Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation

. 2019 ; 7 () : 897. [epub] 20200121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32039141

Several concepts of membranes have emerged, aiming at the enhancement of separation performance, as well as some other physicochemical properties, of the existing membrane materials. One of these concepts is the well-known mixed matrix membranes (MMMs), which combine the features of inorganic (e.g., zeolites, metal-organic frameworks, graphene, and carbon-based materials) and polymeric (e.g., polyimides, polymers of intrinsic microporosity, polysulfone, and cellulose acetate) materials. To date, it is likely that such a concept has been widely explored and developed toward low-permeability polyimides for gas separation, such as oxydianiline (ODA), tetracarboxylic dianhydride-diaminophenylindane (BTDA-DAPI), m-phenylenediamine (m-PDA), and hydroxybenzoic acid (HBA). When dealing with the gas separation performance of polyimide-based MMMs, these membranes tend to display some deficiency according to the poor polyimide-filler compatibility, which has promoted the tuning of chemical properties of those filling materials. This approach has indeed enhanced the polymer-filler interfaces, providing synergic MMMs with superior gas separation performance. Herein, the goal of this review paper is to give a critical overview of the current insights in fabricating MMMs based on chemically modified filling nanomaterials and low-permeability polyimides for selective gas separation. Special interest has been paid to the chemical modification protocols of the fillers (including good filler dispersion) and thus the relevant experimental results provoked by such approaches. Moreover, some principles, as well as the main drawbacks, occurring during the MMM preparation are also given.

Zobrazit více v PubMed

Adams R., Carson C., Ward J., Tannenbaum R., Koros W. (2010). Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater. 131, 13–20. 10.1016/j.micromeso.2009.11.035 DOI

Ahmad M. Z., Martin-Gil V., Perfilov V., Sysel P., Fila V. (2018a). Investigation of a new co-polyimide. 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Separat. Purif. Technol. 207, 523–534. 10.1016/j.seppur.2018.06.067 DOI

Ahmad M. Z., Pelletier H., Martin-Gil V., Castro-Muñoz R., Fila V. (2018b). Chemical crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for improved CO2/CH4 separation. Membranes 8, 1–16. 10.3390/membranes8030067 PubMed DOI PMC

Ahmad M. Z., Peters T. A., Konnertz N. M., Visser T., Téllez C., Coronas J., et al. (2020). High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Separat. Purif. Technol. 230, 115858 10.1016/j.seppur.2019.115858 DOI

Alaslai N., Ghanem B., Alghunaimi F., Litwiller E., Pinnau I. (2016). Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J. Memb. Sci. 505, 100–107. 10.1016/j.memsci.2015.12.053 DOI

Anjum M. W., Vermoortele F., Khan A. L., Bueken B., De Vos D. E., Vankelecom I. F. J. (2015). Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Appl. Mater. Interfaces 7, 25193–25201. 10.1021/acsami.5b08964 PubMed DOI

Aroon M. A., Ismail A. F., Matsuura T., Montazer-Rahmati M. M. (2010). Performance studies of mixed matrix membranes for gas separation: a review. Separat. Purif. Technol. 75, 229–242. 10.1016/j.seppur.2010.08.023 DOI

Bae T. H., Liu J., Thompson J. A., Koros W. J., Jones C. W., Nair S. (2011). Solvothermal deposition and characterization of magnesium hydroxide nanostructures on zeolite crystals. Microporous Mesoporous Mater. 139, 120–129. 10.1016/j.micromeso.2010.10.028 DOI

Baker R. W. (2012). Membrane Technology and Applications. (Chennai: John Wiley & Sons, Ltd; ). 10.1002/9781118359686 DOI

Bastani D., Esmaeili N., Asadollahi M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J. Indus. Eng. Chem. 19, 375–393. 10.1016/j.jiec.2012.09.019 DOI

Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., et al. (2004). Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 10, 2300–2301. 10.1039/B407246D PubMed DOI

Budd P. M., Msayib K. J., Tattershall C. E., Ghanem B. S., Reynolds K. J., McKeown N. B., et al. (2005). Gas separation membranes from polymers of intrinsic microporosity. J. Memb. Sci. 251, 263–269. 10.1016/j.memsci.2005.01.009 DOI

Castarlenas S., Téllez C., Coronas J. (2017). Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J. Memb. Sci. 526, 205–211. 10.1016/j.memsci.2016.12.041 DOI

