• This record comes from PubMed

Progress of Nanocomposite Membranes for Water Treatment

. 2018 Apr 03 ; 8 (2) : . [epub] 20180403

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

See more in PubMed

Castro-Muñoz R., Yáñez-Fernández J., Fíla V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016;213:753–762. doi: 10.1016/j.foodchem.2016.07.030. PubMed DOI

Van der Bruggen B., Curcio E., Drioli E. Process intensification in the textile industry: The role of membrane technology. J. Environ. Manag. 2004;73:267–274. doi: 10.1016/j.jenvman.2004.07.007. PubMed DOI

Alzahrani S., Wahab A. Journal of Water Process Engineering Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process Eng. 2014;4:107–133. doi: 10.1016/j.jwpe.2014.09.007. DOI

Kim J., van der Bruggen B. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 2010;158:2335–2349. doi: 10.1016/j.envpol.2010.03.024. PubMed DOI

Castro-Muñoz R., Barragán-Huerta B.E., Fíla V., Denis P.C., Ruby-Figueroa R. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valorization. 2018;9:513–529. doi: 10.1007/s12649-017-0003-1. DOI

Van der Bruggen B., Lejon L., Vandecasteele C. Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environ. Sci. Technol. 2003;37:3733–3738. doi: 10.1021/es0201754. PubMed DOI

Rajesha B.J., Vishaka V.H., Balakrishna G.R., Padaki M., Nazri N.A.M. Effective composite membranes of cellulose acetate for removal of benzophenone-3. J. Water Process Eng. 2017 doi: 10.1016/j.jwpe.2017.06.003. in press. DOI

Castro-Muñoz V., Rodríguez-Romero R., Yáñez-Fernández V., Fíla J. Water production from food processing wastewaters by integrated membrane systems: Sustainable approach. Water Technol. Sci. 2017;8:129–136. doi: 10.24850/j-tyca-2017-06-09. DOI

Lalia B.S., Kochkodan V., Hashaikeh R., Hilal N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination. 2013;326:77–95. doi: 10.1016/j.desal.2013.06.016. DOI

Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47:2217–2262. doi: 10.1016/j.polymer.2006.01.084. DOI

Yong L., Wahab A., Peng C., Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination. 2013;308:15–33. doi: 10.1016/j.desal.2010.11.033. DOI

Environ E., Pendergast M.M., Hoek E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011;4:1946–1971. doi: 10.1039/c0ee00541j. DOI

Hana N., Abu H., Tan W.L. Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer International Publishing AG; Cham, Switzerland: 2016. Natural Composite Membranes for Water Remediation: Toward a Sustainable Tomorrow; pp. 25–49. DOI

Nackaerts R. Are Membranes Implemented with Nanoparticles Able to Provide a Breakthrough in Water Purification? University of Johannesburg; Johannesburg, South Africa: 2014.

Flemming H.C. Reverse osmosis membrane biofouling. Exp. Ther. Fluid Sci. 1997;14:382–391. doi: 10.1016/S0894-1777(96)00140-9. DOI

Subramani A., Hoek E.M.V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2008;319:111–125. doi: 10.1016/j.memsci.2008.03.025. DOI

Boussu K., Belpaire A., Volodin A., van Haesendonck C., van der Meeren P., Vandecasteele C., van der Bruggen B. Influence of membrane and colloid characteristics on fouling of nanofiltration membranes. J. Membr. Sci. 2007;289:220–230. doi: 10.1016/j.memsci.2006.12.001. DOI

Mohammad A.W., Hilal N., Seman M.N.A. A study on producing composite nanofiltration membranes with optimized properties. Desalination. 2003;158:73–78. doi: 10.1016/S0011-9164(03)00435-1. DOI

Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991;62:165–185. doi: 10.1016/0376-7388(91)80060-J. DOI

Ahmadizadegan H., Esmaielzadeh D., Ranjbar M., Marzban Z. Synthesis and characterization of polyester bionanocomposite membrane with ultrasonic irradiation process for gas permeation and antibacterial activity. Ultrason. Sonochem. 2018;41:538–550. doi: 10.1016/j.ultsonch.2017.10.020. PubMed DOI

Li H., Ding X., Zhang Y., Liu J. Porous Graphene Nanosheets Functionalized Thin Film Nanocomposite Membrane Prepared by Interfacial Polymerization for CO2/N2 Separation. J. Membr. Sci. 2017;543:58–68. doi: 10.1016/j.memsci.2017.08.046. DOI

Jiang C., Markutsya S., Pikus Y., Tsukruk V.V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nat. Mater. 2004;3:721–728. doi: 10.1038/nmat1212. PubMed DOI

Pandey I., Pandey A.K., Agrawal P.C., Das N.R. Synthesis and characterization of dendritic polypyrrole silver nanocomposite and its application as a new urea biosensor. J. Appl. Polym. Sci. 2018;135:45705. doi: 10.1002/app.45705. DOI

Jalani N.H., Dunn K., Datta R. Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim. Acta. 2005;51:553–560. doi: 10.1016/j.electacta.2005.05.016. DOI

Boaretti C., Pasquini L., Sood R., Giancola S., Donnadio A., Roso M., Modesti M., Cavaliere S. Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications. J. Membr. Sci. 2017;545:66–74. doi: 10.1016/j.memsci.2017.09.055. DOI

Chen Z., Holmberg B., Li W., Wang X., Deng W., Munoz R., Yan Y. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem. Mater. 2006;18:5669–5675. doi: 10.1021/cm060841q. DOI

Li Z.H., Zhang H.P., Zhang P., Li G.C., Wu Y.P., Zhou X.D. Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J. Membr. Sci. 2008;322:416–422. doi: 10.1016/j.memsci.2008.05.074. DOI

Yang D., Li J., Jiang Z., Lu L., Chen X. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci. 2009;64:3130–3137. doi: 10.1016/j.ces.2009.03.042. DOI

Sorribas S., Gorgojo P., Téllez C., Coronas J., Livingston A.G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 2013;135:15201–15208. doi: 10.1021/ja407665w. PubMed DOI

Al Aani S., Wright C.J., Atieh M.A., Hilal N. Engineering nanocomposite membranes: Addressing current challenges and future opportunities. Desalination. 2017;401:1–15. doi: 10.1016/j.desal.2016.08.001. DOI

Mueller N.C., van der Bruggen B., Keuter V., Luis P., Melin T., Pronk W., Reisewitz R., Rickerby D., Rios G.M., Wennekes W., et al. Nanofiltration and nanostructured membranes-Should they be considered nanotechnology or not? J. Hazard. Mater. 2012;211–212:275–280. doi: 10.1016/j.jhazmat.2011.10.096. PubMed DOI

Marino A.F.T., Boerrigter M., Faccini M., Chaumette C., Arockiasamy L., Bundschuh J. Photocatalytic activity and synthesis procedures of TiO2 nanoparticles for potential applications in membranes. In: Figoli J.B.A., Hoinkis J., Altinkaya S.A., editors. Application of Nanotechnology in Membranes for Water Treatment. CRC Press, Taylor & Francis Group; Abingdon, UK: 2017.

