6FDA-DAM:DABA Co-Polyimide Mixed Matrix Membranes with GO and ZIF-8 Mixtures for Effective CO2/CH4 Separation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
project SPETEP (CZ.02.1.01/0.0/0.0/16; 026/0008413)
Ministry of Education, Youth and Sports of the Czech Republic and EU - European Structural and Investment Funds - Operational Programme Research, Devel-opment, and Education
PubMed
33800502
PubMed Central
PMC7999237
DOI
10.3390/nano11030668
PII: nano11030668
Knihovny.cz E-resources
- Keywords
- 6FDA-polyimide, CO2 separation, ZIF-8/GO, mixed matrix membranes,
- Publication type
- Journal Article MeSH
This work presents the gas separation evaluation of 6FDA-DAM:DABA (3:1) co-polyimide and its enhanced mixed matrix membranes (MMMs) with graphene oxide (GO) and ZIF-8 (particle size of <40 nm). The 6FDA-copolyimide was obtained through two-stage poly-condensation polymerization, while the ZIF-8 nanoparticles were synthesized using the dry and wet method. The MMMs were preliminarily prepared with 1-4 wt.% GO and 5-15 wt.% ZIF-8 filler loading independently. Based on the best performing GO MMM, the study proceeded with making MMMs based on the mixtures of GO and ZIF-8 with a fixed 1 wt.% GO content (related to the polymer matrix) and varied ZIF-8 loadings. All the materials were characterized thoroughly using TGA, FTIR, XRD, and FESEM. The gas separation was measured with 50:50 vol.% CO2:CH4 binary mixture at 2 bar feed pressure and 25 °C. The pristine 6FDA-copolyimide showed CO2 permeability (PCO2) of 147 Barrer and CO2/CH4 selectivity (αCO2/CH4) of 47.5. At the optimum GO loading (1 wt.%), the PCO2 and αCO2/CH4 were improved by 22% and 7%, respectively. A combination of GO (1 wt.%)/ZIF-8 fillers tremendously improves its PCO2; by 990% for GO/ZIF-8 (5 wt.%) and 1.124% for GO/ZIF-8 (10 wt.%). Regrettably, the MMMs lost their selectivity by 16-55% due to the non-selective filler-polymer interfacial voids. However, the hybrid MMM performances still resided close to the 2019 upper bound and showed good performance stability when tested at different feed pressure conditions.
See more in PubMed
IPCC . In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Plattner G.-K., Xia Y., Bex V., et al., editors. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2013. 1535p
The Keeling Curve: Latest CO2 Reading. Scripps Institution of Oceanography; San Diego, CA, USA: 2020.
Koros W.J., Mahajan R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2000;175:181–196. doi: 10.1016/S0376-7388(00)00418-X. DOI
Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991;62:165–185. doi: 10.1016/0376-7388(91)80060-J. DOI
Ahmad M.Z., Castro-Muñoz R., Budd P.M. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale. 2020;12:23333–23370. doi: 10.1039/D0NR07042D. PubMed DOI
Goh P., Ismail A., Sanip S., Ng B., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI
Etxeberria-Benavides M., David O., Johnson T., Łozińska M.M., Orsi A., Wright P.A., Mastel S., Hillenbrand R., Kapteijn F., Gascon J. High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J. Membr. Sci. 2018;550:198–207. doi: 10.1016/j.memsci.2017.12.033. DOI
Martin-Gil V., Ahmad M., Castro-Muñoz R., Fila V. Economic framework of membrane technologies for natural gas applications. Sep. Purif. Rev. 2018;48:298–324. doi: 10.1080/15422119.2018.1532911. DOI
Moore T.T., Koros W.J. Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct. 2005;739:87–98. doi: 10.1016/j.molstruc.2004.05.043. DOI
Melgar V.M.A., Kim J., Othman M.R. Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. J. Ind. Eng. Chem. 2015;28:1–15. doi: 10.1016/j.jiec.2015.03.006. DOI
Cravillon J., Schröder C.A., Bux H., Rothkirch A., Caro J., Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm. 2011;14:492–498. doi: 10.1039/C1CE06002C. DOI
McEwen J., Hayman J.-D., Yazaydin A.O. A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem. Phys. 2013;412:72–76. doi: 10.1016/j.chemphys.2012.12.012. DOI