Castro-Muñoz R, Galiano F., Fíla V., Drioli E., Figoli A. (2018a). Matrimid ® 5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation. Separat. Purif. Technol. 199, 27–36. 10.1016/j.seppur.2018.01.045 DOI

Castro-Muñoz R., Fíla V. (2018). Progress on incorporating zeolites in matrimid® 5218 mixed matrix membranes towards gas separation. Membranes 8:30. 10.3390/membranes8020030 PubMed DOI PMC

Castro-Muñoz R., Fila V. (2019). Effect of the ZIF-8 distribution in mixed-matrix membranes based on Matrimid® 5218-PEG on CO2 separation. Chem. Eng. Technol. 42, 744–752. 10.1002/ceat.201800499 DOI

Castro-Muñoz R., Fíla V., Dung C. T. (2017). Mixed matrix membranes based on PIMs for gas permeation: principles, synthesis, and current status. Chem. Eng. Commun. 204, 295–309. 10.1080/00986445.2016.1273832 DOI

Castro-Muñoz R., Fíla V., Martin-Gil V., Muller C. (2019a). Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures. Separat. Purif. Technol. 210,553–562. 10.1016/j.seppur.2018.08.046 DOI

Castro-Muñoz R., Galiano F., de la Iglesia Ó., Fíla V., Tellez C., Coronas J., et al. (2019b). Graphene oxide – Filled polyimide membranes in pervaporative separation of azeotropic methanol – MTBE mixtures. Separat. Purif. Technol. 224, 265–272. 10.1016/j.seppur.2019.05.034 DOI

Castro-Muñoz R., Galiano F., Fíla V., Drioli E., Figoli A. (2018b). Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Rev. Chem. Eng. 35, 565–590. 10.1515/revce-2017-0115 DOI

Castro-Muñoz R., Iglesia Ó. D., La Fíla, V., Téllez C., Coronas J. (2018c). Pervaporation-assisted esterification reactions by means of mixed matrix membranes. Indus. Eng. Chem. Res. 57, 15998–16011. 10.1021/acs.iecr.8b01564 DOI

Castro-Muñoz R., Martin-Gil V., Ahmad M. Z., Fíla V. (2018d). Matrimid® 5218 in preparation of membranes for gas separation: current state-of-the-art. Chem. Eng. Commun. 205, 161–196. 10.1080/00986445.2017.1378647 DOI

Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., et al. . (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851. 10.1021/ja8057953 PubMed DOI

Chen D., Zhu H., Liu T. (2010). In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Interfaces 2, 3702–3708. 10.1021/am1008437 PubMed DOI

Chen X. Y., Hoang V. T., Rodrigue D., Kaliaguine S. (2013). Optimization of continuous phase in amino-functionalized metal-organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation. RSC Adv. 3, 24266–24279. 10.1039/c3ra43486a DOI

Chen X. Y., Nik O. G., Rodrigue D., Kaliaguine S. (2012a). Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO 2/CH 4 separation. Polymer 53, 3269–3280. 10.1016/j.polymer.2012.03.017 DOI

Chen X. Y., Vinh-thang H., Rodrigue D., Kaliaguine S. (2012b). Amine-functionalized MIL-53 metal–organic Framework in polyimide mixed matrix membranes for CO2-CH4 separation. Indus. Eng. Chem. Res. 51, 6895–6906. 10.1021/ie3004336 DOI

Cheng P. I., Hong P., Da L., ee K. R., Lai J. Y., Tsai Y. L. (2018). High permselectivity of networked PVA/GA/CS-Ag+-membrane for dehydration of Isopropanol. J. Memb. Sci. 564, 926–934. 10.1016/j.memsci.2018.06.019 DOI

Cohen S. M. (2010). Modifying MOFs: new chemistry, new materials. Chem. Sci. 1, 32–36. 10.1039/c0sc00127a DOI

Corma A., Navarro M. T., Pariente J. P. (1994). Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J. Chem. Soc. Chem. Commun. 2, 147–148. 10.1039/c39940000147 DOI

Coronas J., Santamaria J. (1999). Separations using zeolite membranes. Separat. Purif. Methods 28, 127–177. 10.1080/03602549909351646 DOI

Dai Z., Aboukeila H., Ansaloni L., Deng J., Giacinti Baschetti M., Deng L. (2019). Nafion/PEG hybrid membrane for CO2 separation: effect of PEG on membrane micro-structure and performance. Separat. Purif. Technol. 214, 67–77. 10.1016/j.seppur.2018.03.062 DOI

Denny M. S., Moreton J. C., Benz L., Cohen S. M. (2016). Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 1–17. 10.1038/natrevmats.2016.78 DOI

