-
Something wrong with this record ?
ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning
E. Barzegar-Golmoghani, M. Mohebi, Z. Gohari, S. Aram, A. Mohammadzadeh, S. Firouznia, M. Shakiba, H. Naghibi, S. Moradian, M. Ahmadi, K. Almasi, M. Issaiy, M. Anjomrooz, SM. Tavangar, S. Javadi, A. Bitarafan-Rajabi, M. Davoodi, H. Sharifian, M....
Language English Country England, Great Britain
Document type Journal Article
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Nature Open Access
from 2011-12-01
PubMed Central
from 2011
Europe PubMed Central
from 2011
ProQuest Central
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
Springer Nature OA/Free Journals
from 2011-12-01
- MeSH
- Adult MeSH
- Elasticity Imaging Techniques * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Thyroid Neoplasms diagnostic imaging classification pathology diagnosis MeSH
- Prospective Studies MeSH
- Radiomics MeSH
- Aged MeSH
- Thyroid Gland diagnostic imaging pathology MeSH
- Machine Learning * MeSH
- Support Vector Machine MeSH
- Biopsy, Fine-Needle MeSH
- Thyroid Nodule * diagnostic imaging pathology classification MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort study investigates a novel multimodal approach, integrating traditional methods with advanced machine learning techniques. We studied 181 patients who underwent fine-needle aspiration (FNA) biopsy, each contributing one nodule, resulting in a total of 181 nodules for our analysis. Data collection included sex, age, and ultrasound imaging, which incorporated elastography. Features extracted from these images included Thyroid Imaging Reporting and Data System (TIRADS) scores, elastography parameters, and radiomic features. The pathological results based on the FNA biopsy, provided by the pathologists, served as our gold standard for nodule classification. Our methodology, termed ELTIRADS, combines these features with interpretable machine learning techniques. Performance evaluation showed that a Support Vector Machine (SVM) classifier using TIRADS, elastography data, and radiomic features achieved high accuracy (0.92), with sensitivity (0.89), specificity (0.94), precision (0.89), and F1 score (0.89). To enhance interpretability, we used hierarchical clustering, shapley additive explanations (SHAP), and partial dependence plots (PDP). This combined approach holds promise for enhancing the accuracy of thyroid nodule malignancy detection, thereby contributing to advancements in personalized and precision medicine in the field of thyroid cancer research.
2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Biomedical Engineering Tarbiat Modares University Tehran Iran
Department of Pathology Tehran University of Medical Sciences Tehran Iran
Department of Radiology Iran University of Medical Sciences Tehran Iran
Department of Radiology Kermanshah University of Medical Sciences Kermanshah Iran
Department of Radiology Tehran University of Medical Science Tehran Iran
Institut de Biologie Valrose Université Côte d'Azur CNRS Inserm Nice France
Rajaie Cardiovascular Medical and Research Institute Iran University of Medical Sciences Tehran Iran
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25009503
- 003
- CZ-PrNML
- 005
- 20250429135306.0
- 007
- ta
- 008
- 250415s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-025-93226-8 $2 doi
- 035 __
- $a (PubMed)40082527
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Barzegar-Golmoghani, Erfan $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
- 245 10
- $a ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning / $c E. Barzegar-Golmoghani, M. Mohebi, Z. Gohari, S. Aram, A. Mohammadzadeh, S. Firouznia, M. Shakiba, H. Naghibi, S. Moradian, M. Ahmadi, K. Almasi, M. Issaiy, M. Anjomrooz, SM. Tavangar, S. Javadi, A. Bitarafan-Rajabi, M. Davoodi, H. Sharifian, M. Mohammadzadeh
- 520 9_
- $a Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort study investigates a novel multimodal approach, integrating traditional methods with advanced machine learning techniques. We studied 181 patients who underwent fine-needle aspiration (FNA) biopsy, each contributing one nodule, resulting in a total of 181 nodules for our analysis. Data collection included sex, age, and ultrasound imaging, which incorporated elastography. Features extracted from these images included Thyroid Imaging Reporting and Data System (TIRADS) scores, elastography parameters, and radiomic features. The pathological results based on the FNA biopsy, provided by the pathologists, served as our gold standard for nodule classification. Our methodology, termed ELTIRADS, combines these features with interpretable machine learning techniques. Performance evaluation showed that a Support Vector Machine (SVM) classifier using TIRADS, elastography data, and radiomic features achieved high accuracy (0.92), with sensitivity (0.89), specificity (0.94), precision (0.89), and F1 score (0.89). To enhance interpretability, we used hierarchical clustering, shapley additive explanations (SHAP), and partial dependence plots (PDP). This combined approach holds promise for enhancing the accuracy of thyroid nodule malignancy detection, thereby contributing to advancements in personalized and precision medicine in the field of thyroid cancer research.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a uzly štítné žlázy $x diagnostické zobrazování $x patologie $x klasifikace $7 D016606
- 650 12
- $a elastografie $x metody $7 D054459
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé středního věku $7 D008875
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a tenkojehlová biopsie $7 D044963
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a support vector machine $7 D060388
- 650 _2
- $a nádory štítné žlázy $x diagnostické zobrazování $x klasifikace $x patologie $x diagnóza $7 D013964
- 650 _2
- $a štítná žláza $x diagnostické zobrazování $x patologie $7 D013961
- 650 _2
- $a radiomika $7 D000097188
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Mohebi, Mobin $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran $u Institut de Biologie Valrose (IBV), Université Côte d'Azur, CNRS, Inserm, Nice, France
- 700 1_
- $a Gohari, Zahra $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran
- 700 1_
- $a Aram, Sadaf $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
- 700 1_
- $a Mohammadzadeh, Ali $u Department of Radiology, Iran University of Medical Sciences, Tehran, Iran
- 700 1_
- $a Firouznia, Sina $u Second Faculty of Medicine, Charles University, Prague, Czech Republic
- 700 1_
- $a Shakiba, Madjid $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- 700 1_
- $a Naghibi, Hamed $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- 700 1_
- $a Moradian, Sadegh $u Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- 700 1_
- $a Ahmadi, Maryam $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
- 700 1_
- $a Almasi, Kazhal $u Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
- 700 1_
- $a Issaiy, Mahbod $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- 700 1_
- $a Anjomrooz, Mehran $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran
- 700 1_
- $a Tavangar, Seyed Mohammad $u Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
- 700 1_
- $a Javadi, Sheida $u Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- 700 1_
- $a Bitarafan-Rajabi, Ahmad $u Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
- 700 1_
- $a Davoodi, Mohammad $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran. mohammaddavoodi47@yahoo.com
- 700 1_
- $a Sharifian, Hashem $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran. hashemsharifian@gmail.com
- 700 1_
- $a Mohammadzadeh, Maryam $u Department of Radiology, Tehran University of Medical Science, Tehran, Iran. m-mohammadzadeh@sina.tums.ac.ir
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 15, č. 1 (2025), s. 8763
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40082527 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135301 $b ABA008
- 999 __
- $a ok $b bmc $g 2311098 $s 1246584
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 15 $c 1 $d 8763 $e 20250313 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20250415