Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning

E. Barzegar-Golmoghani, M. Mohebi, Z. Gohari, S. Aram, A. Mohammadzadeh, S. Firouznia, M. Shakiba, H. Naghibi, S. Moradian, M. Ahmadi, K. Almasi, M. Issaiy, M. Anjomrooz, SM. Tavangar, S. Javadi, A. Bitarafan-Rajabi, M. Davoodi, H. Sharifian, M....

. 2025 ; 15 (1) : 8763. [pub] 20250313

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25009503

Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort study investigates a novel multimodal approach, integrating traditional methods with advanced machine learning techniques. We studied 181 patients who underwent fine-needle aspiration (FNA) biopsy, each contributing one nodule, resulting in a total of 181 nodules for our analysis. Data collection included sex, age, and ultrasound imaging, which incorporated elastography. Features extracted from these images included Thyroid Imaging Reporting and Data System (TIRADS) scores, elastography parameters, and radiomic features. The pathological results based on the FNA biopsy, provided by the pathologists, served as our gold standard for nodule classification. Our methodology, termed ELTIRADS, combines these features with interpretable machine learning techniques. Performance evaluation showed that a Support Vector Machine (SVM) classifier using TIRADS, elastography data, and radiomic features achieved high accuracy (0.92), with sensitivity (0.89), specificity (0.94), precision (0.89), and F1 score (0.89). To enhance interpretability, we used hierarchical clustering, shapley additive explanations (SHAP), and partial dependence plots (PDP). This combined approach holds promise for enhancing the accuracy of thyroid nodule malignancy detection, thereby contributing to advancements in personalized and precision medicine in the field of thyroid cancer research.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25009503
003      
CZ-PrNML
005      
20250429135306.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-025-93226-8 $2 doi
035    __
$a (PubMed)40082527
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Barzegar-Golmoghani, Erfan $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
245    10
$a ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning / $c E. Barzegar-Golmoghani, M. Mohebi, Z. Gohari, S. Aram, A. Mohammadzadeh, S. Firouznia, M. Shakiba, H. Naghibi, S. Moradian, M. Ahmadi, K. Almasi, M. Issaiy, M. Anjomrooz, SM. Tavangar, S. Javadi, A. Bitarafan-Rajabi, M. Davoodi, H. Sharifian, M. Mohammadzadeh
520    9_
$a Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort study investigates a novel multimodal approach, integrating traditional methods with advanced machine learning techniques. We studied 181 patients who underwent fine-needle aspiration (FNA) biopsy, each contributing one nodule, resulting in a total of 181 nodules for our analysis. Data collection included sex, age, and ultrasound imaging, which incorporated elastography. Features extracted from these images included Thyroid Imaging Reporting and Data System (TIRADS) scores, elastography parameters, and radiomic features. The pathological results based on the FNA biopsy, provided by the pathologists, served as our gold standard for nodule classification. Our methodology, termed ELTIRADS, combines these features with interpretable machine learning techniques. Performance evaluation showed that a Support Vector Machine (SVM) classifier using TIRADS, elastography data, and radiomic features achieved high accuracy (0.92), with sensitivity (0.89), specificity (0.94), precision (0.89), and F1 score (0.89). To enhance interpretability, we used hierarchical clustering, shapley additive explanations (SHAP), and partial dependence plots (PDP). This combined approach holds promise for enhancing the accuracy of thyroid nodule malignancy detection, thereby contributing to advancements in personalized and precision medicine in the field of thyroid cancer research.
650    _2
$a lidé $7 D006801
650    12
$a uzly štítné žlázy $x diagnostické zobrazování $x patologie $x klasifikace $7 D016606
650    12
$a elastografie $x metody $7 D054459
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé středního věku $7 D008875
650    12
$a strojové učení $7 D000069550
650    _2
$a tenkojehlová biopsie $7 D044963
650    _2
$a dospělí $7 D000328
650    _2
$a prospektivní studie $7 D011446
650    _2
$a senioři $7 D000368
650    _2
$a support vector machine $7 D060388
650    _2
$a nádory štítné žlázy $x diagnostické zobrazování $x klasifikace $x patologie $x diagnóza $7 D013964
650    _2
$a štítná žláza $x diagnostické zobrazování $x patologie $7 D013961
650    _2
$a radiomika $7 D000097188
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mohebi, Mobin $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran $u Institut de Biologie Valrose (IBV), Université Côte d'Azur, CNRS, Inserm, Nice, France
700    1_
$a Gohari, Zahra $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran
700    1_
$a Aram, Sadaf $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
700    1_
$a Mohammadzadeh, Ali $u Department of Radiology, Iran University of Medical Sciences, Tehran, Iran
700    1_
$a Firouznia, Sina $u Second Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Shakiba, Madjid $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
700    1_
$a Naghibi, Hamed $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
700    1_
$a Moradian, Sadegh $u Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
700    1_
$a Ahmadi, Maryam $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
700    1_
$a Almasi, Kazhal $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
700    1_
$a Issaiy, Mahbod $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
700    1_
$a Anjomrooz, Mehran $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran
700    1_
$a Tavangar, Seyed Mohammad $u Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
700    1_
$a Javadi, Sheida $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
700    1_
$a Bitarafan-Rajabi, Ahmad $u Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
700    1_
$a Davoodi, Mohammad $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran. mohammaddavoodi47@yahoo.com
700    1_
$a Sharifian, Hashem $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran. hashemsharifian@gmail.com
700    1_
$a Mohammadzadeh, Maryam $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran. m-mohammadzadeh@sina.tums.ac.ir
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 15, č. 1 (2025), s. 8763
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40082527 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135301 $b ABA008
999    __
$a ok $b bmc $g 2311098 $s 1246584
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 15 $c 1 $d 8763 $e 20250313 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...