Ebadi Amooghin A., Mashhadikhan S., Sanaeepur H., Moghadassi A., Matsuura T., Ramakrishna S. (2019). Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO 2 separation. Prog. Mater. Sci. 102, 222–295. 10.1016/j.pmatsci.2018.11.002 DOI

Ebadi Amooghin A., Omidkhah M., reza, Kargari A. (2015). Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix. RSC Adv. 5, 8552–8565. 10.1039/C4RA14903C DOI

Ebadi Amooghin A., Omidkhah M., Sanaeepur H., Kargari A. (2016). Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2/CH4 separation. J. Ener. Chem. 25, 450–462. 10.1016/j.jechem.2016.02.004 DOI

Ebadi Amooghin A., Sanaeepur H., Omidkhah M., reza, Kargari A. (2018). “Ship-in-a-bottle”, a new synthesis strategy for preparing novel hybrid host-guest nano-composites for highly selective membrane gas separation. J. Mater. Chem. A 6, 1751–1771. 10.1039/C7TA08081F DOI

Echaide-Gorriz C., Navarro M., Tellez C., Coronas J. (2017). Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration. Dalton Transact. 46, 6244–6252. 10.1039/C7DT00197E PubMed DOI

Fang Q., Zhuang Z., Gu S., Kaspar R., Zheng J., Wang J., et al. . (2014). Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5:4503. 10.1038/ncomms5503 PubMed DOI

Favvas E. P., Katsaros F. K., Papageorgiou S. K., Sapalidis A. A., Mitropoulos A. C. (2017). A review of the latest development of polyimide based membranes for CO2 separations. React. Funct. Polymers 120, 104–130. 10.1016/j.reactfunctpolym.2017.09.002 DOI

Gao J., He Y., Gong X. (2018). Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber. Results Phys. 9, 493–499. 10.1016/j.rinp.2018.02.074 DOI

Gin D. L., Noble R. D. (2011). Designing the next generation of chemical separation membranes. Science 332, 674–676. 10.1126/science.1203771 PubMed DOI

Gleason K. L., Smith Z. P., Liu Q., Paul D. R., Freeman B. D. (2015). Pure- and mixed-gas permeation of CO2 and CH4 in thermally rearranged polymers based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). J. Memb. Sci. 475, 204–214. 10.1016/j.memsci.2014.10.014 DOI

Gong H., Lee S. S., Bae T. H. (2017). Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4separation. Microporous Mesoporous Mater. 237, 82–89. 10.1016/j.micromeso.2016.09.017 DOI

Guiver M. D., Robertson G. P., Dai Y., Bilodeau F., Kang Y. S., Lee K. J., et al. (2002). Structural characterization and gas-transport properties of brominated Matrimid polyimide. J. Polymer Sci. A Polymer Chem. 40, 4193–4204. 10.1002/pola.10516 DOI

Heck R., Qahtani M. S., Yahaya G. O., Tanis I., Brown D., Bahamdan A. A., et al. (2017). Block copolyimide membranes for pure- and mixed-gas separation. Separat. Purif. Technol. 173, 183–192. 10.1016/j.seppur.2016.09.024 DOI

Hirsch A. (2002). Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859. PubMed

Huang L., Wang Z., Sun J., Miao L., Li Q., Yan Y., et al. (2000). Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. J. Am. Chem. Soc. 14, 3530–3531. 10.1021/ja994240u DOI

Iyer P., Iyer G., Coleman M. (2010). Gas transport properties of polyimide-POSS nanocomposites. J. Memb. Sci. 358, 26–32. 10.1016/j.memsci.2010.04.023 DOI

Jia M.-D., Peinemann K.-V., Behling R.-D. (1993). Ceramic zeolite composite membranes. J. Memb. Sci. 82, 15–26. 10.1016/0376-7388(93)85089-F DOI

Karlsson A., Stöcker M., Schmidt R. (1999). Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater. 27, 181–192. 10.1016/S1387-1811(98)00252-2 DOI

Kertik A., Khan A., Vankelecom I. F. J. (2016). Mixed matrix membranes prepared from non-dried MOFs for CO2/CH4 separations. RSC Adv. 6, 114505–114512. 10.1039/C6RA23013J DOI

Khan A. L., Klaysom C., Gahlaut A., Khan A. U., Vankelecom I. F. J. (2013). Mixed matrix membranes comprising of Matrimid and -SO3H functionalized mesoporous MCM-41 for gas separation. J. Memb. Sci. 447, 73–79. 10.1016/j.memsci.2013.07.011 DOI