Madaeni S.S., Ghaemi N., Rajabi H. Advances in Polymeric Membranes for Water Treatment. Elsevier Ltd.; Amsterdam, The Netherlands: 2015. DOI

Kabsch-korbutowicz M., Majewska-nowak K., Winnicki T. Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalination. 1999;126:179–185. doi: 10.1016/S0011-9164(99)00172-1. DOI

Yan L., Shui Y., Bao C. Preparation of poly (vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer. 2005;46:7701–7706. doi: 10.1016/j.polymer.2005.05.155. DOI

Prince J.A., Bhuvana S., Boodhoo K.V.K., Anbharasi V., Singh G. Synthesis and characterization of PEG-Ag immobilized PES hollow fiber ultrafiltration membranes with long lasting antifouling properties. J. Membr. Sci. 2014;454:538–548. doi: 10.1016/j.memsci.2013.12.050. DOI

Shi F., Ma Y., Ma J., Wang P., Sun W. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J. Membr. Sci. 2012;389:522–531. doi: 10.1016/j.memsci.2011.11.022. DOI

Balta S., Sotto A., Luis P., Benea L., van der Bruggen B., Kim J. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J. Membr. Sci. 2012;389:155–161. doi: 10.1016/j.memsci.2011.10.025. DOI

García A., Rodríguez B., Oztürk D., Rosales M., Diaz D.I., Mautner A. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polym. Bull. 2017:1–17. doi: 10.1007/s00289-017-2146-4. DOI

Celik E., Park H., Choi H., Choi H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 2011;45:274–282. doi: 10.1016/j.watres.2010.07.060. PubMed DOI

Xia S., Ni M. Preparation of poly (vinylidene fl uoride) membranes with graphene oxide addition for natural organic matter removal. J. Membr. Sci. 2015;473:54–62. doi: 10.1016/j.memsci.2014.09.018. DOI

Arsuaga J.M., Sotto A., del Rosario G., Martínez A., Molina S., Teli S.B., de Abajo J. Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 2013;428:131–141. doi: 10.1016/j.memsci.2012.11.008. DOI

Yu S., Zuo X., Bao R., Xu X., Wang J., Xu J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer. 2009;50:553–559. doi: 10.1016/j.polymer.2008.11.012. DOI

Alam J., Alhoshan M., Dass L.A., Shukla A.K., Muthumareeswaran M.R., Hussain M., Aldwayyan A.S. Atomic layer deposition of TiO2 film on a polyethersulfone membrane: Separation applications. J. Polym. Res. 2016;23:183. doi: 10.1007/s10965-016-1063-9. DOI

Gzara L., Rehan Z.A., Khan S.B., Alamry K.A., Albeirutty M.H., El-Shahawi M.S., Rashid M.I., Figoli A., Drioli E., Asiri A.M. Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. J. Taiwan Inst. Chem. Eng. 2016;65:405–419. doi: 10.1016/j.jtice.2016.04.012. DOI

Maximous N., Nakhla G., Wan W., Wong K. Performance of a novel ZrO2/PES membrane for wastewater filtration. J. Membr. Sci. 2010;352:222–230. doi: 10.1016/j.memsci.2010.02.021. DOI

Mierzwa C., Arieta V., Verlage M., Carvalho J., Vecitis C.D. Effect of clay nanoparticles on the structure and performance of polyethersulfone ultra fi ltration membranes. Desalination. 2013;314:147–158. doi: 10.1016/j.desal.2013.01.011. DOI

Fathizadeh M., Aroujalian A., Raisi A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci. 2011;375:88–95. doi: 10.1016/j.memsci.2011.03.017. DOI

Filter Cartridges: Water Treatment, (20AD) [(accessed on 15 March 2018)]; Available online: https://www.sterlitech.com/silver-membranes.html.

Filter Cartridges, (n.d.) [(accessed on 15 March 2018)]; Available online: Https://www.lenntech.com/Data-sheets/Atlas-16-WATER-TREATMENT-L.pdf.

Hofs B., Schurer R., Harmsen D.J.H., Ceccarelli C., Beerendonk E.F., Cornelissen E.R. Characterization and performance of a commercial thin film nanocomposite seawater reverse osmosis membrane and comparison with a thin film composite. J. Membr. Sci. 2013;446:68–78. doi: 10.1016/j.memsci.2013.06.007. DOI

LG Chem, (n.d.) [(accessed on 15 March 2018)]; Available online: http://www.lgchem.com.

Le N.L., Nunes S.P. Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 2016;7:1–28. doi: 10.1016/j.susmat.2016.02.001. DOI

Liang S., Xiao K., Mo Y., Huang X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Membr. Sci. 2012;394–395:184–192. doi: 10.1016/j.memsci.2011.12.040. DOI

Zhang X., Wang Y., Liu Y., Xu J., Han Y., Xu X. Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl. Surf. Sci. 2014;316:333–340. doi: 10.1016/j.apsusc.2014.08.004. DOI

Hong J., He Y. Effects of nano sized zinc oxide on the performance of PVDF micro fi ltration membranes. Desalination. 2012;302:71–79. doi: 10.1016/j.desal.2012.07.001. DOI

Ahmad A.L., Abdulkarim A.A., Ismail S., Seng O.B. Optimization of PES/ZnO mixed matrix membrane preparation using response surface methodology for humic acid removal. Korean J. Chem. Eng. 2016;33:997–1007. doi: 10.1007/s11814-015-0221-9. DOI

Chung Y.T., Ba-abbad M.M., Mohammad A.W. Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalin. Water Treat. 2017;57:7801–7811. doi: 10.1080/19443994.2015.1067168. DOI

Ghoul J.E.L., Ghiloufi I., Mir L.E.L., Arabia S. Efficiency of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles. J. Ovonic Res. 2017;13:83–90.

Engineering M., Jia H., Wu Z., Liu N. Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane. Plast. Rubber Compos. 2016;46:1–7. doi: 10.1080/14658011.2016.1245032. DOI

Dipheko T.D., Matabola K.P., Kotlhao K., Moutloali R.M., Klink M. Fabrication and Assessment of ZnO Modified Polyethersulfone Membranes for Fouling Reduction of Bovine Serum Albumin. Int. J. Polym. Sci. 2017;2017:3587019. doi: 10.1155/2017/3587019. DOI

Jo Y.J., Choi E.Y., Choi N.W., Kim C.K. Antibacterial and Hydrophilic Characteristics of Poly (ether sulfone) Composite Membranes Containing Zinc Oxide Nanoparticles Grafted with Hydrophilic Polymers. Ind. Eng. Chem. Res. 2016;55:7801–7809. doi: 10.1021/acs.iecr.6b01510. DOI

Li X., Li J., van der Bruggen B., Sun X., Shen J., Han W., Wang L. RSC Advances membranes functionalized with sol-gel formed. RSC Adv. 2015;5:50711–50719. doi: 10.1039/C5RA05783C. DOI

Escobar I.C., van der Bruggen B. Microfiltration and Ultrafiltration Membrane Science and Technology. J. Appl. Ploym. 2015;132 doi: 10.1002/app.42002. DOI

Zhao S., Yan W., Shi M., Wang Z., Wang J. Improving permeability and antifouling performance of polyethersulfone ultra fi ltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 2015;478:105–116. doi: 10.1016/j.memsci.2014.12.050. DOI

Pintilie S.C., Tiron L.G., Birsan I.G., Ganea D., Balta S. Influence of ZnO Nanoparticle Size and Concentration on the Polysulfone Membrane Performance. Mater. Plast. 2017;54:257–261.

