High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Separat. Purif. Technol. 230, 115858 10.1016/j.seppur.2019.115858 DOI
Alaslai N., Ghanem B., Alghunaimi F., Litwiller E., Pinnau I. (2016). Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J. Memb. Sci. 505, 100–107. 10.1016/j.memsci.2015.12.053 DOI
Anjum M. W., Vermoortele F., Khan A. L., Bueken B., De Vos D. E., Vankelecom I. F. J. (2015). Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Appl. Mater. Interfaces 7, 25193–25201. 10.1021/acsami.5b08964 PubMed DOI
Aroon M. A., Ismail A. F., Matsuura T., Montazer-Rahmati M. M. (2010). Performance studies of mixed matrix membranes for gas separation: a review. Separat. Purif. Technol. 75, 229–242. 10.1016/j.seppur.2010.08.023 DOI
Bae T. H., Liu J., Thompson J. A., Koros W. J., Jones C. W., Nair S. (2011). Solvothermal deposition and characterization of magnesium hydroxide nanostructures on zeolite crystals. Microporous Mesoporous Mater. 139, 120–129. 10.1016/j.micromeso.2010.10.028 DOI
Baker R. W. (2012). Membrane Technology and Applications. (Chennai: John Wiley & Sons, Ltd; ). 10.1002/9781118359686 DOI
Bastani D., Esmaeili N., Asadollahi M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J. Indus. Eng. Chem. 19, 375–393. 10.1016/j.jiec.2012.09.019 DOI
Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., et al. (2004). Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 10, 2300–2301. 10.1039/B407246D PubMed DOI
Budd P. M., Msayib K. J., Tattershall C. E., Ghanem B. S., Reynolds K. J., McKeown N. B., et al. (2005). Gas separation membranes from polymers of intrinsic microporosity. J. Memb. Sci. 251, 263–269. 10.1016/j.memsci.2005.01.009 DOI
Castarlenas S., Téllez C., Coronas J. (2017). Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J. Memb. Sci. 526, 205–211. 10.1016/j.memsci.2016.12.041 DOI
Castro-Muñoz R, Galiano F., Fíla V., Drioli E., Figoli A. (2018a). Matrimid ® 5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation. Separat. Purif. Technol. 199, 27–36. 10.1016/j.seppur.2018.01.045 DOI
Castro-Muñoz R., Fíla V. (2018). Progress on incorporating zeolites in matrimid® 5218 mixed matrix membranes towards gas separation. Membranes 8:30. 10.3390/membranes8020030 PubMed DOI PMC
Castro-Muñoz R., Fila V. (2019). Effect of the ZIF-8 distribution in mixed-matrix membranes based on Matrimid® 5218-PEG on CO2 separation. Chem. Eng. Technol. 42, 744–752. 10.1002/ceat.201800499 DOI
Castro-Muñoz R., Fíla V., Dung C. T. (2017). Mixed matrix membranes based on PIMs for gas permeation: principles, synthesis, and current status. Chem. Eng. Commun. 204, 295–309. 10.1080/00986445.2016.1273832 DOI
Castro-Muñoz R., Fíla V., Martin-Gil V., Muller C. (2019a). Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures. Separat. Purif. Technol. 210,553–562. 10.1016/j.seppur.2018.08.046 DOI
Castro-Muñoz R., Galiano F., de la Iglesia Ó., Fíla V., Tellez C., Coronas J., et al. (2019b). Graphene oxide – Filled polyimide membranes in pervaporative separation of azeotropic methanol – MTBE mixtures. Separat. Purif. Technol. 224, 265–272. 10.1016/j.seppur.2019.05.034 DOI
Castro-Muñoz R., Galiano F., Fíla V., Drioli E., Figoli A. (2018b). Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Rev. Chem. Eng. 35, 565–590. 10.1515/revce-2017-0115 DOI
Castro-Muñoz R., Iglesia Ó. D., La Fíla, V., Téllez C., Coronas J. (2018c). Pervaporation-assisted esterification reactions by means of mixed matrix membranes. Indus. Eng. Chem. Res. 57, 15998–16011. 10.1021/acs.iecr.8b01564 DOI
