Progress of Nanocomposite Membranes for Water Treatment
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
29614045
PubMed Central
PMC6027241
DOI
10.3390/membranes8020018
PII: membranes8020018
Knihovny.cz E-resources
- Keywords
- carbon nanotubes (CNTs) zinc oxide (ZnO), graphene oxide (GO), mixed matrix membranes (MMMs), nanocomposite, nanoparticles (NPs), silver (Ag), titanium dioxide (TiO2), water treatment,
- Publication type
- Journal Article MeSH
- Review MeSH
The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.
See more in PubMed
Castro-Muñoz R., Yáñez-Fernández J., Fíla V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016;213:753–762. doi: 10.1016/j.foodchem.2016.07.030. PubMed DOI
Van der Bruggen B., Curcio E., Drioli E. Process intensification in the textile industry: The role of membrane technology. J. Environ. Manag. 2004;73:267–274. doi: 10.1016/j.jenvman.2004.07.007. PubMed DOI
Alzahrani S., Wahab A. Journal of Water Process Engineering Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process Eng. 2014;4:107–133. doi: 10.1016/j.jwpe.2014.09.007. DOI
Kim J., van der Bruggen B. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 2010;158:2335–2349. doi: 10.1016/j.envpol.2010.03.024. PubMed DOI
Castro-Muñoz R., Barragán-Huerta B.E., Fíla V., Denis P.C., Ruby-Figueroa R. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valorization. 2018;9:513–529. doi: 10.1007/s12649-017-0003-1. DOI
Van der Bruggen B., Lejon L., Vandecasteele C. Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environ. Sci. Technol. 2003;37:3733–3738. doi: 10.1021/es0201754. PubMed DOI
Rajesha B.J., Vishaka V.H., Balakrishna G.R., Padaki M., Nazri N.A.M. Effective composite membranes of cellulose acetate for removal of benzophenone-3. J. Water Process Eng. 2017 doi: 10.1016/j.jwpe.2017.06.003. in press. DOI
Castro-Muñoz V., Rodríguez-Romero R., Yáñez-Fernández V., Fíla J. Water production from food processing wastewaters by integrated membrane systems: Sustainable approach. Water Technol. Sci. 2017;8:129–136. doi: 10.24850/j-tyca-2017-06-09. DOI
Lalia B.S., Kochkodan V., Hashaikeh R., Hilal N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination. 2013;326:77–95. doi: 10.1016/j.desal.2013.06.016. DOI
Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47:2217–2262. doi: 10.1016/j.polymer.2006.01.084. DOI
Yong L., Wahab A., Peng C., Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination. 2013;308:15–33. doi: 10.1016/j.desal.2010.11.033. DOI
Environ E., Pendergast M.M., Hoek E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011;4:1946–1971. doi: 10.1039/c0ee00541j. DOI
Hana N., Abu H., Tan W.L. Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer International Publishing AG; Cham, Switzerland: 2016. Natural Composite Membranes for Water Remediation: Toward a Sustainable Tomorrow; pp. 25–49. DOI
Nackaerts R. Are Membranes Implemented with Nanoparticles Able to Provide a Breakthrough in Water Purification? University of Johannesburg; Johannesburg, South Africa: 2014.
Flemming H.C. Reverse osmosis membrane biofouling. Exp. Ther. Fluid Sci. 1997;14:382–391. doi: 10.1016/S0894-1777(96)00140-9. DOI
Subramani A., Hoek E.M.V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2008;319:111–125. doi: 10.1016/j.memsci.2008.03.025. DOI
Boussu K., Belpaire A., Volodin A., van Haesendonck C., van der Meeren P., Vandecasteele C., van der Bruggen B. Influence of membrane and colloid characteristics on fouling of nanofiltration membranes. J. Membr. Sci. 2007;289:220–230. doi: 10.1016/j.memsci.2006.12.001. DOI
Mohammad A.W., Hilal N., Seman M.N.A. A study on producing composite nanofiltration membranes with optimized properties. Desalination. 2003;158:73–78. doi: 10.1016/S0011-9164(03)00435-1. DOI
Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991;62:165–185. doi: 10.1016/0376-7388(91)80060-J. DOI
Ahmadizadegan H., Esmaielzadeh D., Ranjbar M., Marzban Z. Synthesis and characterization of polyester bionanocomposite membrane with ultrasonic irradiation process for gas permeation and antibacterial activity. Ultrason. Sonochem. 2018;41:538–550. doi: 10.1016/j.ultsonch.2017.10.020. PubMed DOI
Li H., Ding X., Zhang Y., Liu J. Porous Graphene Nanosheets Functionalized Thin Film Nanocomposite Membrane Prepared by Interfacial Polymerization for CO2/N2 Separation. J. Membr. Sci. 2017;543:58–68. doi: 10.1016/j.memsci.2017.08.046. DOI
Jiang C., Markutsya S., Pikus Y., Tsukruk V.V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nat. Mater. 2004;3:721–728. doi: 10.1038/nmat1212. PubMed DOI
Pandey I., Pandey A.K., Agrawal P.C., Das N.R. Synthesis and characterization of dendritic polypyrrole silver nanocomposite and its application as a new urea biosensor. J. Appl. Polym. Sci. 2018;135:45705. doi: 10.1002/app.45705. DOI
Jalani N.H., Dunn K., Datta R. Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim. Acta. 2005;51:553–560. doi: 10.1016/j.electacta.2005.05.016. DOI
Boaretti C., Pasquini L., Sood R., Giancola S., Donnadio A., Roso M., Modesti M., Cavaliere S. Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications. J. Membr. Sci. 2017;545:66–74. doi: 10.1016/j.memsci.2017.09.055. DOI
Chen Z., Holmberg B., Li W., Wang X., Deng W., Munoz R., Yan Y. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem. Mater. 2006;18:5669–5675. doi: 10.1021/cm060841q. DOI
Li Z.H., Zhang H.P., Zhang P., Li G.C., Wu Y.P., Zhou X.D. Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J. Membr. Sci. 2008;322:416–422. doi: 10.1016/j.memsci.2008.05.074. DOI
Yang D., Li J., Jiang Z., Lu L., Chen X. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci. 2009;64:3130–3137. doi: 10.1016/j.ces.2009.03.042. DOI
Sorribas S., Gorgojo P., Téllez C., Coronas J., Livingston A.G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 2013;135:15201–15208. doi: 10.1021/ja407665w. PubMed DOI
Al Aani S., Wright C.J., Atieh M.A., Hilal N. Engineering nanocomposite membranes: Addressing current challenges and future opportunities. Desalination. 2017;401:1–15. doi: 10.1016/j.desal.2016.08.001. DOI
Mueller N.C., van der Bruggen B., Keuter V., Luis P., Melin T., Pronk W., Reisewitz R., Rickerby D., Rios G.M., Wennekes W., et al. Nanofiltration and nanostructured membranes-Should they be considered nanotechnology or not? J. Hazard. Mater. 2012;211–212:275–280. doi: 10.1016/j.jhazmat.2011.10.096. PubMed DOI
Marino A.F.T., Boerrigter M., Faccini M., Chaumette C., Arockiasamy L., Bundschuh J. Photocatalytic activity and synthesis procedures of TiO2 nanoparticles for potential applications in membranes. In: Figoli J.B.A., Hoinkis J., Altinkaya S.A., editors. Application of Nanotechnology in Membranes for Water Treatment. CRC Press, Taylor & Francis Group; Abingdon, UK: 2017.