Kiliç A., Atalay-Oral Ç., Sirkecioglu A., Tantekin-Ersolmaz S. B., Ahunbay M. G. (2015). Sod-ZMOF/Matrimid® mixed matrix membranes for CO2 separation. J. Memb. Sci. 489, 81–89. 10.1016/j.memsci.2015.04.003 DOI

Kim S., Pechar T. W., Marand E. (2006). Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192, 330–339. 10.1016/j.desal.2005.03.098 DOI

Klaysom C., Shahid S. (2019). “Zeolite-based mixed matrix membranes for hazardous gas removal,” in Advanced Nanomaterials for Membrane Synthesis and its Applications, 1st Edn, eds Lau W., Ismail F., Ahmed A. (Oxford: Elsevier B.V.), 127–157. 10.1016/B978-0-12-814503-6.00006-9 DOI

Knebel A., Friebe S., Bigall N. C., Benzaqui M., Serre C., Caro J. (2016). Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane. ACS Appl. Mater. Interfaces 8, 7536–7544. 10.1021/acsami.5b12541 PubMed DOI

Kosinov N., Gascon J., Kapteijn F., Hensen E. J. M. (2016). Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 499, 65–79. 10.1016/j.memsci.2015.10.049 DOI

Li Y., Chung T. S., Cao C., Kulprathipanja S. (2005a). The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 260, 45–55. 10.1016/j.memsci.2005.03.019 DOI

Li Y., Chung T. S., Huang Z., Kulprathipanja S. (2006). Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation. J. Membr. Sci. 277, 28–37. 10.1016/j.memsci.2005.10.008 DOI

Li Y., Wang K., Wei J., Gu Z., Wang Z., Luo J., Wu D. (2005b). Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 43, 31–35. 10.1016/j.carbon.2004.08.017 DOI

Liu S. L., Wang R., Chung T. S., Chng M. L., Liu Y., Vora R. H. (2002). Effect of diamine composition on the gas transport properties in 6FDA-durene/3,3′-diaminodiphenyl sulfone copolyimides. J. Membr. Sci. 202, 165–176. 10.1016/S0376-7388(01)00754-2 DOI

Liu Y., Peng D., He G., Wang S., Li Y., Wu H., et al. . (2014). Enhanced CO2 permeability of membranes by incorporating polyzwitterion@cnt composite particles into polyimide matrix. ACS Appl. Mater. Interfaces 6, 13051–13060. 10.1021/am502936x PubMed DOI

Loloei M., Omidkhah M., Moghadassi A., Amooghin A. E. (2015). Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. Int. J. Greenhouse Gas Control 39, 225–235. 10.1016/j.ijggc.2015.04.016 DOI

Low J. J., Benin A. I., Jakubczak P., Abrahamian J. F., Faheem S. A., Willis R. R. (2009). Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834–15842. 10.1021/ja9061344 PubMed DOI

Lu Y., Hao J., Xiao G., Chen L., Wang T., Hu Z. (2017). Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films. Appl. Surf. Sci. 422, 710–719. 10.1016/j.apsusc.2017.06.087 DOI

Luo S., Stevens K. A., Park J. S., Moon J. D., Liu Q., Freeman B. D., et al. . (2016). Highly CO2-selective gas separation membranes based on segmented copolymers of poly(ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments. ACS Appl. Mater. Interfaces 8, 2306–2317. 10.1021/acsami.5b11355 PubMed DOI

Mahajan R., Burns R., Schaeffer M., Koros W. J. (2002). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci. 86, 881–890. 10.1002/app.10998 DOI

Martin-Gil V., Lopez A., Hrabanek P., Mallada R., Vankelecom I. F. J., Fila V. (2017). Study of different titanosilicate (TS-1 and ETS-10) as fillers for Mixed Matrix Membranes for CO2/CH4 gas separation applications. J. Membr. Sci. 523, 24–35. 10.1016/j.memsci.2016.09.041 DOI

McKeen L. (2012). “Polyimides,” in The Effect of Sterilization on Plastics and Elastomers, 3rd Edn, ed McKeen L. (Oxford, UK: Elsevier B.V.) 169–182. 10.1016/B978-1-4557-2598-4.00006-X DOI

Moore T. T., Koros W. J. (2005). Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct. 739, 87–98. 10.1016/j.molstruc.2004.05.043 DOI