Castro-Muñoz R., Martin-Gil V., Ahmad M. Z., Fíla V. (2018d). Matrimid® 5218 in preparation of membranes for gas separation: current state-of-the-art. Chem. Eng. Commun. 205, 161–196. 10.1080/00986445.2017.1378647 DOI
Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., et al. . (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851. 10.1021/ja8057953 PubMed DOI
Chen D., Zhu H., Liu T. (2010). In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Interfaces 2, 3702–3708. 10.1021/am1008437 PubMed DOI
Chen X. Y., Hoang V. T., Rodrigue D., Kaliaguine S. (2013). Optimization of continuous phase in amino-functionalized metal-organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation. RSC Adv. 3, 24266–24279. 10.1039/c3ra43486a DOI
Chen X. Y., Nik O. G., Rodrigue D., Kaliaguine S. (2012a). Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO 2/CH 4 separation. Polymer 53, 3269–3280. 10.1016/j.polymer.2012.03.017 DOI
Chen X. Y., Vinh-thang H., Rodrigue D., Kaliaguine S. (2012b). Amine-functionalized MIL-53 metal–organic Framework in polyimide mixed matrix membranes for CO2-CH4 separation. Indus. Eng. Chem. Res. 51, 6895–6906. 10.1021/ie3004336 DOI
Cheng P. I., Hong P., Da L., ee K. R., Lai J. Y., Tsai Y. L. (2018). High permselectivity of networked PVA/GA/CS-Ag+-membrane for dehydration of Isopropanol. J. Memb. Sci. 564, 926–934. 10.1016/j.memsci.2018.06.019 DOI
Cohen S. M. (2010). Modifying MOFs: new chemistry, new materials. Chem. Sci. 1, 32–36. 10.1039/c0sc00127a DOI
Corma A., Navarro M. T., Pariente J. P. (1994). Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J. Chem. Soc. Chem. Commun. 2, 147–148. 10.1039/c39940000147 DOI
Coronas J., Santamaria J. (1999). Separations using zeolite membranes. Separat. Purif. Methods 28, 127–177. 10.1080/03602549909351646 DOI
Dai Z., Aboukeila H., Ansaloni L., Deng J., Giacinti Baschetti M., Deng L. (2019). Nafion/PEG hybrid membrane for CO2 separation: effect of PEG on membrane micro-structure and performance. Separat. Purif. Technol. 214, 67–77. 10.1016/j.seppur.2018.03.062 DOI
Denny M. S., Moreton J. C., Benz L., Cohen S. M. (2016). Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 1–17. 10.1038/natrevmats.2016.78 DOI
Ebadi Amooghin A., Mashhadikhan S., Sanaeepur H., Moghadassi A., Matsuura T., Ramakrishna S. (2019). Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO 2 separation. Prog. Mater. Sci. 102, 222–295. 10.1016/j.pmatsci.2018.11.002 DOI
Ebadi Amooghin A., Omidkhah M., reza, Kargari A. (2015). Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix. RSC Adv. 5, 8552–8565. 10.1039/C4RA14903C DOI
Ebadi Amooghin A., Omidkhah M., Sanaeepur H., Kargari A. (2016). Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2/CH4 separation. J. Ener. Chem. 25, 450–462. 10.1016/j.jechem.2016.02.004 DOI
Ebadi Amooghin A., Sanaeepur H., Omidkhah M., reza, Kargari A. (2018). “Ship-in-a-bottle”, a new synthesis strategy for preparing novel hybrid host-guest nano-composites for highly selective membrane gas separation. J. Mater. Chem. A 6, 1751–1771. 10.1039/C7TA08081F DOI
Echaide-Gorriz C., Navarro M., Tellez C., Coronas J. (2017). Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration. Dalton Transact. 46, 6244–6252. 10.1039/C7DT00197E PubMed DOI
Fang Q., Zhuang Z., Gu S., Kaspar R., Zheng J., Wang J., et al. . (2014). Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5:4503. 10.1038/ncomms5503 PubMed DOI