Madaeni S.S., Ghaemi N., Rajabi H. Advances in Polymeric Membranes for Water Treatment. Elsevier Ltd.; Amsterdam, The Netherlands: 2015. DOI
Kabsch-korbutowicz M., Majewska-nowak K., Winnicki T. Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalination. 1999;126:179–185. doi: 10.1016/S0011-9164(99)00172-1. DOI
Yan L., Shui Y., Bao C. Preparation of poly (vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer. 2005;46:7701–7706. doi: 10.1016/j.polymer.2005.05.155. DOI
Prince J.A., Bhuvana S., Boodhoo K.V.K., Anbharasi V., Singh G. Synthesis and characterization of PEG-Ag immobilized PES hollow fiber ultrafiltration membranes with long lasting antifouling properties. J. Membr. Sci. 2014;454:538–548. doi: 10.1016/j.memsci.2013.12.050. DOI
Shi F., Ma Y., Ma J., Wang P., Sun W. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J. Membr. Sci. 2012;389:522–531. doi: 10.1016/j.memsci.2011.11.022. DOI
Balta S., Sotto A., Luis P., Benea L., van der Bruggen B., Kim J. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J. Membr. Sci. 2012;389:155–161. doi: 10.1016/j.memsci.2011.10.025. DOI
García A., Rodríguez B., Oztürk D., Rosales M., Diaz D.I., Mautner A. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polym. Bull. 2017:1–17. doi: 10.1007/s00289-017-2146-4. DOI
Celik E., Park H., Choi H., Choi H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 2011;45:274–282. doi: 10.1016/j.watres.2010.07.060. PubMed DOI
Xia S., Ni M. Preparation of poly (vinylidene fl uoride) membranes with graphene oxide addition for natural organic matter removal. J. Membr. Sci. 2015;473:54–62. doi: 10.1016/j.memsci.2014.09.018. DOI
Arsuaga J.M., Sotto A., del Rosario G., Martínez A., Molina S., Teli S.B., de Abajo J. Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 2013;428:131–141. doi: 10.1016/j.memsci.2012.11.008. DOI
Yu S., Zuo X., Bao R., Xu X., Wang J., Xu J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer. 2009;50:553–559. doi: 10.1016/j.polymer.2008.11.012. DOI
Alam J., Alhoshan M., Dass L.A., Shukla A.K., Muthumareeswaran M.R., Hussain M., Aldwayyan A.S. Atomic layer deposition of TiO2 film on a polyethersulfone membrane: Separation applications. J. Polym. Res. 2016;23:183. doi: 10.1007/s10965-016-1063-9. DOI
Gzara L., Rehan Z.A., Khan S.B., Alamry K.A., Albeirutty M.H., El-Shahawi M.S., Rashid M.I., Figoli A., Drioli E., Asiri A.M. Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. J. Taiwan Inst. Chem. Eng. 2016;65:405–419. doi: 10.1016/j.jtice.2016.04.012. DOI
Maximous N., Nakhla G., Wan W., Wong K. Performance of a novel ZrO2/PES membrane for wastewater filtration. J. Membr. Sci. 2010;352:222–230. doi: 10.1016/j.memsci.2010.02.021. DOI
Mierzwa C., Arieta V., Verlage M., Carvalho J., Vecitis C.D. Effect of clay nanoparticles on the structure and performance of polyethersulfone ultra fi ltration membranes. Desalination. 2013;314:147–158. doi: 10.1016/j.desal.2013.01.011. DOI
Fathizadeh M., Aroujalian A., Raisi A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci. 2011;375:88–95. doi: 10.1016/j.memsci.2011.03.017. DOI
Filter Cartridges: Water Treatment, (20AD) [(accessed on 15 March 2018)]; Available online: https://www.sterlitech.com/silver-membranes.html.
Filter Cartridges, (n.d.) [(accessed on 15 March 2018)]; Available online: Https://www.lenntech.com/Data-sheets/Atlas-16-WATER-TREATMENT-L.pdf.
Hofs B., Schurer R., Harmsen D.J.H., Ceccarelli C., Beerendonk E.F., Cornelissen E.R. Characterization and performance of a commercial thin film nanocomposite seawater reverse osmosis membrane and comparison with a thin film composite. J. Membr. Sci. 2013;446:68–78. doi: 10.1016/j.memsci.2013.06.007. DOI
LG Chem, (n.d.) [(accessed on 15 March 2018)]; Available online: http://www.lgchem.com.
Le N.L., Nunes S.P. Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 2016;7:1–28. doi: 10.1016/j.susmat.2016.02.001. DOI
Liang S., Xiao K., Mo Y., Huang X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Membr. Sci. 2012;394–395:184–192. doi: 10.1016/j.memsci.2011.12.040. DOI
Zhang X., Wang Y., Liu Y., Xu J., Han Y., Xu X. Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl. Surf. Sci. 2014;316:333–340. doi: 10.1016/j.apsusc.2014.08.004. DOI
Hong J., He Y. Effects of nano sized zinc oxide on the performance of PVDF micro fi ltration membranes. Desalination. 2012;302:71–79. doi: 10.1016/j.desal.2012.07.001. DOI
Ahmad A.L., Abdulkarim A.A., Ismail S., Seng O.B. Optimization of PES/ZnO mixed matrix membrane preparation using response surface methodology for humic acid removal. Korean J. Chem. Eng. 2016;33:997–1007. doi: 10.1007/s11814-015-0221-9. DOI
Chung Y.T., Ba-abbad M.M., Mohammad A.W. Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalin. Water Treat. 2017;57:7801–7811. doi: 10.1080/19443994.2015.1067168. DOI
Ghoul J.E.L., Ghiloufi I., Mir L.E.L., Arabia S. Efficiency of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles. J. Ovonic Res. 2017;13:83–90.
Engineering M., Jia H., Wu Z., Liu N. Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane. Plast. Rubber Compos. 2016;46:1–7. doi: 10.1080/14658011.2016.1245032. DOI
Dipheko T.D., Matabola K.P., Kotlhao K., Moutloali R.M., Klink M. Fabrication and Assessment of ZnO Modified Polyethersulfone Membranes for Fouling Reduction of Bovine Serum Albumin. Int. J. Polym. Sci. 2017;2017:3587019. doi: 10.1155/2017/3587019. DOI
Jo Y.J., Choi E.Y., Choi N.W., Kim C.K. Antibacterial and Hydrophilic Characteristics of Poly (ether sulfone) Composite Membranes Containing Zinc Oxide Nanoparticles Grafted with Hydrophilic Polymers. Ind. Eng. Chem. Res. 2016;55:7801–7809. doi: 10.1021/acs.iecr.6b01510. DOI
Li X., Li J., van der Bruggen B., Sun X., Shen J., Han W., Wang L. RSC Advances membranes functionalized with sol-gel formed. RSC Adv. 2015;5:50711–50719. doi: 10.1039/C5RA05783C. DOI
Escobar I.C., van der Bruggen B. Microfiltration and Ultrafiltration Membrane Science and Technology. J. Appl. Ploym. 2015;132 doi: 10.1002/app.42002. DOI
Zhao S., Yan W., Shi M., Wang Z., Wang J. Improving permeability and antifouling performance of polyethersulfone ultra fi ltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 2015;478:105–116. doi: 10.1016/j.memsci.2014.12.050. DOI
Pintilie S.C., Tiron L.G., Birsan I.G., Ganea D., Balta S. Influence of ZnO Nanoparticle Size and Concentration on the Polysulfone Membrane Performance. Mater. Plast. 2017;54:257–261.