Ronen A., Semiat R., Dosoretz C.G. Impact of ZnO embedded feed spacer on biofilm development in membrane systems. Water Res. 2013;47:6628–6638. doi: 10.1016/j.watres.2013.08.036. PubMed DOI

Rabiee H., Vatanpour V., Hossein M., Abadi D., Zarrabi H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep. Purif. Technol. 2015;156:299–310. doi: 10.1016/j.seppur.2015.10.015. DOI

Bai H., Liu Z., Sun D.D. A hierarchically structured and multifunctional membrane for water treatment. Appl. Catal. B Environ. 2012;111–112:571–577. doi: 10.1016/j.apcatb.2011.11.009. DOI

Bahadar S., Alamry K.A., Bifari E.N., Asiri A.M., Yasir M., Gzara L., Zulfiqar R. Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J. Ind. Eng. Chem. 2015;24:266–275. doi: 10.1016/j.jiec.2014.09.040. DOI

Akin I., Ersoz M. Preparation and characterization of CTA/m-ZnO composite membrane for transport of Rhodamine B. Desalin. Water Treat. 2016;57:3037–3047. doi: 10.1080/19443994.2014.980327. DOI

Tao Y., Mahmoudi E., Wahab A., Benamor A., Johnson D., Hilal N. Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. Desalination. 2017;402:123–132. doi: 10.1016/j.desal.2016.09.030. DOI

Ekambaram K., Doraisamy M. Surface modification of PVDF nanofiltration membrane using Carboxymethylchitosan-Zinc oxide bionanocomposite for the removal of inorganic salts and humic acid. Colloids Surf. A. 2017;525:49–63. doi: 10.1016/j.colsurfa.2017.04.071. DOI

Li N., Tian Y., Zhang J., Sun Z., Zhao J., Zhang J., Zuo W. Precisely-controlled modi fi cation of PVDF membranes with 3D TiO2/ZnO nanolayer: Enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. J. Membr. Sci. 2017;528:359–368. doi: 10.1016/j.memsci.2017.01.048. DOI

Li H., Shi W., Zhu H., Zhang Y., Du Q., Qin X. Effects of Zinc Oxide Nanospheres on the Separation Performance of Hollow Fiber Poly (piperazine-amide) Composite Nanofiltration Membranes. Fibers Polym. 2016;17:836–846. doi: 10.1007/s12221-016-6219-z. DOI

Zhao X., Li J., Liu C. Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer. Desalination. 2017;408:102–109. doi: 10.1016/j.desal.2017.01.021. DOI

Isawi H., El-sayed M.H., Feng X., Shawky H., Abdel M.S. Applied Surface Science Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl. Surf. Sci. 2016;385:268–281. doi: 10.1016/j.apsusc.2016.05.141. DOI

Badrinezhad L., Ghasemi S. Preparation and characterization of polysulfone/graphene oxide nanocomposite membranes for the separation of methylene blue from water. Polym. Bull. 2017;75:469–484. doi: 10.1007/s00289-017-2046-7. DOI

Zhao C., Xu X., Chen J., Yang F. Optimization of preparation conditions of poly (vinylidene fl uoride)/graphene oxide micro fi ltration membranes by the Taguchi experimental design. Desalination. 2014;334:17–22. doi: 10.1016/j.desal.2013.07.011. DOI

Zhao H., Wu L., Zhou Z., Zhang L., Chen H. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys. Chem. Chem. Phys. 2013;15:9084–9092. doi: 10.1039/c3cp50955a. PubMed DOI

Chang X., Wang Z., Quan S., Xu Y., Jiang Z., Shao L. Applied Surface Science Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly (vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl. Surf. Sci. 2014;316:537–548. doi: 10.1016/j.apsusc.2014.07.202. DOI

Wu T., Zhou B., Zhu T., Shi J., Xu Z., Hu C., Wang J. Facile and low-cost approach towards a PVDF ultra fi ltration membrane with enhanced hydrophilicity and antifouling performance via. RSC Adv. 2014;5:7880–7889. doi: 10.1039/C4RA13476A. DOI

Zhao C., Xu X., Chen J., Yang F. Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2013;1:349–354. doi: 10.1016/j.jece.2013.05.014. DOI

Xia S., Yao L., Zhao Y., Li N., Zheng Y. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal. Chem. Eng. J. 2015;280:720–727. doi: 10.1016/j.cej.2015.06.063. DOI

Lee J., Chae H., June Y., Lee K., Lee C., Lee H.H., Kim I., Lee J. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 2013;448:223–230. doi: 10.1016/j.memsci.2013.08.017. DOI

Morales-Torres S., Pastrana-Martı L.M., Figueiredo L., Faria J.L., Silva A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015;7:179–190. doi: 10.1016/j.watres.2015.03.014. PubMed DOI

Kiran S.A., Thuyavan Y.L., Arthanareeswaran G., Matsuura T., Ismail A.F. Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent. Chem. Eng. J. 2016;286:528–537. doi: 10.1016/j.cej.2015.10.091. DOI

Ganesh B.M., Isloor A.M., Ismail A.F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination. 2013;313:199–207. doi: 10.1016/j.desal.2012.11.037. DOI

Goh K., Setiawan L., Wei L., Si R., Fane A.G., Wang R., Chen Y. Graphene oxide as effective selective barriers on a hollow fi ber membrane for water treatment process. J. Membr. Sci. 2015;474:244–253. doi: 10.1016/j.memsci.2014.09.057. DOI

Yang M., Zhao C., Zhang S., Li P., Hou D. Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl. Surf. Sci. 2017;394:149–159. doi: 10.1016/j.apsusc.2016.10.069. DOI

Zhang C., Wei K., Zhang W., Bai Y., Sun Y., Gu J. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration. ACS Appl. Mater. Interfaces. 2017;9:11082–11094. doi: 10.1021/acsami.6b12826. PubMed DOI

Zinadini S., Akbar A., Rahimi M., Vatanpour V. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014;453:292–301. doi: 10.1016/j.memsci.2013.10.070. DOI

Wang J., Zhao C., Wang T., Wu Z., Li J. Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification. RSC Adv. 2016;85:82174–82185. doi: 10.1039/C6RA17284A. DOI

Chae H., Lee J., Lee C., Kim I., Park P. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 2015;483:128–135. doi: 10.1016/j.memsci.2015.02.045. DOI