Favvas E. P., Katsaros F. K., Papageorgiou S. K., Sapalidis A. A., Mitropoulos A. C. (2017). A review of the latest development of polyimide based membranes for CO2 separations. React. Funct. Polymers 120, 104–130. 10.1016/j.reactfunctpolym.2017.09.002 DOI
Gao J., He Y., Gong X. (2018). Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber. Results Phys. 9, 493–499. 10.1016/j.rinp.2018.02.074 DOI
Gin D. L., Noble R. D. (2011). Designing the next generation of chemical separation membranes. Science 332, 674–676. 10.1126/science.1203771 PubMed DOI
Gleason K. L., Smith Z. P., Liu Q., Paul D. R., Freeman B. D. (2015). Pure- and mixed-gas permeation of CO2 and CH4 in thermally rearranged polymers based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). J. Memb. Sci. 475, 204–214. 10.1016/j.memsci.2014.10.014 DOI
Gong H., Lee S. S., Bae T. H. (2017). Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4separation. Microporous Mesoporous Mater. 237, 82–89. 10.1016/j.micromeso.2016.09.017 DOI
Guiver M. D., Robertson G. P., Dai Y., Bilodeau F., Kang Y. S., Lee K. J., et al. (2002). Structural characterization and gas-transport properties of brominated Matrimid polyimide. J. Polymer Sci. A Polymer Chem. 40, 4193–4204. 10.1002/pola.10516 DOI
Heck R., Qahtani M. S., Yahaya G. O., Tanis I., Brown D., Bahamdan A. A., et al. (2017). Block copolyimide membranes for pure- and mixed-gas separation. Separat. Purif. Technol. 173, 183–192. 10.1016/j.seppur.2016.09.024 DOI
Hirsch A. (2002). Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859. PubMed
Huang L., Wang Z., Sun J., Miao L., Li Q., Yan Y., et al. (2000). Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. J. Am. Chem. Soc. 14, 3530–3531. 10.1021/ja994240u DOI
Iyer P., Iyer G., Coleman M. (2010). Gas transport properties of polyimide-POSS nanocomposites. J. Memb. Sci. 358, 26–32. 10.1016/j.memsci.2010.04.023 DOI
Jia M.-D., Peinemann K.-V., Behling R.-D. (1993). Ceramic zeolite composite membranes. J. Memb. Sci. 82, 15–26. 10.1016/0376-7388(93)85089-F DOI
Karlsson A., Stöcker M., Schmidt R. (1999). Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater. 27, 181–192. 10.1016/S1387-1811(98)00252-2 DOI
Kertik A., Khan A., Vankelecom I. F. J. (2016). Mixed matrix membranes prepared from non-dried MOFs for CO2/CH4 separations. RSC Adv. 6, 114505–114512. 10.1039/C6RA23013J DOI
Khan A. L., Klaysom C., Gahlaut A., Khan A. U., Vankelecom I. F. J. (2013). Mixed matrix membranes comprising of Matrimid and -SO3H functionalized mesoporous MCM-41 for gas separation. J. Memb. Sci. 447, 73–79. 10.1016/j.memsci.2013.07.011 DOI
Kiliç A., Atalay-Oral Ç., Sirkecioglu A., Tantekin-Ersolmaz S. B., Ahunbay M. G. (2015). Sod-ZMOF/Matrimid® mixed matrix membranes for CO2 separation. J. Memb. Sci. 489, 81–89. 10.1016/j.memsci.2015.04.003 DOI
Kim S., Pechar T. W., Marand E. (2006). Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192, 330–339. 10.1016/j.desal.2005.03.098 DOI
Klaysom C., Shahid S. (2019). “Zeolite-based mixed matrix membranes for hazardous gas removal,” in Advanced Nanomaterials for Membrane Synthesis and its Applications, 1st Edn, eds Lau W., Ismail F., Ahmed A. (Oxford: Elsevier B.V.), 127–157. 10.1016/B978-0-12-814503-6.00006-9 DOI
Knebel A., Friebe S., Bigall N. C., Benzaqui M., Serre C., Caro J. (2016). Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane. ACS Appl. Mater. Interfaces 8, 7536–7544. 10.1021/acsami.5b12541 PubMed DOI