Ronen A., Semiat R., Dosoretz C.G. Impact of ZnO embedded feed spacer on biofilm development in membrane systems. Water Res. 2013;47:6628–6638. doi: 10.1016/j.watres.2013.08.036. PubMed DOI
Rabiee H., Vatanpour V., Hossein M., Abadi D., Zarrabi H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep. Purif. Technol. 2015;156:299–310. doi: 10.1016/j.seppur.2015.10.015. DOI
Bai H., Liu Z., Sun D.D. A hierarchically structured and multifunctional membrane for water treatment. Appl. Catal. B Environ. 2012;111–112:571–577. doi: 10.1016/j.apcatb.2011.11.009. DOI
Bahadar S., Alamry K.A., Bifari E.N., Asiri A.M., Yasir M., Gzara L., Zulfiqar R. Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J. Ind. Eng. Chem. 2015;24:266–275. doi: 10.1016/j.jiec.2014.09.040. DOI
Akin I., Ersoz M. Preparation and characterization of CTA/m-ZnO composite membrane for transport of Rhodamine B. Desalin. Water Treat. 2016;57:3037–3047. doi: 10.1080/19443994.2014.980327. DOI
Tao Y., Mahmoudi E., Wahab A., Benamor A., Johnson D., Hilal N. Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. Desalination. 2017;402:123–132. doi: 10.1016/j.desal.2016.09.030. DOI
Ekambaram K., Doraisamy M. Surface modification of PVDF nanofiltration membrane using Carboxymethylchitosan-Zinc oxide bionanocomposite for the removal of inorganic salts and humic acid. Colloids Surf. A. 2017;525:49–63. doi: 10.1016/j.colsurfa.2017.04.071. DOI
Li N., Tian Y., Zhang J., Sun Z., Zhao J., Zhang J., Zuo W. Precisely-controlled modi fi cation of PVDF membranes with 3D TiO2/ZnO nanolayer: Enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. J. Membr. Sci. 2017;528:359–368. doi: 10.1016/j.memsci.2017.01.048. DOI
Li H., Shi W., Zhu H., Zhang Y., Du Q., Qin X. Effects of Zinc Oxide Nanospheres on the Separation Performance of Hollow Fiber Poly (piperazine-amide) Composite Nanofiltration Membranes. Fibers Polym. 2016;17:836–846. doi: 10.1007/s12221-016-6219-z. DOI
Zhao X., Li J., Liu C. Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer. Desalination. 2017;408:102–109. doi: 10.1016/j.desal.2017.01.021. DOI
Isawi H., El-sayed M.H., Feng X., Shawky H., Abdel M.S. Applied Surface Science Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl. Surf. Sci. 2016;385:268–281. doi: 10.1016/j.apsusc.2016.05.141. DOI
Badrinezhad L., Ghasemi S. Preparation and characterization of polysulfone/graphene oxide nanocomposite membranes for the separation of methylene blue from water. Polym. Bull. 2017;75:469–484. doi: 10.1007/s00289-017-2046-7. DOI
Zhao C., Xu X., Chen J., Yang F. Optimization of preparation conditions of poly (vinylidene fl uoride)/graphene oxide micro fi ltration membranes by the Taguchi experimental design. Desalination. 2014;334:17–22. doi: 10.1016/j.desal.2013.07.011. DOI
Zhao H., Wu L., Zhou Z., Zhang L., Chen H. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys. Chem. Chem. Phys. 2013;15:9084–9092. doi: 10.1039/c3cp50955a. PubMed DOI
Chang X., Wang Z., Quan S., Xu Y., Jiang Z., Shao L. Applied Surface Science Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly (vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl. Surf. Sci. 2014;316:537–548. doi: 10.1016/j.apsusc.2014.07.202. DOI
Wu T., Zhou B., Zhu T., Shi J., Xu Z., Hu C., Wang J. Facile and low-cost approach towards a PVDF ultra fi ltration membrane with enhanced hydrophilicity and antifouling performance via. RSC Adv. 2014;5:7880–7889. doi: 10.1039/C4RA13476A. DOI
Zhao C., Xu X., Chen J., Yang F. Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2013;1:349–354. doi: 10.1016/j.jece.2013.05.014. DOI
Xia S., Yao L., Zhao Y., Li N., Zheng Y. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal. Chem. Eng. J. 2015;280:720–727. doi: 10.1016/j.cej.2015.06.063. DOI
Lee J., Chae H., June Y., Lee K., Lee C., Lee H.H., Kim I., Lee J. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 2013;448:223–230. doi: 10.1016/j.memsci.2013.08.017. DOI
Morales-Torres S., Pastrana-Martı L.M., Figueiredo L., Faria J.L., Silva A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015;7:179–190. doi: 10.1016/j.watres.2015.03.014. PubMed DOI
Kiran S.A., Thuyavan Y.L., Arthanareeswaran G., Matsuura T., Ismail A.F. Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent. Chem. Eng. J. 2016;286:528–537. doi: 10.1016/j.cej.2015.10.091. DOI
Ganesh B.M., Isloor A.M., Ismail A.F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination. 2013;313:199–207. doi: 10.1016/j.desal.2012.11.037. DOI
Goh K., Setiawan L., Wei L., Si R., Fane A.G., Wang R., Chen Y. Graphene oxide as effective selective barriers on a hollow fi ber membrane for water treatment process. J. Membr. Sci. 2015;474:244–253. doi: 10.1016/j.memsci.2014.09.057. DOI
Yang M., Zhao C., Zhang S., Li P., Hou D. Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl. Surf. Sci. 2017;394:149–159. doi: 10.1016/j.apsusc.2016.10.069. DOI
Zhang C., Wei K., Zhang W., Bai Y., Sun Y., Gu J. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration. ACS Appl. Mater. Interfaces. 2017;9:11082–11094. doi: 10.1021/acsami.6b12826. PubMed DOI
Zinadini S., Akbar A., Rahimi M., Vatanpour V. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014;453:292–301. doi: 10.1016/j.memsci.2013.10.070. DOI
Wang J., Zhao C., Wang T., Wu Z., Li J. Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification. RSC Adv. 2016;85:82174–82185. doi: 10.1039/C6RA17284A. DOI
Chae H., Lee J., Lee C., Kim I., Park P. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 2015;483:128–135. doi: 10.1016/j.memsci.2015.02.045. DOI