He L., Dumée L.F., Feng C., Velleman L., Reis R., She F., Gao W., Kong L. Promoted water transport across graphene oxide–poly (amide) thin film composite membranes and their antibacterial activity. Desalination. 2015;365:126–135. doi: 10.1016/j.desal.2015.02.032. DOI

Ali M.E.A., Wang L., Wang X., Feng X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination. 2016;386:67–76. doi: 10.1016/j.desal.2016.02.034. DOI

Shen L., Xiong S., Wang Y. Graphene oxide incorporated thin- fi lm composite membranes for forward osmosis applications. Chem. Eng. Sci. 2016;143:194–205. doi: 10.1016/j.ces.2015.12.029. DOI

Crock C.A., Rogensues A.R., Shan W., Tarabara V.V. Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res. 2013;47:3984–3996. doi: 10.1016/j.watres.2012.10.057. PubMed DOI

Han Y., Xu Z., Gao C. Ultrathin Graphene Nanofi ltration Membrane for Water Purification. Adv. Funct. Mater. 2013;23:3693–3700. doi: 10.1002/adfm.201202601. DOI

Toroghi M., Raisi A., Aroujalian A. Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications. Polym. Adv. Technol. 2014;25:711–722. doi: 10.1002/pat.3275. DOI

Zhang M., Zhang K., de Gusseme B., Verstraete W. Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res. 2012;46:2077–2087. doi: 10.1016/j.watres.2012.01.015. PubMed DOI

Alpatova A., Kim E.S., Sun X., Hwang G., Liu Y., El-Din M.G. Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition. J. Membr. Sci. 2013;444:449–460. doi: 10.1016/j.memsci.2013.05.034. DOI

Ahmad Rehan Z., Gzara L., Bahadar Khan S., A Alamry K., El-Shahawi M.S., H Albeirutty M., Figoli A., Drioli E., M Asiri A. Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Pat. Nanotechnol. 2016;10:231–251. doi: 10.2174/1872210510666160429145228. PubMed DOI

Sile-Yuksel M., Tas B., Koseoglu-Imer D.Y., Koyuncu I. Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism. Desalination. 2014;347:120–130. doi: 10.1016/j.desal.2014.05.022. DOI

Koseoglu-Imer D.Y., Kose B., Altinbas M., Koyuncu I. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Membr. Sci. 2013;428:620–628. doi: 10.1016/j.memsci.2012.10.046. DOI

Hoek E.M.V., Ghosh A.K., Huang X., Liong M., Zink J.I. Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination. 2011;283:89–99. doi: 10.1016/j.desal.2011.04.008. DOI

Andrade P.F., de Faria A.F., Quites F.J., Oliveira S.R., Alves O.L., Arruda M.A.Z., Gonçalves M.d.C. Inhibition of bacterial adhesion on cellulose acetate membranes containing silver nanoparticles. Cellulose. 2015;22:3895–3906. doi: 10.1007/s10570-015-0752-6. DOI

Zhang Y., Wan Y., Shi Y., Pan G., Yan H., Xu J., Guo M., Qin L., Liu Y. Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling. J. Polym. Res. 2016;23:105. doi: 10.1007/s10965-016-0992-7. DOI

Ben-Sasson M., Lu X., Bar-Zeev E., Zodrow K.R., Nejati S., Qi G., Giannelis E.P., Elimelech M. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 2014;62:260–270. doi: 10.1016/j.watres.2014.05.049. PubMed DOI

Yang Z., Wu Y., Wang J., Cao B., Tang C.Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 2016;50:9543–9550. doi: 10.1021/acs.est.6b01867. PubMed DOI

Ahmad A., Jamshed F., Riaz T., Sabad-E-Gul, Waheed S., Sabir A., Alanezi A.A., Adrees M., Jamil T. Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination. Carbohydr. Polym. 2016;149:207–216. doi: 10.1016/j.carbpol.2016.04.104. PubMed DOI

Liao Y., Wang R., Fane A.G. Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J. Membr. Sci. 2013;440:77–87. doi: 10.1016/j.memsci.2013.04.006. DOI

Zhang S., Qiu G., Ting Y.P., Chung T.S. Silver-PEGylated dendrimer nanocomposite coating for anti-fouling thin film composite membranes for water treatment. Colloids Surf. A. 2013;436:207–214. doi: 10.1016/j.colsurfa.2013.06.027. DOI

Liu X., Foo L.X., Li Y., Lee J.Y., Cao B., Tang C.Y. Fabrication and characterization of nanocomposite pressure retarded osmosis (PRO) membranes with excellent anti-biofouling property and enhanced water permeability. Desalination. 2016;389:137–148. doi: 10.1016/j.desal.2016.01.037. DOI

Zhang M., Field R.W., Zhang K. Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J. Membr. Sci. 2014;471:274–284. doi: 10.1016/j.memsci.2014.08.021. DOI

Liu S., Fang F., Wu J., Zhang K. The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination. 2015;375:121–128. doi: 10.1016/j.desal.2015.08.007. DOI

Liu S., Zhang M., Fang F., Cui L., Wu J., Field R., Zhang K. Biogenic silver nanocomposite TFC nanofiltration membrane with antifouling properties. Desalin. Water Treat. 2016;57:10560–10571. doi: 10.1080/19443994.2015.1040854. DOI

Xu J., Feng X., Chen P., Gao C. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. J. Membr. Sci. 2012;413–414:62–69. doi: 10.1016/j.memsci.2012.04.004. DOI

Akar N., Asar B., Dizge N., Koyuncu I. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J. Membr. Sci. 2013;437:216–226. doi: 10.1016/j.memsci.2013.02.012. DOI

Kar S., Subramanian M., Ghosh A.K., Bindal R.C., Prabhakar S., Nuwad J., Pillai C.G.S., Chattopadhyay S., Tewaria P.K. Potential of nanoparticles for water purification: A case study on anti-biofouling behaviour of metal based polymeric nanocomposite membrane. Desalin. Water Treat. 2011;27:224–230. doi: 10.5004/dwt.2011.1967. DOI

Xu J., Zhang L., Gao X., Bie H., Fu Y., Gao C. Constructing antimicrobial membrane surfaces with polycation-copper(II) complex assembly for efficient seawater softening treatment. J. Membr. Sci. 2015;491:28–36. doi: 10.1016/j.memsci.2015.05.017. DOI

Ben-Sasson M., Lu X., Nejati S., Jaramillo H., Elimelech M. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination. 2016;388:1–8. doi: 10.1016/j.desal.2016.03.005. DOI

Zhang A., Zhang Y., Pan G., Xu J., Yan H., Liu Y. In situ formation of copper nanoparticles in carboxylated chitosan layer: Preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties. Sep. Purif. Technol. 2017;176:164–172. doi: 10.1016/j.seppur.2016.12.006. DOI

Ben-Sasson M., Zodrow K.R., Genggeng Q., Kang Y., Giannelis E.P., Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol. 2014;48:384–393. doi: 10.1021/es404232s. PubMed DOI

Madaeni S.S., Zinadini S., Vatanpour V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci. 2011;380:155–162. doi: 10.1016/j.memsci.2011.07.006. DOI