Kosinov N., Gascon J., Kapteijn F., Hensen E. J. M. (2016). Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 499, 65–79. 10.1016/j.memsci.2015.10.049 DOI
Li Y., Chung T. S., Cao C., Kulprathipanja S. (2005a). The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 260, 45–55. 10.1016/j.memsci.2005.03.019 DOI
Li Y., Chung T. S., Huang Z., Kulprathipanja S. (2006). Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation. J. Membr. Sci. 277, 28–37. 10.1016/j.memsci.2005.10.008 DOI
Li Y., Wang K., Wei J., Gu Z., Wang Z., Luo J., Wu D. (2005b). Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 43, 31–35. 10.1016/j.carbon.2004.08.017 DOI
Liu S. L., Wang R., Chung T. S., Chng M. L., Liu Y., Vora R. H. (2002). Effect of diamine composition on the gas transport properties in 6FDA-durene/3,3′-diaminodiphenyl sulfone copolyimides. J. Membr. Sci. 202, 165–176. 10.1016/S0376-7388(01)00754-2 DOI
Liu Y., Peng D., He G., Wang S., Li Y., Wu H., et al. . (2014). Enhanced CO2 permeability of membranes by incorporating polyzwitterion@cnt composite particles into polyimide matrix. ACS Appl. Mater. Interfaces 6, 13051–13060. 10.1021/am502936x PubMed DOI
Loloei M., Omidkhah M., Moghadassi A., Amooghin A. E. (2015). Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. Int. J. Greenhouse Gas Control 39, 225–235. 10.1016/j.ijggc.2015.04.016 DOI
Low J. J., Benin A. I., Jakubczak P., Abrahamian J. F., Faheem S. A., Willis R. R. (2009). Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834–15842. 10.1021/ja9061344 PubMed DOI
Lu Y., Hao J., Xiao G., Chen L., Wang T., Hu Z. (2017). Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films. Appl. Surf. Sci. 422, 710–719. 10.1016/j.apsusc.2017.06.087 DOI
Luo S., Stevens K. A., Park J. S., Moon J. D., Liu Q., Freeman B. D., et al. . (2016). Highly CO2-selective gas separation membranes based on segmented copolymers of poly(ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments. ACS Appl. Mater. Interfaces 8, 2306–2317. 10.1021/acsami.5b11355 PubMed DOI
Mahajan R., Burns R., Schaeffer M., Koros W. J. (2002). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci. 86, 881–890. 10.1002/app.10998 DOI
Martin-Gil V., Lopez A., Hrabanek P., Mallada R., Vankelecom I. F. J., Fila V. (2017). Study of different titanosilicate (TS-1 and ETS-10) as fillers for Mixed Matrix Membranes for CO2/CH4 gas separation applications. J. Membr. Sci. 523, 24–35. 10.1016/j.memsci.2016.09.041 DOI
McKeen L. (2012). “Polyimides,” in The Effect of Sterilization on Plastics and Elastomers, 3rd Edn, ed McKeen L. (Oxford, UK: Elsevier B.V.) 169–182. 10.1016/B978-1-4557-2598-4.00006-X DOI
Moore T. T., Koros W. J. (2005). Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct. 739, 87–98. 10.1016/j.molstruc.2004.05.043 DOI
Mundstock A., Friebe S., Caro J. (2017). On comparing permeation through Matrimid®-based mixed matrix and multilayer sandwich FAU membranes: H2/CO2 separation, support functionalization and ion exchange. Int. J. Hydrog. Energy 42, 279–288. 10.1016/j.ijhydene.2016.10.161 DOI
Nik O. G., Chen X. Y., Kaliaguine S. (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 413–414, 48–61. 10.1016/j.memsci.2012.04.003 DOI
Ordoñez M. J. C., Balkus K. J., Ferraris J. P., Musselman I. H. (2010). Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 361, 28–37. 10.1016/j.memsci.2010.06.017 DOI
Rezakazemi M., Ebadi Amooghin A., Montazer-Rahmati M. M., Ismail A. F., Matsuura T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 39, 817–861. 10.1016/j.progpolymsci.2014.01.003 DOI