He L., Dumée L.F., Feng C., Velleman L., Reis R., She F., Gao W., Kong L. Promoted water transport across graphene oxide–poly (amide) thin film composite membranes and their antibacterial activity. Desalination. 2015;365:126–135. doi: 10.1016/j.desal.2015.02.032. DOI
Ali M.E.A., Wang L., Wang X., Feng X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination. 2016;386:67–76. doi: 10.1016/j.desal.2016.02.034. DOI
Shen L., Xiong S., Wang Y. Graphene oxide incorporated thin- fi lm composite membranes for forward osmosis applications. Chem. Eng. Sci. 2016;143:194–205. doi: 10.1016/j.ces.2015.12.029. DOI
Crock C.A., Rogensues A.R., Shan W., Tarabara V.V. Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res. 2013;47:3984–3996. doi: 10.1016/j.watres.2012.10.057. PubMed DOI
Han Y., Xu Z., Gao C. Ultrathin Graphene Nanofi ltration Membrane for Water Purification. Adv. Funct. Mater. 2013;23:3693–3700. doi: 10.1002/adfm.201202601. DOI
Toroghi M., Raisi A., Aroujalian A. Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications. Polym. Adv. Technol. 2014;25:711–722. doi: 10.1002/pat.3275. DOI
Zhang M., Zhang K., de Gusseme B., Verstraete W. Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res. 2012;46:2077–2087. doi: 10.1016/j.watres.2012.01.015. PubMed DOI
Alpatova A., Kim E.S., Sun X., Hwang G., Liu Y., El-Din M.G. Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition. J. Membr. Sci. 2013;444:449–460. doi: 10.1016/j.memsci.2013.05.034. DOI
Ahmad Rehan Z., Gzara L., Bahadar Khan S., A Alamry K., El-Shahawi M.S., H Albeirutty M., Figoli A., Drioli E., M Asiri A. Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Pat. Nanotechnol. 2016;10:231–251. doi: 10.2174/1872210510666160429145228. PubMed DOI
Sile-Yuksel M., Tas B., Koseoglu-Imer D.Y., Koyuncu I. Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism. Desalination. 2014;347:120–130. doi: 10.1016/j.desal.2014.05.022. DOI
Koseoglu-Imer D.Y., Kose B., Altinbas M., Koyuncu I. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Membr. Sci. 2013;428:620–628. doi: 10.1016/j.memsci.2012.10.046. DOI
Hoek E.M.V., Ghosh A.K., Huang X., Liong M., Zink J.I. Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination. 2011;283:89–99. doi: 10.1016/j.desal.2011.04.008. DOI
Andrade P.F., de Faria A.F., Quites F.J., Oliveira S.R., Alves O.L., Arruda M.A.Z., Gonçalves M.d.C. Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles. Cellulose. 2015;22:3895–3906. doi: 10.1007/s10570-015-0752-6. DOI
Zhang Y., Wan Y., Shi Y., Pan G., Yan H., Xu J., Guo M., Qin L., Liu Y. Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling. J. Polym. Res. 2016;23:105. doi: 10.1007/s10965-016-0992-7. DOI
Ben-Sasson M., Lu X., Bar-Zeev E., Zodrow K.R., Nejati S., Qi G., Giannelis E.P., Elimelech M. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 2014;62:260–270. doi: 10.1016/j.watres.2014.05.049. PubMed DOI
Yang Z., Wu Y., Wang J., Cao B., Tang C.Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 2016;50:9543–9550. doi: 10.1021/acs.est.6b01867. PubMed DOI
Ahmad A., Jamshed F., Riaz T., Sabad-E-Gul, Waheed S., Sabir A., Alanezi A.A., Adrees M., Jamil T. Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination. Carbohydr. Polym. 2016;149:207–216. doi: 10.1016/j.carbpol.2016.04.104. PubMed DOI
Liao Y., Wang R., Fane A.G. Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J. Membr. Sci. 2013;440:77–87. doi: 10.1016/j.memsci.2013.04.006. DOI
Zhang S., Qiu G., Ting Y.P., Chung T.S. Silver-PEGylated dendrimer nanocomposite coating for anti-fouling thin film composite membranes for water treatment. Colloids Surf. A. 2013;436:207–214. doi: 10.1016/j.colsurfa.2013.06.027. DOI
Liu X., Foo L.X., Li Y., Lee J.Y., Cao B., Tang C.Y. Fabrication and characterization of nanocomposite pressure retarded osmosis (PRO) membranes with excellent anti-biofouling property and enhanced water permeability. Desalination. 2016;389:137–148. doi: 10.1016/j.desal.2016.01.037. DOI
Zhang M., Field R.W., Zhang K. Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J. Membr. Sci. 2014;471:274–284. doi: 10.1016/j.memsci.2014.08.021. DOI
Liu S., Fang F., Wu J., Zhang K. The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination. 2015;375:121–128. doi: 10.1016/j.desal.2015.08.007. DOI
Liu S., Zhang M., Fang F., Cui L., Wu J., Field R., Zhang K. Biogenic silver nanocomposite TFC nanofiltration membrane with antifouling properties. Desalin. Water Treat. 2016;57:10560–10571. doi: 10.1080/19443994.2015.1040854. DOI
Xu J., Feng X., Chen P., Gao C. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. J. Membr. Sci. 2012;413–414:62–69. doi: 10.1016/j.memsci.2012.04.004. DOI
Akar N., Asar B., Dizge N., Koyuncu I. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J. Membr. Sci. 2013;437:216–226. doi: 10.1016/j.memsci.2013.02.012. DOI
Kar S., Subramanian M., Ghosh A.K., Bindal R.C., Prabhakar S., Nuwad J., Pillai C.G.S., Chattopadhyay S., Tewaria P.K. Potential of nanoparticles for water purification: A case study on anti-biofouling behaviour of metal based polymeric nanocomposite membrane. Desalin. Water Treat. 2011;27:224–230. doi: 10.5004/dwt.2011.1967. DOI
Xu J., Zhang L., Gao X., Bie H., Fu Y., Gao C. Constructing antimicrobial membrane surfaces with polycation-copper(II) complex assembly for efficient seawater softening treatment. J. Membr. Sci. 2015;491:28–36. doi: 10.1016/j.memsci.2015.05.017. DOI
Ben-Sasson M., Lu X., Nejati S., Jaramillo H., Elimelech M. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination. 2016;388:1–8. doi: 10.1016/j.desal.2016.03.005. DOI
Zhang A., Zhang Y., Pan G., Xu J., Yan H., Liu Y. In situ formation of copper nanoparticles in carboxylated chitosan layer: Preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties. Sep. Purif. Technol. 2017;176:164–172. doi: 10.1016/j.seppur.2016.12.006. DOI