Mundstock A., Friebe S., Caro J. (2017). On comparing permeation through Matrimid®-based mixed matrix and multilayer sandwich FAU membranes: H2/CO2 separation, support functionalization and ion exchange. Int. J. Hydrog. Energy 42, 279–288. 10.1016/j.ijhydene.2016.10.161 DOI

Nik O. G., Chen X. Y., Kaliaguine S. (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 413–414, 48–61. 10.1016/j.memsci.2012.04.003 DOI

Ordoñez M. J. C., Balkus K. J., Ferraris J. P., Musselman I. H. (2010). Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 361, 28–37. 10.1016/j.memsci.2010.06.017 DOI

Rezakazemi M., Ebadi Amooghin A., Montazer-Rahmati M. M., Ismail A. F., Matsuura T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci. 39, 817–861. 10.1016/j.progpolymsci.2014.01.003 DOI

Robeson L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185. 10.1016/0376-7388(91)80060-J DOI

Robeson L. M. (2008). The upper bound revisited. J. Membr. Sci. 320, 390–400. 10.1016/j.memsci.2008.04.030 DOI

Rodenas T., Van Dalen M., García-Pérez E., Serra-Crespo P., Zornoza B., Kapteijn F., et al. (2014a). Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 24, 249–256. 10.1002/adfm.201203462 DOI

Rodenas T., Van Dalen M., Serra-Crespo P., Kapteijn F., Gascon J. (2014b). Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance. Micropor. Mesopor. Mater. 192, 35–42. 10.1016/j.micromeso.2013.08.049 DOI

Rosyadah Ahmad N. N., Mukhtar H., Mohshim D. F., Nasir R., Man Z. (2016). Surface modification in inorganic filler of mixed matrix membrane for enhancing the gas separation performance. Rev. Chem. Eng. 32, 181–200. 10.1515/revce-2015-0031 DOI

Rowsell J. L. C., Yaghi O. M. (2004). Metal-organic frameworks: a new class of porous materials. Micropor. Mesopor. Mater. 73, 3–14. 10.1016/j.micromeso.2004.03.034 DOI

Russo F., Castro-Muñoz R., Galiano F., Figoli A. (2019). Unprecedented preparation of porous Matrimid® 5218 membranes. J. Membr. Sci. 585, 166–174. 10.1016/j.memsci.2019.05.036 DOI

Sabetghadam A., Seoane B., Keskin D., Duim N., Rodenas T., Shahid S., et al. . (2016). Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance. Adv. Funct. Mater. 26, 3154–3163. 10.1002/adfm.201505352 PubMed DOI PMC

Sahoo N. G., Rana S., Cho J. W., Li L., Chan S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progr. Polym. Sci. 35, 837–867. 10.1016/j.progpolymsci.2010.03.002 DOI

Sanaeepur H., Ebadi Amooghin A., Bandehali S., Moghadassi A., Matsuura T., Van der Bruggen B. (2019). Polyimides in membrane gas separation: monomer's molecular design and structural engineering. Prog. Polym. Sci. 91, 80–125. 10.1016/j.progpolymsci.2019.02.001 DOI

Sánchez-Laínez J., Zornoza B., Friebe S., Caro J., Cao S., Sabetghadam A., et al. (2016). Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J. Membr. Sci. 515, 45–53. 10.1016/j.memsci.2016.05.039 DOI

Sánchez-Laínez J., Zornoza B., Mayoral Á., Berenguer-Murcia Á., Cazorla-Amorós D., Téllez C., et al. (2015). Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J. Mater. Chem. A 3, 6549–6556. 10.1039/C4TA06820C DOI

Sanchez-Lainez J., Zornoza B., Orsi A., Lozinska M., Dawson D., Ashbrook S., et al. (2018). Synthesis of ZIF-93/11 hybrid nanoparticles via post-synthetic modification of ZIF-93 and their use for H2/CO2 separation. Chem. A Eur. J. 24, 11211–11219. 10.1002/chem.201802124 PubMed DOI

Sanders D. F., Smith Z. P., Guo R., Robeson L. M., McGrath J. E., Paul D. R., et al. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761. 10.1016/j.polymer.2013.05.075 DOI

Seoane B., Coronas J., Gascon I., Benavides M. E., Karvan O., Caro J., et al. . (2015). Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454. 10.1039/C4CS00437J PubMed DOI PMC

Seoane B., Téllez C., Coronas J., Staudt C. (2013). NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Sep. Purif. Technol. 111, 72–81. 10.1016/j.seppur.2013.03.034 DOI