Robeson L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185. 10.1016/0376-7388(91)80060-J DOI
Robeson L. M. (2008). The upper bound revisited. J. Membr. Sci. 320, 390–400. 10.1016/j.memsci.2008.04.030 DOI
Rodenas T., Van Dalen M., García-Pérez E., Serra-Crespo P., Zornoza B., Kapteijn F., et al. (2014a). Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 24, 249–256. 10.1002/adfm.201203462 DOI
Rodenas T., Van Dalen M., Serra-Crespo P., Kapteijn F., Gascon J. (2014b). Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance. Micropor. Mesopor. Mater. 192, 35–42. 10.1016/j.micromeso.2013.08.049 DOI
Rosyadah Ahmad N. N., Mukhtar H., Mohshim D. F., Nasir R., Man Z. (2016). Surface modification in inorganic filler of mixed matrix membrane for enhancing the gas separation performance. Rev. Chem. Eng. 32, 181–200. 10.1515/revce-2015-0031 DOI
Rowsell J. L. C., Yaghi O. M. (2004). Metal-organic frameworks: a new class of porous materials. Micropor. Mesopor. Mater. 73, 3–14. 10.1016/j.micromeso.2004.03.034 DOI
Russo F., Castro-Muñoz R., Galiano F., Figoli A. (2019). Unprecedented preparation of porous Matrimid® 5218 membranes. J. Membr. Sci. 585, 166–174. 10.1016/j.memsci.2019.05.036 DOI
Sabetghadam A., Seoane B., Keskin D., Duim N., Rodenas T., Shahid S., et al. . (2016). Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance. Adv. Funct. Mater. 26, 3154–3163. 10.1002/adfm.201505352 PubMed DOI PMC
Sahoo N. G., Rana S., Cho J. W., Li L., Chan S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progr. Polym. Sci. 35, 837–867. 10.1016/j.progpolymsci.2010.03.002 DOI
Sanaeepur H., Ebadi Amooghin A., Bandehali S., Moghadassi A., Matsuura T., Van der Bruggen B. (2019). Polyimides in membrane gas separation: monomer's molecular design and structural engineering. Prog. Polym. Sci. 91, 80–125. 10.1016/j.progpolymsci.2019.02.001 DOI
Sánchez-Laínez J., Zornoza B., Friebe S., Caro J., Cao S., Sabetghadam A., et al. (2016). Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J. Membr. Sci. 515, 45–53. 10.1016/j.memsci.2016.05.039 DOI
Sánchez-Laínez J., Zornoza B., Mayoral Á., Berenguer-Murcia Á., Cazorla-Amorós D., Téllez C., et al. (2015). Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J. Mater. Chem. A 3, 6549–6556. 10.1039/C4TA06820C DOI
Sanchez-Lainez J., Zornoza B., Orsi A., Lozinska M., Dawson D., Ashbrook S., et al. (2018). Synthesis of ZIF-93/11 hybrid nanoparticles via post-synthetic modification of ZIF-93 and their use for H2/CO2 separation. Chem. A Eur. J. 24, 11211–11219. 10.1002/chem.201802124 PubMed DOI
Sanders D. F., Smith Z. P., Guo R., Robeson L. M., McGrath J. E., Paul D. R., et al. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761. 10.1016/j.polymer.2013.05.075 DOI
Seoane B., Coronas J., Gascon I., Benavides M. E., Karvan O., Caro J., et al. . (2015). Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454. 10.1039/C4CS00437J PubMed DOI PMC
Seoane B., Téllez C., Coronas J., Staudt C. (2013). NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Sep. Purif. Technol. 111, 72–81. 10.1016/j.seppur.2013.03.034 DOI
Shan M., Seoane B., Rozhko E., Dikhtiarenko A., Clet G., Kapteijn F., et al. (2016). Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 Separation. Chem. A Eur. J. 22, 14467–14470. 10.1002/chem.201602999 PubMed DOI
Smaihi M., Gavilan E., Durand J. O., Vatchev V. (2004). Colloidal functionalized calcined zeolite nanocrystals. J. Mater. Chem. 14, 1347–1351. 10.1039/B400521J DOI