Ben-Sasson M., Zodrow K.R., Genggeng Q., Kang Y., Giannelis E.P., Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol. 2014;48:384–393. doi: 10.1021/es404232s. PubMed DOI
Madaeni S.S., Zinadini S., Vatanpour V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci. 2011;380:155–162. doi: 10.1016/j.memsci.2011.07.006. DOI
Teow Y.H., Ooi B.S., Ahmad A.L., Lim J.K. Mixed-Matrix Membrane for Humic Acid Removal: Influence of Different Types of TiO2 on Membrane Morphology and Performance. Int. J. Chem. Eng. Appl. 2012;3:374–379. doi: 10.7763/IJCEA.2012.V3.222. DOI
Rajaeian B., Heitz A., Tade M.O., Liu S. Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J. Membr. Sci. 2015;485:48–59. doi: 10.1016/j.memsci.2015.03.009. DOI
Ngang H.P., Ooi B.S., Ahmad A.L., Lai S.O. Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 2012;197:359–367. doi: 10.1016/j.cej.2012.05.050. DOI
Méricq J.-P., Mendret J., Brosillon S., Faur C. High performance PVDF-TiO2 membranes for water treatment. Chem. Eng. Sci. 2015;123:283–291. doi: 10.1016/j.ces.2014.10.047. DOI
Pi J.K., Yang H.C., Wan L.S., Wu J., Xu Z.K. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J. Membr. Sci. 2016;500:8–15. doi: 10.1016/j.memsci.2015.11.014. DOI
Mollahosseini A., Rahimpour A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. J. Ind. Eng. Chem. 2014;20:1261–1268. doi: 10.1016/j.jiec.2013.07.002. DOI
Abedini R., Mousavi S.M., Aminzadeh R. A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: Preparation, characterization and permeation study. Desalination. 2011;277:40–45. doi: 10.1016/j.desal.2011.03.089. DOI
Ngo T.H.A., Nguyen D.T., Do K.D., Nguyen T.T.M., Mori S., Tran D.T. Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles. J. Sci. Adv. Mater. Devices. 2016;1:468–475. doi: 10.1016/j.jsamd.2016.10.002. DOI
Kim S.J., Lee P.S., Bano S., Park Y.I., Nam S.E., Lee K.H. Effective incorporation of TiO2 nanoparticles into polyamide thin-film composite membranes. J. Appl. Polym. Sci. 2016;133 doi: 10.1002/app.43383. DOI
Amini M., Rahimpour A., Jahanshahi M. Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes. Desalin. Water Treat. 2016;57:14013–14023. doi: 10.1080/19443994.2015.1065441. DOI
Emadzadeh D., Lau W.J., Matsuura T., Rahbari-Sisakht M., Ismail A.F. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chem. Eng. J. 2014;237:70–80. doi: 10.1016/j.cej.2013.09.081. DOI
Moghadam F., Omidkhah M.R., Vasheghani-Farahani E., Pedram M.Z., Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep. Purif. Technol. 2011;77:128–136. doi: 10.1016/j.seppur.2010.11.032. DOI
Hu W., Yin J., Deng B., Hu Z. Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing. Bioresour. Technol. 2015;193:135–141. doi: 10.1016/j.biortech.2015.06.070. PubMed DOI
Sotto A., Boromand A., Balta S., Kim J., van der Bruggen B. Doping of polyethersulfone nanofiltration membranes: Antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J. Mater. Chem. 2011;21:10311. doi: 10.1039/c1jm11040c. DOI
Kim E.S., Hwang G., El-Din M.G., Liu Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 2012;394–395:37–48. doi: 10.1016/j.memsci.2011.11.041. DOI
Ahmed F., Santos C.M., Mangadlao J., Advincula R., Rodrigues D.F. Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: Performance and toxicity testing. Water Res. 2013;47:3966–3975. doi: 10.1016/j.watres.2012.10.055. PubMed DOI
Daraei P., Madaeni S.S., Ghaemi N., Khadivi M.A., Astinchap B., Moradian R. Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Membr. Sci. 2013;444:184–191. doi: 10.1016/j.memsci.2013.05.020. DOI
Kim E.S., Liu Y., Gamal El-Din M. An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. J. Membr. Sci. 2013;429:418–427. doi: 10.1016/j.memsci.2012.11.077. DOI
Shah P., Murthy C.N. Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Membr. Sci. 2013;437:90–98. doi: 10.1016/j.memsci.2013.02.042. DOI
Shen J.N., Yu C.C., Ruan H.M., Gao C.J., van der Bruggen B. Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J. Membr. Sci. 2013;442:18–26. doi: 10.1016/j.memsci.2013.04.018. DOI
Grosso V., Vuono D., Bahattab M.A., Di Profio G., Curcio E., Al-Jilil S.A., Alsubaie F., Alfife M., Nagy J.B., Drioli E., et al. Polymeric and mixed matrix polyimide membranes. Sep. Purif. Technol. 2014;132:684–696. doi: 10.1016/j.seppur.2014.06.023. DOI
Sianipar M., Kim S.H., Min C., Tijing L.D., Shon H.K. Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J. Ind. Eng. Chem. 2016;34:364–373. doi: 10.1016/j.jiec.2015.11.025. DOI
Khalid A., Abdel-Karim A., Atieh M.A., Javed S., McKay G. PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Sep. Purif. Technol. 2018;190:165–176. doi: 10.1016/j.seppur.2017.08.055. DOI
Mulopo J. Bleach plant effluent treatment in anaerobic membrane bioreactor (AMBR) using carbon nanotube/polysulfone nanocomposite membranes. J. Environ. Chem. Eng. 2017;5:4381–4387. doi: 10.1016/j.jece.2017.08.027. DOI
Fontananova E., Grosso V., Aljlil S.A., Bahattab M.A., Vuono D., Nicoletta F.P., Curcio E., Drioli E., di Profio G. Effect of functional groups on the properties of multiwalled carbon nanotubes/polyvinylidenefluoride composite membranes. J. Membr. Sci. 2017;541:198–204. doi: 10.1016/j.memsci.2017.07.002. DOI
Ghasemzadeh G., Momenpour M., Omidi F., Hosseini M.R., Ahani M., Barzegari A. Applications of nanomaterials in water treatment and environmental remediation. Front. Environ. Sci. Eng. 2014;8:471–482. doi: 10.1007/s11783-014-0654-0. DOI
Park J.-Y., Lee C., Jung K.-W., Jung D. Structure Related Photocatalytic Properties of TiO2. Bull. Korean Chem. Soc. 2009;30:402–404.