Teow Y.H., Ooi B.S., Ahmad A.L., Lim J.K. Mixed-Matrix Membrane for Humic Acid Removal: Influence of Different Types of TiO2 on Membrane Morphology and Performance. Int. J. Chem. Eng. Appl. 2012;3:374–379. doi: 10.7763/IJCEA.2012.V3.222. DOI

Rajaeian B., Heitz A., Tade M.O., Liu S. Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J. Membr. Sci. 2015;485:48–59. doi: 10.1016/j.memsci.2015.03.009. DOI

Ngang H.P., Ooi B.S., Ahmad A.L., Lai S.O. Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 2012;197:359–367. doi: 10.1016/j.cej.2012.05.050. DOI

Méricq J.-P., Mendret J., Brosillon S., Faur C. High performance PVDF-TiO2 membranes for water treatment. Chem. Eng. Sci. 2015;123:283–291. doi: 10.1016/j.ces.2014.10.047. DOI

Pi J.K., Yang H.C., Wan L.S., Wu J., Xu Z.K. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J. Membr. Sci. 2016;500:8–15. doi: 10.1016/j.memsci.2015.11.014. DOI

Mollahosseini A., Rahimpour A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. J. Ind. Eng. Chem. 2014;20:1261–1268. doi: 10.1016/j.jiec.2013.07.002. DOI

Abedini R., Mousavi S.M., Aminzadeh R. A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: Preparation, characterization and permeation study. Desalination. 2011;277:40–45. doi: 10.1016/j.desal.2011.03.089. DOI

Ngo T.H.A., Nguyen D.T., Do K.D., Nguyen T.T.M., Mori S., Tran D.T. Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles. J. Sci. Adv. Mater. Devices. 2016;1:468–475. doi: 10.1016/j.jsamd.2016.10.002. DOI

Kim S.J., Lee P.S., Bano S., Park Y.I., Nam S.E., Lee K.H. Effective incorporation of TiO2 nanoparticles into polyamide thin-film composite membranes. J. Appl. Polym. Sci. 2016;133 doi: 10.1002/app.43383. DOI

Amini M., Rahimpour A., Jahanshahi M. Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes. Desalin. Water Treat. 2016;57:14013–14023. doi: 10.1080/19443994.2015.1065441. DOI

Emadzadeh D., Lau W.J., Matsuura T., Rahbari-Sisakht M., Ismail A.F. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chem. Eng. J. 2014;237:70–80. doi: 10.1016/j.cej.2013.09.081. DOI

Moghadam F., Omidkhah M.R., Vasheghani-Farahani E., Pedram M.Z., Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep. Purif. Technol. 2011;77:128–136. doi: 10.1016/j.seppur.2010.11.032. DOI

Hu W., Yin J., Deng B., Hu Z. Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing. Bioresour. Technol. 2015;193:135–141. doi: 10.1016/j.biortech.2015.06.070. PubMed DOI

Sotto A., Boromand A., Balta S., Kim J., van der Bruggen B. Doping of polyethersulfone nanofiltration membranes: Antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J. Mater. Chem. 2011;21:10311. doi: 10.1039/c1jm11040c. DOI

Kim E.S., Hwang G., El-Din M.G., Liu Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 2012;394–395:37–48. doi: 10.1016/j.memsci.2011.11.041. DOI

Ahmed F., Santos C.M., Mangadlao J., Advincula R., Rodrigues D.F. Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: Performance and toxicity testing. Water Res. 2013;47:3966–3975. doi: 10.1016/j.watres.2012.10.055. PubMed DOI

Daraei P., Madaeni S.S., Ghaemi N., Khadivi M.A., Astinchap B., Moradian R. Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Membr. Sci. 2013;444:184–191. doi: 10.1016/j.memsci.2013.05.020. DOI

Kim E.S., Liu Y., Gamal El-Din M. An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. J. Membr. Sci. 2013;429:418–427. doi: 10.1016/j.memsci.2012.11.077. DOI

Shah P., Murthy C.N. Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Membr. Sci. 2013;437:90–98. doi: 10.1016/j.memsci.2013.02.042. DOI

Shen J.N., Yu C.C., Ruan H.M., Gao C.J., van der Bruggen B. Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J. Membr. Sci. 2013;442:18–26. doi: 10.1016/j.memsci.2013.04.018. DOI

Grosso V., Vuono D., Bahattab M.A., Di Profio G., Curcio E., Al-Jilil S.A., Alsubaie F., Alfife M., Nagy J.B., Drioli E., et al. Polymeric and mixed matrix polyimide membranes. Sep. Purif. Technol. 2014;132:684–696. doi: 10.1016/j.seppur.2014.06.023. DOI

Sianipar M., Kim S.H., Min C., Tijing L.D., Shon H.K. Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J. Ind. Eng. Chem. 2016;34:364–373. doi: 10.1016/j.jiec.2015.11.025. DOI

Khalid A., Abdel-Karim A., Atieh M.A., Javed S., McKay G. PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Sep. Purif. Technol. 2018;190:165–176. doi: 10.1016/j.seppur.2017.08.055. DOI

Mulopo J. Bleach plant effluent treatment in anaerobic membrane bioreactor (AMBR) using carbon nanotube/polysulfone nanocomposite membranes. J. Environ. Chem. Eng. 2017;5:4381–4387. doi: 10.1016/j.jece.2017.08.027. DOI

Fontananova E., Grosso V., Aljlil S.A., Bahattab M.A., Vuono D., Nicoletta F.P., Curcio E., Drioli E., di Profio G. Effect of functional groups on the properties of multiwalled carbon nanotubes/polyvinylidenefluoride composite membranes. J. Membr. Sci. 2017;541:198–204. doi: 10.1016/j.memsci.2017.07.002. DOI

Ghasemzadeh G., Momenpour M., Omidi F., Hosseini M.R., Ahani M., Barzegari A. Applications of nanomaterials in water treatment and environmental remediation. Front. Environ. Sci. Eng. 2014;8:471–482. doi: 10.1007/s11783-014-0654-0. DOI

Park J.-Y., Lee C., Jung K.-W., Jung D. Structure Related Photocatalytic Properties of TiO2. Bull. Korean Chem. Soc. 2009;30:402–404.