Shan M., Seoane B., Rozhko E., Dikhtiarenko A., Clet G., Kapteijn F., et al. (2016). Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 Separation. Chem. A Eur. J. 22, 14467–14470. 10.1002/chem.201602999 PubMed DOI

Smaihi M., Gavilan E., Durand J. O., Vatchev V. (2004). Colloidal functionalized calcined zeolite nanocrystals. J. Mater. Chem. 14, 1347–1351. 10.1039/B400521J DOI

Tahir Z., Ilyas A., Li X., Bilad M. R., Vankelecom I. F. J., Khan A. L. (2018). Tuning the gas separation performance of fluorinated and sulfonated PEEK membranes by incorporation of zeolite 4A. J. Appl. Polym. Sci. 135:45952 10.1002/app.45952 DOI

Tanabe K. K., Cohen S. M. (2011). Postsynthetic modification of metal-organic frameworks - A progress report. Chem. Soc. Rev. 40, 498–519. 10.1039/C0CS00031K PubMed DOI

Thompson J. A., Chapman K. W., Koros W. J., Jones C. W., Nair S. (2012). Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Micropor. Mesopor. Mater. 158, 292–299. 10.1016/j.micromeso.2012.03.052 DOI

Tien-Binh N., Vinh-Thang H., Chen X., Rodrigue D., Kaliaguine S. (2015). Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation. J. Mater. Chem. A 3, 15202–15213. 10.1039/C5TA01597A DOI

Ursino C., Castro-Muñoz R., Drioli E., Gzara L., Albeirutty M. H., Figoli A. (2018). Progress of nanocomposite membranes for water treatment. Membranes 8:E18. 10.3390/membranes8020018 PubMed DOI PMC

Valero M., Zornoza B., Téllez C., Coronas J. (2014). Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Micropor. Mesopor. Mater. 192, 23–28. 10.1016/j.micromeso.2013.09.018 DOI

Vinoba M., Bhagiyalakshmi M., Alqaheem Y., Alomair A. A., Pérez A., Rana M. S. (2017). Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep. Purif. Technol. 188, 431–450. 10.1016/j.seppur.2017.07.051 DOI

Visser T., Masetto N., Wessling M. (2007). Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J. Membr. Sci. 306, 16–28. 10.1016/j.memsci.2007.07.048 DOI

Wang R., Chan S. S., Liu Y., Chung T. S. (2002). Gas transport properties of poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes. J. Membr. Sci. 199, 191–202. 10.1016/S0376-7388(01)00697-4 DOI

Wei P., Qu X., Dong H., Zhang L., Chen H., Gao C. (2013). Silane-modified NaA zeolite/PAAS hybrid pervaporation membranes for the dehydration of ethanol. J. Appl. Polym. Sci. 128, 3390–3397. 10.1002/app.38555 DOI

Wu J., Lin W., Wang Z., Chen S., Chang Y. (2012). Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28, 7436–7441. 10.1021/la300394c PubMed DOI

Xiao S., Huang R. Y. M., Feng X. (2007). Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties. Polymer 48, 5355–5368. 10.1016/j.polymer.2007.07.010 DOI

Xu L., Rungta M., Brayden M. K., Martinez M. V., Stears B. A., Barbay G. A., et al. (2012). Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Membr. Sci. 423–424, 314–323. 10.1016/j.memsci.2012.08.028 DOI

Yang Q., Jobic H., Salles F., Kolokolov D., Guillerm V., Serre C., et al. . (2011). Probing the dynamics of CO2 and CH4 within the porous zirconium terephthalate UiO-66(Zr): a synergic combination of neutron scattering measurements and molecular simulations. Chem. A Eur J. 17, 8882–8889. 10.1002/chem.201003596 PubMed DOI

Zamidi Ahmad M., Navarro M., Lhotka M., Zornoza B., Téllez C., Fila V., et al. (2018). Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Sep. Purif. Technol. 192(Suppl. C), 465–474. 10.1016/j.seppur.2017.10.039 DOI

Zhang F., Zou X., Gao X., Fan S., Sun F., Ren H., et al. (2012). Hydrogen selective NH 2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 22, 3583–3590. 10.1002/adfm.201200084 DOI

Zhang P., Gong J., Zeng G., Deng C., Yang H., Liu H. (2017). Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 322, 657–666. 10.1016/j.cej.2017.04.068 DOI

Zhang T., Xing G., Chen W., Chen L. (2020). Porous organic polymers: a promising platform for efficient photocatalysis. Mater. Chem. Front. 10.1039/C9QM00633H. [Epub ahead of print]. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...