Liou J.W., Chang H.H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch. Immunol. Ther. Exp. 2012;60:267–275. doi: 10.1007/s00005-012-0178-x. PubMed DOI
Romanos G.E., Athanasekou C.P., Likodimos V., Aloupogiannis P., Falaras P. Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment. Ind. Eng. Chem. Res. 2013;52:13938–13947. doi: 10.1021/ie303475b. DOI
Nor N.A.M., Jaafar J., Ismail A.F., Mohamed M.A., Rahman M.A., Othman M.H.D., Lau W.J., Yusof N. Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalination. 2016;391:89–97. doi: 10.1016/j.desal.2016.01.015. DOI
Sotto A., Boromand A., Zhang R., Luis P., Arsuaga J.M., Kim J., van der Bruggen B. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes. J. Colloid Interface Sci. 2011;363:540–550. doi: 10.1016/j.jcis.2011.07.089. PubMed DOI
Vatanpour V., Madaeni S.S., Khataee A.R., Salehi E., Zinadini S., Monfared H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination. 2012;292:19–29. doi: 10.1016/j.desal.2012.02.006. DOI
Teow Y.H., Ahmad A.L., Lim J.K., Ooi B.S. Studies on the surface properties of mixed-matrix membrane and its antifouling properties for humic acid removal. J. Appl. Polym. Sci. 2013;128:3184–3192. doi: 10.1002/app.38494. DOI
Zhang R.X., Braeken L., Luis P., Wang X.L., van der Bruggen B. Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine. J. Membr. Sci. 2013;437:179–188. doi: 10.1016/j.memsci.2013.02.059. DOI
Zhang C., Huang M., Meng L., Li B., Cai T. Electrospun polysulfone (PSf)/titanium dioxide (TiO2) nanocomposite fibers as substrates to prepare thin film forward osmosis membranes. J. Chem. Technol. Biotechnol. 2017;92:2090–2097. doi: 10.1002/jctb.5204. DOI
Zhang W., Zhang Y., Fan R., Lewis R. A facile TiO2/PVDF composite membrane synthesis and their application in water purification. J. Nanopart. Res. 2016;18 doi: 10.1007/s11051-015-3281-1. DOI
Zapata P.A., Larrea M., Tamayo L., Rabagliati F.M., Azócar M.I., Páez M. Polyethylene/silver-nanofiber composites: A material for antibacterial films. Mater. Sci. Eng. C. 2016;69:1282–1289. doi: 10.1016/j.msec.2016.08.039. PubMed DOI
Gorchev H.G., Ozolins G. WHO guidelines for drinking-water quality. WHO Chron. 2008;38:564. doi: 10.1016/S1462-0758(00)00006-6. PubMed DOI
Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI
López-Heras M., Theodorou I.G., Leo B.F., Ryan M.P., Porter A.E. Towards understanding the antibacterial activity of Ag nanoparticles: Electron microscopy in the analysis of the materials-biology interface in the lung. Environ. Sci. Nano. 2015;2:312–326. doi: 10.1039/C5EN00051C. DOI
Wei L., Lu J., Xu H., Patel A., Chen Z.S., Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC
Koseoglu-Imer D., Koyuncu I. Fabrication and application areas of mixed matrix flat-sheet membranes. In: Figoli A., Hoinkis J., Altinkaya S.A., Bundschuh J., editors. Application of Nanotechnology in Membranes for Water Treatment. CRC Press Taylor & Francis Group; London, UK: 2017.
Guo L., Yuan W., Lu Z., Li C.M. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf. A. 2013;439:69–83. doi: 10.1016/j.colsurfa.2012.12.029. DOI
Cao X., Tang M., Liu F., Nie Y., Zhao C. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids Surf. B. 2010;81:555–562. doi: 10.1016/j.colsurfb.2010.07.057. PubMed DOI
Zhu X., Bai R., Wee K.H., Liu C., Tang S.L. Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances. J. Membr. Sci. 2010;363:278–286. doi: 10.1016/j.memsci.2010.07.041. DOI
Haider M.S., Shao G.N., Imran S.M., Park S.S., Abbas N., Tahir M.S., Hussain M., Bae W., Kim H.T. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng. C. 2016;62:732–745. doi: 10.1016/j.msec.2016.02.025. PubMed DOI
Biswas P., Bandyopadhyaya R. Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module. J. Colloid Interface Sci. 2017;491:13–26. doi: 10.1016/j.jcis.2016.11.060. PubMed DOI
Mollahosseini A., Rahimpour A. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties. Biofouling. 2013;29:537–548. doi: 10.1080/08927014.2013.777953. PubMed DOI
Andrade P.F., de Faria A.F., Oliveira S.R., Arruda M.A.Z., Gonçalves M.d.C. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res. 2015;81:333–342. doi: 10.1016/j.watres.2015.05.006. PubMed DOI
Tang X., Cao X. Preparation and characterization of antibacterial poly(vinylidene fluoride)-silver composites. High Perform. Polym. 2012;24:135–139. doi: 10.1177/0954008311432774. DOI
Zirehpour A., Rahimpour A., Shamsabadi A.A., Sharifian M.G., Soroush M. Mitigation of Thin-Film Composite Membrane Biofouling via Immobilizing Nano-Sized Biocidal Reservoirs in the Membrane Active Layer. Environ. Sci. Technol. 2017;51:5511–5522. doi: 10.1021/acs.est.7b00782. PubMed DOI
Varkey A.J., Dlamini D. Point-of-use water purifcation using clay pot water flters and copper mesh. Water SA. 2012;38:721–726. doi: 10.4314/wsa.v38i5.10. DOI
Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents. 2009;33:587–590. doi: 10.1016/j.ijantimicag.2008.12.004. PubMed DOI
Tamayo L., Azócar M., Kogan M., Riveros A., Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Eng. C. 2016;69:1391–1409. doi: 10.1016/j.msec.2016.08.041. PubMed DOI
Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–716. doi: 10.1016/j.actbio.2007.11.006. PubMed DOI
Yoon K.Y., Byeon J.H., Park J.H., Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 2007;373:572–575. doi: 10.1016/j.scitotenv.2006.11.007. PubMed DOI
Shao W., Wang S., Wu J., Huang M., Liu H., Min H. Synthesis and antimicrobial activity of copper nanoparticle loaded regenerated bacterial cellulose membranes. RSC Adv. 2016;6:65879–65884. doi: 10.1039/C6RA07984A. DOI
Hausman R., Gullinkala T., Escobar I.C. Development of copper-charged polypropylene feedspacers for biofouling control. J. Membr. Sci. 2010;358:114–121. doi: 10.1016/j.memsci.2010.04.033. DOI
Araújo P.A., Miller D.J., Correia P.B., van Loosdrecht M.C.M., Kruithof J.C., Freeman B.D., Paul D.R., Vrouwenvelder J.S. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination. 2012;295:1–10. doi: 10.1016/j.desal.2012.02.026. DOI
Shen L., Bian X., Lu X., Shi L., Liu Z., Chen L., Hou Z., Fan K. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination. 2012;293:21–29. doi: 10.1016/j.desal.2012.02.019. DOI