Tahir Z., Ilyas A., Li X., Bilad M. R., Vankelecom I. F. J., Khan A. L. (2018). Tuning the gas separation performance of fluorinated and sulfonated PEEK membranes by incorporation of zeolite 4A. J. Appl. Polym. Sci. 135:45952 10.1002/app.45952 DOI
Tanabe K. K., Cohen S. M. (2011). Postsynthetic modification of metal-organic frameworks - A progress report. Chem. Soc. Rev. 40, 498–519. 10.1039/C0CS00031K PubMed DOI
Thompson J. A., Chapman K. W., Koros W. J., Jones C. W., Nair S. (2012). Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Micropor. Mesopor. Mater. 158, 292–299. 10.1016/j.micromeso.2012.03.052 DOI
Tien-Binh N., Vinh-Thang H., Chen X., Rodrigue D., Kaliaguine S. (2015). Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation. J. Mater. Chem. A 3, 15202–15213. 10.1039/C5TA01597A DOI
Ursino C., Castro-Muñoz R., Drioli E., Gzara L., Albeirutty M. H., Figoli A. (2018). Progress of nanocomposite membranes for water treatment. Membranes 8:E18. 10.3390/membranes8020018 PubMed DOI PMC
Valero M., Zornoza B., Téllez C., Coronas J. (2014). Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Micropor. Mesopor. Mater. 192, 23–28. 10.1016/j.micromeso.2013.09.018 DOI
Vinoba M., Bhagiyalakshmi M., Alqaheem Y., Alomair A. A., Pérez A., Rana M. S. (2017). Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep. Purif. Technol. 188, 431–450. 10.1016/j.seppur.2017.07.051 DOI
Visser T., Masetto N., Wessling M. (2007). Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J. Membr. Sci. 306, 16–28. 10.1016/j.memsci.2007.07.048 DOI
Wang R., Chan S. S., Liu Y., Chung T. S. (2002). Gas transport properties of poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes. J. Membr. Sci. 199, 191–202. 10.1016/S0376-7388(01)00697-4 DOI
Wei P., Qu X., Dong H., Zhang L., Chen H., Gao C. (2013). Silane-modified NaA zeolite/PAAS hybrid pervaporation membranes for the dehydration of ethanol. J. Appl. Polym. Sci. 128, 3390–3397. 10.1002/app.38555 DOI
Wu J., Lin W., Wang Z., Chen S., Chang Y. (2012). Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28, 7436–7441. 10.1021/la300394c PubMed DOI
Xiao S., Huang R. Y. M., Feng X. (2007). Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties. Polymer 48, 5355–5368. 10.1016/j.polymer.2007.07.010 DOI
Xu L., Rungta M., Brayden M. K., Martinez M. V., Stears B. A., Barbay G. A., et al. (2012). Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Membr. Sci. 423–424, 314–323. 10.1016/j.memsci.2012.08.028 DOI
Yang Q., Jobic H., Salles F., Kolokolov D., Guillerm V., Serre C., et al. . (2011). Probing the dynamics of CO2 and CH4 within the porous zirconium terephthalate UiO-66(Zr): a synergic combination of neutron scattering measurements and molecular simulations. Chem. A Eur J. 17, 8882–8889. 10.1002/chem.201003596 PubMed DOI
Zamidi Ahmad M., Navarro M., Lhotka M., Zornoza B., Téllez C., Fila V., et al. (2018). Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Sep. Purif. Technol. 192(Suppl. C), 465–474. 10.1016/j.seppur.2017.10.039 DOI
Zhang F., Zou X., Gao X., Fan S., Sun F., Ren H., et al. (2012). Hydrogen selective NH 2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 22, 3583–3590. 10.1002/adfm.201200084 DOI
Zhang P., Gong J., Zeng G., Deng C., Yang H., Liu H. (2017). Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 322, 657–666. 10.1016/j.cej.2017.04.068 DOI
Zhang T., Xing G., Chen W., Chen L. (2020). Porous organic polymers: a promising platform for efficient photocatalysis. Mater. Chem. Front. 10.1039/C9QM00633H. [Epub ahead of print]. DOI