Liou J.W., Chang H.H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch. Immunol. Ther. Exp. 2012;60:267–275. doi: 10.1007/s00005-012-0178-x. PubMed DOI

Romanos G.E., Athanasekou C.P., Likodimos V., Aloupogiannis P., Falaras P. Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment. Ind. Eng. Chem. Res. 2013;52:13938–13947. doi: 10.1021/ie303475b. DOI

Nor N.A.M., Jaafar J., Ismail A.F., Mohamed M.A., Rahman M.A., Othman M.H.D., Lau W.J., Yusof N. Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalination. 2016;391:89–97. doi: 10.1016/j.desal.2016.01.015. DOI

Sotto A., Boromand A., Zhang R., Luis P., Arsuaga J.M., Kim J., van der Bruggen B. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes. J. Colloid Interface Sci. 2011;363:540–550. doi: 10.1016/j.jcis.2011.07.089. PubMed DOI

Vatanpour V., Madaeni S.S., Khataee A.R., Salehi E., Zinadini S., Monfared H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination. 2012;292:19–29. doi: 10.1016/j.desal.2012.02.006. DOI

Teow Y.H., Ahmad A.L., Lim J.K., Ooi B.S. Studies on the surface properties of mixed-matrix membrane and its antifouling properties for humic acid removal. J. Appl. Polym. Sci. 2013;128:3184–3192. doi: 10.1002/app.38494. DOI

Zhang R.X., Braeken L., Luis P., Wang X.L., van der Bruggen B. Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine. J. Membr. Sci. 2013;437:179–188. doi: 10.1016/j.memsci.2013.02.059. DOI

Zhang C., Huang M., Meng L., Li B., Cai T. Electrospun polysulfone (PSf)/titanium dioxide (TiO2) nanocomposite fibers as substrates to prepare thin film forward osmosis membranes. J. Chem. Technol. Biotechnol. 2017;92:2090–2097. doi: 10.1002/jctb.5204. DOI

Zhang W., Zhang Y., Fan R., Lewis R. A facile TiO2/PVDF composite membrane synthesis and their application in water purification. J. Nanopart. Res. 2016;18 doi: 10.1007/s11051-015-3281-1. DOI

Zapata P.A., Larrea M., Tamayo L., Rabagliati F.M., Azócar M.I., Páez M. Polyethylene/silver-nanofiber composites: A material for antibacterial films. Mater. Sci. Eng. C. 2016;69:1282–1289. doi: 10.1016/j.msec.2016.08.039. PubMed DOI

Gorchev H.G., Ozolins G. WHO guidelines for drinking-water quality. WHO Chron. 2008;38:564. doi: 10.1016/S1462-0758(00)00006-6. PubMed DOI

Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI

López-Heras M., Theodorou I.G., Leo B.F., Ryan M.P., Porter A.E. Towards understanding the antibacterial activity of Ag nanoparticles: Electron microscopy in the analysis of the materials-biology interface in the lung. Environ. Sci. Nano. 2015;2:312–326. doi: 10.1039/C5EN00051C. DOI

Wei L., Lu J., Xu H., Patel A., Chen Z.S., Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC

Koseoglu-Imer D., Koyuncu I. Fabrication and application areas of mixed matrix flat-sheet membranes. In: Figoli A., Hoinkis J., Altinkaya S.A., Bundschuh J., editors. Application of Nanotechnology in Membranes for Water Treatment. CRC Press Taylor & Francis Group; London, UK: 2017.

Guo L., Yuan W., Lu Z., Li C.M. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf. A. 2013;439:69–83. doi: 10.1016/j.colsurfa.2012.12.029. DOI

Cao X., Tang M., Liu F., Nie Y., Zhao C. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids Surf. B. 2010;81:555–562. doi: 10.1016/j.colsurfb.2010.07.057. PubMed DOI

Zhu X., Bai R., Wee K.H., Liu C., Tang S.L. Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances. J. Membr. Sci. 2010;363:278–286. doi: 10.1016/j.memsci.2010.07.041. DOI

Haider M.S., Shao G.N., Imran S.M., Park S.S., Abbas N., Tahir M.S., Hussain M., Bae W., Kim H.T. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng. C. 2016;62:732–745. doi: 10.1016/j.msec.2016.02.025. PubMed DOI

Biswas P., Bandyopadhyaya R. Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module. J. Colloid Interface Sci. 2017;491:13–26. doi: 10.1016/j.jcis.2016.11.060. PubMed DOI

Mollahosseini A., Rahimpour A. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties. Biofouling. 2013;29:537–548. doi: 10.1080/08927014.2013.777953. PubMed DOI

Andrade P.F., de Faria A.F., Oliveira S.R., Arruda M.A.Z., Gonçalves M.d.C. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res. 2015;81:333–342. doi: 10.1016/j.watres.2015.05.006. PubMed DOI

Tang X., Cao X. Preparation and characterization of antibacterial poly(vinylidene fluoride)-silver composites. High Perform. Polym. 2012;24:135–139. doi: 10.1177/0954008311432774. DOI

Zirehpour A., Rahimpour A., Shamsabadi A.A., Sharifian M.G., Soroush M. Mitigation of Thin-Film Composite Membrane Biofouling via Immobilizing Nano-Sized Biocidal Reservoirs in the Membrane Active Layer. Environ. Sci. Technol. 2017;51:5511–5522. doi: 10.1021/acs.est.7b00782. PubMed DOI

Varkey A.J., Dlamini D. Point-of-use water purifcation using clay pot water flters and copper mesh. Water SA. 2012;38:721–726. doi: 10.4314/wsa.v38i5.10. DOI

Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents. 2009;33:587–590. doi: 10.1016/j.ijantimicag.2008.12.004. PubMed DOI

Tamayo L., Azócar M., Kogan M., Riveros A., Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Eng. C. 2016;69:1391–1409. doi: 10.1016/j.msec.2016.08.041. PubMed DOI

Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–716. doi: 10.1016/j.actbio.2007.11.006. PubMed DOI

Yoon K.Y., Byeon J.H., Park J.H., Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 2007;373:572–575. doi: 10.1016/j.scitotenv.2006.11.007. PubMed DOI

Shao W., Wang S., Wu J., Huang M., Liu H., Min H. Synthesis and antimicrobial activity of copper nanoparticle loaded regenerated bacterial cellulose membranes. RSC Adv. 2016;6:65879–65884. doi: 10.1039/C6RA07984A. DOI

Hausman R., Gullinkala T., Escobar I.C. Development of copper-charged polypropylene feedspacers for biofouling control. J. Membr. Sci. 2010;358:114–121. doi: 10.1016/j.memsci.2010.04.033. DOI

Araújo P.A., Miller D.J., Correia P.B., van Loosdrecht M.C.M., Kruithof J.C., Freeman B.D., Paul D.R., Vrouwenvelder J.S. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination. 2012;295:1–10. doi: 10.1016/j.desal.2012.02.026. DOI

Shen L., Bian X., Lu X., Shi L., Liu Z., Chen L., Hou Z., Fan K. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination. 2012;293:21–29. doi: 10.1016/j.desal.2012.02.019. DOI

Ma W., Soroush A., Luong T.V., Brennan G., Rahaman M.S., Asadishad B., Tufenkji N. Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Res. 2016;99:188–199. doi: 10.1016/j.watres.2016.04.042. PubMed DOI

Leo C.P., Lee W.P.C., Ahmad A.L., Mohammad A.W. Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep. Purif. Technol. 2012;89:51–56. doi: 10.1016/j.seppur.2012.01.002. DOI

Lin W., Xu Y., Ma Y., Shannon K.B., Chen D. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanopart. Res. 2009;11:25–39. doi: 10.1007/s11051-008-9419-7. DOI

Jhaveri J.H., Murthy Z.V.P., Jhaveri J.H., Murthy Z.V.P. Nanocomposite membranes. Desalin. Water Treat. 2016;57:26803–26819. doi: 10.1080/19443994.2015.1120687. DOI