Ma W., Soroush A., Luong T.V., Brennan G., Rahaman M.S., Asadishad B., Tufenkji N. Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Res. 2016;99:188–199. doi: 10.1016/j.watres.2016.04.042. PubMed DOI
Leo C.P., Lee W.P.C., Ahmad A.L., Mohammad A.W. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep. Purif. Technol. 2012;89:51–56. doi: 10.1016/j.seppur.2012.01.002. DOI
Lin W., Xu Y., Ma Y., Shannon K.B., Chen D. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanopart. Res. 2009;11:25–39. doi: 10.1007/s11051-008-9419-7. DOI
Jhaveri J.H., Murthy Z.V.P., Jhaveri J.H., Murthy Z.V.P. Nanocomposite membranes. Desalin. Water Treat. 2016;57:26803–26819. doi: 10.1080/19443994.2015.1120687. DOI
Anjum M., Miandad R., Waqas M., Gehany F., Barakat M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.10.004. DOI
Gupta V.K., Tyagi I., Sadegh H., Shahryari-ghoshekandi R. Nanoparticles as Adsorbent; A Positive Approach for Removal of Noxious Metal Ions: A Review. Sci. Technol. Dev. 2015;34:195–214. doi: 10.3923/std.2015.195.214. DOI
Wang Y., Yang L., Luo G., Dai Y. Preparation of cellulose acetate membrane filled with metal oxide particles for the pervaporation separation of methanol/methyl tert-butyl ether mixtures. Chem. Eng. J. 2009;146:6–10. doi: 10.1016/j.cej.2008.05.009. DOI
Ionita M., Pandele A.M., Crica L., Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites Part B. 2014;59:133–139. doi: 10.1016/j.compositesb.2013.11.018. DOI
Enotiadis A., Angjeli K., Baldino N., Nicotera I. Graphene-Based Nafi on Nanocomposite Membranes: Enhanced Proton Transport and Water Retention by Novel Organo-functionalized Graphene Oxide Nanosheets. Small. 2012;8:3338–3349. doi: 10.1002/smll.201200609. PubMed DOI
Liu G., Han K., Ye H., Zhu C., Gao Y., Liu Y., Zhou Y. Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chem. Eng. J. 2017;320:74–80. doi: 10.1016/j.cej.2017.03.024. DOI
Jhaveri J.H., Murthy Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination. 2016;379:137–154. doi: 10.1016/j.desal.2015.11.009. DOI
An D., Yang L., Wang T., Liu B. Separation Performance of Graphene Oxide Membrane in Aqueous Solution. Ind. Eng. Chem. Res. 2016;55:4803–4810. doi: 10.1021/acs.iecr.6b00620. DOI
Sophia A.C., Lima E.C., Allaudeen N., Rajan S., Sophia A.C., Lima E.C., Allaudeen N., Rajan S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater—A review. Desalin. Water Treat. 2016;3994:1–14. doi: 10.1080/19443994.2016.1172989. DOI
Zhang J., Xu Z., Shan M., Zhou B., Li Y., Li B. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fl uoride ultra fi ltration membranes. J. Membr. Sci. 2013;448:81–92. doi: 10.1016/j.memsci.2013.07.064. DOI
Zhang L., Lu Y., Liu Y., Li M., Zhao H., Hou L. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater. J. Hazard. Mater. 2016;320:187–193. doi: 10.1016/j.jhazmat.2016.08.020. PubMed DOI
Gao P., Liu Z., Tai M., Delai D., Ng W. Applied Catalysis B: Environmental Multifunctional graphene oxide—TiO2 microsphere hierarchical membrane for clean water production. Appl. Catal. B Environ. 2013;138–139:17–25. doi: 10.1016/j.apcatb.2013.01.014. DOI
Xu C., Cui A., Xu Y., Fu X. Graphene oxide—TiO2 composite filtration membranes and their potential application for water purification. Carbon. 2013;62:465–471. doi: 10.1016/j.carbon.2013.06.035. DOI
Zhao C., Lv J., Xu X., Zhang G., Yang Y., Yang F. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment. J. Colloid Interface Sci. 2017;505:341–351. doi: 10.1016/j.jcis.2017.05.074. PubMed DOI
Ghasemi M., Marjani A., Mahmoudian M., Farhadi K. Grafting of diallyldimethylammonium chloride on graphene oxide by RAFT polymerization for modification of nanocomposite polysulfone membranes using in water treatment. Chem. Eng. J. 2017;309:206–221. doi: 10.1016/j.cej.2016.10.008. DOI
Yin J., Deng B. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 2015;479:256–275. doi: 10.1016/j.memsci.2014.11.019. DOI
Xu Z., Zhang J., Shan M., Li Y., Li B., Niu J. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fl uoride ultra fi ltration membranes. J. Membr. Sci. 2014;458:1–13. doi: 10.1016/j.memsci.2014.01.050. DOI
Zhang P., Gong J., Zeng G., Deng C., Yang H., Liu H. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 2017;322:657–666. doi: 10.1016/j.cej.2017.04.068. DOI
Jiang Y., Wang W., Liu D., Nie Y., Li W., Wu J., Zhang F. Engineered Crumpled Graphene Oxide Nanocomposite Membrane Assemblies for Advanced Water Treatment Processes. Environ. Sci. Technol. 2015;49:6846–6854. doi: 10.1021/acs.est.5b00904. PubMed DOI
Jiang Y., Liu D., Cho M., Lee S.S., Zhang F., Biswas P., Fortner J.D. In Situ Photocatalytic Synthesis of Ag Nanoparticles (nAg) by Crumpled Graphene Oxide Composite Membranes for Filtration and Disinfection Applications. Environ. Sci. Technol. 2016;50:2514–2521. doi: 10.1021/acs.est.5b04584. PubMed DOI
Liang B., Zhang P., Wang J., Qu J., Wang L., Wang X., Guan C., Pan K. Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. Carbon. 2016;103:94–100. doi: 10.1016/j.carbon.2016.03.001. DOI
Sun X., Qin J., Xia P., Guo B., Yang C., Song C., Wang S. Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 2015;281:53–59. doi: 10.1016/j.cej.2015.06.059. DOI
Liu Q., Xu G. Graphene oxide (GO) as functional material in tailoring polyamide thin fi lm composite (PA-TFC) reverse osmosis (RO) membranes. Desalination. 2016;394:162–175. doi: 10.1016/j.desal.2016.05.017. DOI
Yin J., Zhu G., Deng B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination. 2016;379:93–101. doi: 10.1016/j.desal.2015.11.001. DOI
Kim W., Nair S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 2013;104:908–924. doi: 10.1016/j.ces.2013.09.047. DOI
Gugliuzza A., Politano A., Drioli E. The advent of graphene and other two-dimensional materials in membrane science and technology. Curr. Opin. Chem. Eng. 2017;16:78–85. doi: 10.1016/j.coche.2017.03.003. DOI
Aghigh A., Alizadeh V., Wong H.Y., Islam S., Amin N., Zaman M. Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination. 2015;365:389–397. doi: 10.1016/j.desal.2015.03.024. DOI
Gao P., Tai M.H., Delai D. Hierarchical TiO2/V2O5 Multifunctional Membrane for Water Purification. ChemPlusChem. 2013;78:1475–1482. doi: 10.1002/cplu.201300264. PubMed DOI
Yang G.C.C., Chen Y., Yang H., Yen C. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electro fi ltration process. Chemosphere. 2016;155:274–282. doi: 10.1016/j.chemosphere.2016.04.060. PubMed DOI
Yin J., Kim E., Yang J., Deng B. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J. Membr. Sci. 2012;423–424:238–246. doi: 10.1016/j.memsci.2012.08.020. DOI
Wang S., Li H., Xu L. Application of zeolite MCM-22 for basic dye removal from wastewater. J. Colloid Interface Sci. 2006;295:71–78. doi: 10.1016/j.jcis.2005.08.006. PubMed DOI
Garofalo A., Donato L., Drioli E., Criscuoli A., Carnevale M.C., Alharbi O., Aljlil S.A., Algieri C. Supported MFI zeolite membranes by cross flow filtration for water treatment. Sep. Purif. Technol. 2014;137:28–35. doi: 10.1016/j.seppur.2014.09.028. DOI
Garofalo A., Carnevale M.C., Donato L., Drioli E., Alharbi O., Aljlil S.A., Criscuoli A., Algieri C. Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation. Desalination. 2016;397:205–212. doi: 10.1016/j.desal.2016.07.010. DOI
Zhu B., Myat D.T., Shin J.W., Na Y.H., Moon I.S., Connor G., Maeda S., Morris G., Gray S., Duke M. Application of robust MFI-type zeolite membrane for desalination of saline wastewater. J. Membr. Sci. 2015;475:167–174. doi: 10.1016/j.memsci.2014.09.058. DOI
Drobek M., Figoli A., Santoro S., Navascués N., Motuzas J., Simone S., Algieri C., Gaeta N., Querze L., Trotta A., et al. PVDF-MFI mixed matrix membranes as VOCs adsorbers. Microporous Mesoporous Mater. 2015;207:126–133. doi: 10.1016/j.micromeso.2015.01.005. DOI
Swenson P., Tanchuk B., Gupta A., An W., Kuznicki S.M. Pervaporative desalination of water using natural zeolite membranes. Desalination. 2012;285:68–72. doi: 10.1016/j.desal.2011.09.035. DOI
Gascon J., Kapteijn F., Zornoza B., Sebastián V., Casado C., Coronas J. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chem. Mater. 2012;24:2829–2844. doi: 10.1021/cm301435j. DOI
Kang Y., Emdadi L., Lee M.J., Liu D., Mi B. Layer-by-Layer Assembly of Zeolite/Polyelectrolyte Nanocomposite Membranes with High Zeolite Loading. Environ. Sci. Technol. Lett. 2014;1:504–509. doi: 10.1021/ez500335q. DOI
Huang H., Qu X., Dong H., Zhang L., Chen H. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane. RSC Adv. 2013;3:8203. doi: 10.1039/c3ra40960k. DOI
Pendergast M.M., Ghosh A.K., Hoek E.M.V. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination. 2013;308:180–185. doi: 10.1016/j.desal.2011.05.005. DOI
Dong J., Xu Z., Yang S., Murad S., Hinkle K.R. Zeolite membranes for ion separations from aqueous solutions. Curr. Opin. Chem. Eng. 2015;8:15–20. doi: 10.1016/j.coche.2015.01.004. DOI
Dong L.X., Huang X.C., Wang Z., Yang Z., Wang X.M., Tang C.Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Sep. Purif. Technol. 2016;166:230–239. doi: 10.1016/j.seppur.2016.04.043. DOI
Huang H., Qu X., Ji X., Gao X., Zhang L., Chen H., Hou L. Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites. J. Mater. Chem. A. 2013;1:11343. doi: 10.1039/c3ta12199b. DOI
Dong H., Zhao L., Zhang L., Chen H., Gao C., Ho W.S.W. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination. J. Membr. Sci. 2015;476:373–383. doi: 10.1016/j.memsci.2014.11.054. DOI
Ahmad A.L., Majid M.A., Ooi B.S. Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination. 2011;268:266–269. doi: 10.1016/j.desal.2010.10.017. DOI
Huang J., Zhang K., Wang K., Xie Z., Ladewig B., Wang H. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 2012;423–424:362–370. doi: 10.1016/j.memsci.2012.08.029. DOI
Niksefat N., Jahanshahi M., Rahimpour A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination. 2014;343:140–146. doi: 10.1016/j.desal.2014.03.031. DOI
Kebria M.R.S., Jahanshahi M., Rahimpour A. SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Desalination. 2015;367:255–264. doi: 10.1016/j.desal.2015.04.017. DOI
Zha S., Gusnawan P., Zhang G., Liu N., Lee R., Yu J. Experimental study of PES/SiO2 based TFC hollow fiber membrane modules for oilfield produced water desalination with low-pressure nanofiltration process. J. Ind. Eng. Chem. 2016;44:118–125. doi: 10.1016/j.jiec.2016.08.016. DOI
Saleh T.A., Gupta V.K. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 2012;89:245–251. doi: 10.1016/j.seppur.2012.01.039. DOI
Mojtahedi Y.M., Mehrnia M.R., Homayoonfal M. Fabrication of Al2O3/PSf nanocomposite membranes: Efficiency comparison of coating and blending methods in modification of filtration performance. Desalin. Water Treat. 2013;51:6736–6742. doi: 10.1080/19443994.2013.769918. DOI
Dong H., Xiao K., Li X., Ren Y., Guo S. Preparation of PVDF/Al2O3 hybrid membrane via the sol–gel process and characterization of the hybrid membrane. Desalin. Water Treat. 2013;51:3685–3690. doi: 10.1080/19443994.2013.781986. DOI
Homayoonfal M., Mehrnia M.R., Rahmani S., Mojtahedi Y.M. Fabrication of alumina/polysulfone nanocomposite membranes with biofouling mitigation approach in membrane bioreactors. J. Ind. Eng. Chem. 2014;22:357–367. doi: 10.1016/j.jiec.2014.07.031. DOI
Ma B., Hu C., Wang X., Xie Y., Jefferson W.A., Liu H., Qu J. Effect of aluminum speciation on ultrafiltration membrane fouling by low dose aluminum coagulation with bovine serum albumin (BSA) J. Membr. Sci. 2015;492:88–94. doi: 10.1016/j.memsci.2015.05.043. DOI
Demirel E., Zhang B., Papakyriakou M., Xia S., Chen Y. Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. J. Membr. Sci. 2017;529:170–184. doi: 10.1016/j.memsci.2017.01.051. DOI
Zhao H., Chen S., Quan X., Yu H., Zhao H. Integration of microfiltration and visible-light-driven photocatalysis on g-C 3 N 4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Appl. Catal. B Environ. 2016;194:134–140. doi: 10.1016/j.apcatb.2016.04.042. DOI
Li B., Cao H. ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 2011;21:3346–3349. doi: 10.1039/C0JM03253K. DOI
Gehrke I., Geiser A., Somborn-Schulz A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 2015;8:1–17. doi: 10.2147/NSA.S43773. PubMed DOI PMC
Qu X., Alvarez P.J.J., Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47:3931–3946. doi: 10.1016/j.watres.2012.09.058. PubMed DOI
Boccuni F., Gagliardi D., Ferrante R., Rondinone B.M., Iavicoli S. Measurement techniques of exposure to nanomaterials in the workplace for low- and medium-income countries: A systematic review. Int. J. Hyg. Environ. Health. 2017;220:1089–1097. doi: 10.1016/j.ijheh.2017.06.003. PubMed DOI