Anjum M., Miandad R., Waqas M., Gehany F., Barakat M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.10.004. DOI

Gupta V.K., Tyagi I., Sadegh H., Shahryari-ghoshekandi R. Nanoparticles as Adsorbent; A Positive Approach for Removal of Noxious Metal Ions: A Review. Sci. Technol. Dev. 2015;34:195–214. doi: 10.3923/std.2015.195.214. DOI

Wang Y., Yang L., Luo G., Dai Y. Preparation of cellulose acetate membrane filled with metal oxide particles for the pervaporation separation of methanol/methyl tert-butyl ether mixtures. Chem. Eng. J. 2009;146:6–10. doi: 10.1016/j.cej.2008.05.009. DOI

Ionita M., Pandele A.M., Crica L., Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites Part B. 2014;59:133–139. doi: 10.1016/j.compositesb.2013.11.018. DOI

Enotiadis A., Angjeli K., Baldino N., Nicotera I. Graphene-Based Nafi on Nanocomposite Membranes: Enhanced Proton Transport and Water Retention by Novel Organo-functionalized Graphene Oxide Nanosheets. Small. 2012;8:3338–3349. doi: 10.1002/smll.201200609. PubMed DOI

Liu G., Han K., Ye H., Zhu C., Gao Y., Liu Y., Zhou Y. Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chem. Eng. J. 2017;320:74–80. doi: 10.1016/j.cej.2017.03.024. DOI

Jhaveri J.H., Murthy Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination. 2016;379:137–154. doi: 10.1016/j.desal.2015.11.009. DOI

An D., Yang L., Wang T., Liu B. Separation Performance of Graphene Oxide Membrane in Aqueous Solution. Ind. Eng. Chem. Res. 2016;55:4803–4810. doi: 10.1021/acs.iecr.6b00620. DOI

Sophia A.C., Lima E.C., Allaudeen N., Rajan S., Sophia A.C., Lima E.C., Allaudeen N., Rajan S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater—A review. Desalin. Water Treat. 2016;3994:1–14. doi: 10.1080/19443994.2016.1172989. DOI

Zhang J., Xu Z., Shan M., Zhou B., Li Y., Li B. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fl uoride ultra fi ltration membranes. J. Membr. Sci. 2013;448:81–92. doi: 10.1016/j.memsci.2013.07.064. DOI

Zhang L., Lu Y., Liu Y., Li M., Zhao H., Hou L. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater. J. Hazard. Mater. 2016;320:187–193. doi: 10.1016/j.jhazmat.2016.08.020. PubMed DOI

Gao P., Liu Z., Tai M., Delai D., Ng W. Applied Catalysis B: Environmental Multifunctional graphene oxide—TiO2 microsphere hierarchical membrane for clean water production. Appl. Catal. B Environ. 2013;138–139:17–25. doi: 10.1016/j.apcatb.2013.01.014. DOI

Xu C., Cui A., Xu Y., Fu X. Graphene oxide—TiO2 composite filtration membranes and their potential application for water purification. Carbon. 2013;62:465–471. doi: 10.1016/j.carbon.2013.06.035. DOI

Zhao C., Lv J., Xu X., Zhang G., Yang Y., Yang F. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment. J. Colloid Interface Sci. 2017;505:341–351. doi: 10.1016/j.jcis.2017.05.074. PubMed DOI

Ghasemi M., Marjani A., Mahmoudian M., Farhadi K. Grafting of diallyldimethylammonium chloride on graphene oxide by RAFT polymerization for modification of nanocomposite polysulfone membranes using in water treatment. Chem. Eng. J. 2017;309:206–221. doi: 10.1016/j.cej.2016.10.008. DOI

Yin J., Deng B. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 2015;479:256–275. doi: 10.1016/j.memsci.2014.11.019. DOI

Xu Z., Zhang J., Shan M., Li Y., Li B., Niu J. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fl uoride ultra fi ltration membranes. J. Membr. Sci. 2014;458:1–13. doi: 10.1016/j.memsci.2014.01.050. DOI

Zhang P., Gong J., Zeng G., Deng C., Yang H., Liu H. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 2017;322:657–666. doi: 10.1016/j.cej.2017.04.068. DOI

Jiang Y., Wang W., Liu D., Nie Y., Li W., Wu J., Zhang F. Engineered Crumpled Graphene Oxide Nanocomposite Membrane Assemblies for Advanced Water Treatment Processes. Environ. Sci. Technol. 2015;49:6846–6854. doi: 10.1021/acs.est.5b00904. PubMed DOI

Jiang Y., Liu D., Cho M., Lee S.S., Zhang F., Biswas P., Fortner J.D. In Situ Photocatalytic Synthesis of Ag Nanoparticles (nAg) by Crumpled Graphene Oxide Composite Membranes for Filtration and Disinfection Applications. Environ. Sci. Technol. 2016;50:2514–2521. doi: 10.1021/acs.est.5b04584. PubMed DOI

Liang B., Zhang P., Wang J., Qu J., Wang L., Wang X., Guan C., Pan K. Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. Carbon. 2016;103:94–100. doi: 10.1016/j.carbon.2016.03.001. DOI

Sun X., Qin J., Xia P., Guo B., Yang C., Song C., Wang S. Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 2015;281:53–59. doi: 10.1016/j.cej.2015.06.059. DOI

Liu Q., Xu G. Graphene oxide (GO) as functional material in tailoring polyamide thin fi lm composite (PA-TFC) reverse osmosis (RO) membranes. Desalination. 2016;394:162–175. doi: 10.1016/j.desal.2016.05.017. DOI

Yin J., Zhu G., Deng B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination. 2016;379:93–101. doi: 10.1016/j.desal.2015.11.001. DOI

Kim W., Nair S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 2013;104:908–924. doi: 10.1016/j.ces.2013.09.047. DOI

Gugliuzza A., Politano A., Drioli E. The advent of graphene and other two-dimensional materials in membrane science and technology. Curr. Opin. Chem. Eng. 2017;16:78–85. doi: 10.1016/j.coche.2017.03.003. DOI

Aghigh A., Alizadeh V., Wong H.Y., Islam S., Amin N., Zaman M. Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination. 2015;365:389–397. doi: 10.1016/j.desal.2015.03.024. DOI

Gao P., Tai M.H., Delai D. Hierarchical TiO2/V2O5 Multifunctional Membrane for Water Purification. ChemPlusChem. 2013;78:1475–1482. doi: 10.1002/cplu.201300264. PubMed DOI

Yang G.C.C., Chen Y., Yang H., Yen C. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electro fi ltration process. Chemosphere. 2016;155:274–282. doi: 10.1016/j.chemosphere.2016.04.060. PubMed DOI

Yin J., Kim E., Yang J., Deng B. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J. Membr. Sci. 2012;423–424:238–246. doi: 10.1016/j.memsci.2012.08.020. DOI

Wang S., Li H., Xu L. Application of zeolite MCM-22 for basic dye removal from wastewater. J. Colloid Interface Sci. 2006;295:71–78. doi: 10.1016/j.jcis.2005.08.006. PubMed DOI

Garofalo A., Donato L., Drioli E., Criscuoli A., Carnevale M.C., Alharbi O., Aljlil S.A., Algieri C. Supported MFI zeolite membranes by cross flow filtration for water treatment. Sep. Purif. Technol. 2014;137:28–35. doi: 10.1016/j.seppur.2014.09.028. DOI

Garofalo A., Carnevale M.C., Donato L., Drioli E., Alharbi O., Aljlil S.A., Criscuoli A., Algieri C. Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation. Desalination. 2016;397:205–212. doi: 10.1016/j.desal.2016.07.010. DOI

Zhu B., Myat D.T., Shin J.W., Na Y.H., Moon I.S., Connor G., Maeda S., Morris G., Gray S., Duke M. Application of robust MFI-type zeolite membrane for desalination of saline wastewater. J. Membr. Sci. 2015;475:167–174. doi: 10.1016/j.memsci.2014.09.058. DOI

Drobek M., Figoli A., Santoro S., Navascués N., Motuzas J., Simone S., Algieri C., Gaeta N., Querze L., Trotta A., et al. PVDF-MFI mixed matrix membranes as VOCs adsorbers. Microporous Mesoporous Mater. 2015;207:126–133. doi: 10.1016/j.micromeso.2015.01.005. DOI

Swenson P., Tanchuk B., Gupta A., An W., Kuznicki S.M. Pervaporative desalination of water using natural zeolite membranes. Desalination. 2012;285:68–72. doi: 10.1016/j.desal.2011.09.035. DOI

Gascon J., Kapteijn F., Zornoza B., Sebastián V., Casado C., Coronas J. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chem. Mater. 2012;24:2829–2844. doi: 10.1021/cm301435j. DOI

Kang Y., Emdadi L., Lee M.J., Liu D., Mi B. Layer-by-Layer Assembly of Zeolite/Polyelectrolyte Nanocomposite Membranes with High Zeolite Loading. Environ. Sci. Technol. Lett. 2014;1:504–509. doi: 10.1021/ez500335q. DOI

Huang H., Qu X., Dong H., Zhang L., Chen H. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane. RSC Adv. 2013;3:8203. doi: 10.1039/c3ra40960k. DOI

Pendergast M.M., Ghosh A.K., Hoek E.M.V. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination. 2013;308:180–185. doi: 10.1016/j.desal.2011.05.005. DOI

Dong J., Xu Z., Yang S., Murad S., Hinkle K.R. Zeolite membranes for ion separations from aqueous solutions. Curr. Opin. Chem. Eng. 2015;8:15–20. doi: 10.1016/j.coche.2015.01.004. DOI

Dong L.X., Huang X.C., Wang Z., Yang Z., Wang X.M., Tang C.Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Sep. Purif. Technol. 2016;166:230–239. doi: 10.1016/j.seppur.2016.04.043. DOI

Huang H., Qu X., Ji X., Gao X., Zhang L., Chen H., Hou L. Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites. J. Mater. Chem. A. 2013;1:11343. doi: 10.1039/c3ta12199b. DOI

Dong H., Zhao L., Zhang L., Chen H., Gao C., Ho W.S.W. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination. J. Membr. Sci. 2015;476:373–383. doi: 10.1016/j.memsci.2014.11.054. DOI

Ahmad A.L., Majid M.A., Ooi B.S. Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination. 2011;268:266–269. doi: 10.1016/j.desal.2010.10.017. DOI

Huang J., Zhang K., Wang K., Xie Z., Ladewig B., Wang H. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 2012;423–424:362–370. doi: 10.1016/j.memsci.2012.08.029. DOI

Niksefat N., Jahanshahi M., Rahimpour A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination. 2014;343:140–146. doi: 10.1016/j.desal.2014.03.031. DOI

Kebria M.R.S., Jahanshahi M., Rahimpour A. SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Desalination. 2015;367:255–264. doi: 10.1016/j.desal.2015.04.017. DOI

Zha S., Gusnawan P., Zhang G., Liu N., Lee R., Yu J. Experimental study of PES/SiO2 based TFC hollow fiber membrane modules for oilfield produced water desalination with low-pressure nanofiltration process. J. Ind. Eng. Chem. 2016;44:118–125. doi: 10.1016/j.jiec.2016.08.016. DOI

Saleh T.A., Gupta V.K. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 2012;89:245–251. doi: 10.1016/j.seppur.2012.01.039. DOI

Mojtahedi Y.M., Mehrnia M.R., Homayoonfal M. Fabrication of Al2O3/PSf nanocomposite membranes: Efficiency comparison of coating and blending methods in modification of filtration performance. Desalin. Water Treat. 2013;51:6736–6742. doi: 10.1080/19443994.2013.769918. DOI

Dong H., Xiao K., Li X., Ren Y., Guo S. Preparation of PVDF/Al2O3 hybrid membrane via the sol–gel process and characterization of the hybrid membrane. Desalin. Water Treat. 2013;51:3685–3690. doi: 10.1080/19443994.2013.781986. DOI

Homayoonfal M., Mehrnia M.R., Rahmani S., Mojtahedi Y.M. Fabrication of alumina/polysulfone nanocomposite membranes with biofouling mitigation approach in membrane bioreactors. J. Ind. Eng. Chem. 2014;22:357–367. doi: 10.1016/j.jiec.2014.07.031. DOI

Ma B., Hu C., Wang X., Xie Y., Jefferson W.A., Liu H., Qu J. Effect of aluminum speciation on ultrafiltration membrane fouling by low dose aluminum coagulation with bovine serum albumin (BSA) J. Membr. Sci. 2015;492:88–94. doi: 10.1016/j.memsci.2015.05.043. DOI

Demirel E., Zhang B., Papakyriakou M., Xia S., Chen Y. Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. J. Membr. Sci. 2017;529:170–184. doi: 10.1016/j.memsci.2017.01.051. DOI

Zhao H., Chen S., Quan X., Yu H., Zhao H. Integration of microfiltration and visible-light-driven photocatalysis on g-C 3 N 4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Appl. Catal. B Environ. 2016;194:134–140. doi: 10.1016/j.apcatb.2016.04.042. DOI

Li B., Cao H. ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 2011;21:3346–3349. doi: 10.1039/C0JM03253K. DOI

Gehrke I., Geiser A., Somborn-Schulz A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 2015;8:1–17. doi: 10.2147/NSA.S43773. PubMed DOI PMC

Qu X., Alvarez P.J.J., Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47:3931–3946. doi: 10.1016/j.watres.2012.09.058. PubMed DOI

Boccuni F., Gagliardi D., Ferrante R., Rondinone B.M., Iavicoli S. Measurement techniques of exposure to nanomaterials in the workplace for low- and medium-income countries: A systematic review. Int. J. Hyg. Environ. Health. 2017;220:1089–1097. doi: 10.1016/j.ijheh.2017.06.003. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...