Tanaka S., Fujita K., Miyake Y., Miyamoto M., Hasegawa Y., Makino T., Van Der Perre S., Remi J.C.S., Van Assche T., Baron G.V., et al. Adsorption and diffusion phenomena in crystal size engineered ZIF-8 MOF. J. Phys. Chem. C. 2015;119:28430–28439. doi: 10.1021/acs.jpcc.5b09520. DOI
Venna S.R., Zhu M., Li S., Carreon M.A. Knudsen diffusion through ZIF-8 membranes synthesized by secondary seeded growth. J. Porous Mater. 2013;21:235–240. doi: 10.1007/s10934-013-9768-1. DOI
Ibrahim A., Lin Y. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. J. Membr. Sci. 2018;550:238–245. doi: 10.1016/j.memsci.2017.12.081. DOI
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI
Yang Y.-H., Bolling L., Priolo M.A., Grunlan J.C. Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater. 2012;25:503–508. doi: 10.1002/adma.201202951. PubMed DOI
Wang S., Xie Y., He G., Xin Q., Zhang J., Yang L., Li Y., Wu H., Zhang Y., Guiver M.D., et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angew. Chem. Int. Ed. 2017;56:14246–14251. doi: 10.1002/anie.201708048. PubMed DOI
Yang K., Dai Y., Ruan X., Zheng W., Yang X., Ding R., He G. Stretched ZIF-8@GO flake-like fillers via pre-Zn(II)-doping strategy to enhance CO2 permeation in mixed matrix membranes. J. Membr. Sci. 2020;601 doi: 10.1016/j.memsci.2020.117934. DOI
Chen B., Wan C., Kang X., Chen M., Zhang C., Bai Y., Dong L. Enhanced CO2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO. Sep. Purif. Technol. 2019;223:113–122. doi: 10.1016/j.seppur.2019.04.063. DOI
Anastasiou S., Bhoria N., Pokhrel J., Reddy K.S.K., Srinivasakannan C., Wang K., Karanikolos G.N. Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation. Mater. Chem. Phys. 2018;212:513–522. doi: 10.1016/j.matchemphys.2018.03.064. DOI
Sarfraz M., Ba-Shammakh M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. J. Membr. Sci. 2016;514:35–43. doi: 10.1016/j.memsci.2016.04.029. DOI
Kratochvil A.M., Koros W.J. Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance. Macromolecules. 2008;41:7920–7927. doi: 10.1021/ma801586f. DOI
Ahmad M.Z., Pelletier H., Martin-Gil V., Castro-Muñoz R., Fila V. Chemical crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for improved CO2/CH4 separation. Membrane. 2018;8:67. doi: 10.3390/membranes8030067. PubMed DOI PMC
Qiu W., Chen C.-C., Kincer M.R., Koros W.J. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation. Polymers. 2011;52:4073–4082. doi: 10.1016/j.polymer.2011.07.002. DOI
Ahmad M.Z., Navarro M., Lhotka M., Zornoza B., Téllez C., Fila V., Coronas J. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Sep. Purif. Technol. 2018;192:465–474. doi: 10.1016/j.seppur.2017.10.039. DOI
Castro-Muñoz R., Ahmad M.Z., Fíla V. Tuning of nano-based materials for embedding into low-permeability polyimides for a featured gas separation. Front. Chem. 2020;7:897. doi: 10.3389/fchem.2019.00897. PubMed DOI PMC
Ahmad M.Z., Peters T.A., Konnertz N.M., Visser T., Téllez C., Coronas J., Fila V., de Vos W.M., Benes N.E. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Sep. Purif. Technol. 2020;230:115858. doi: 10.1016/j.seppur.2019.115858. DOI
Majumdar S., Tokay B., Martin-Gil V., Campbell J., Castro-Muñoz R., Ahmad M.Z., Fila V. Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Sep. Purif. Technol. 2020;238:116411. doi: 10.1016/j.seppur.2019.116411. DOI
Kawakami H., Mikawa M., Nagaoka S. Gas transport properties in thermally cured aromatic polyimide membranes. J. Membr. Sci. 1996;118:223–230. doi: 10.1016/0376-7388(96)00115-9. DOI
Ahmad M.Z., Martin-Gil V., Supinkova T., Lambert P., Castro-Muñoz R., Hrabanek P., Kocirik M., Fila V. Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation. Sep. Purif. Technol. 2021;254:117582. doi: 10.1016/j.seppur.2020.117582. DOI
Castro-Muñoz R., Fíla V., Martin-Gil V., Muller C. Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures. Sep. Purif. Technol. 2019;210:553–562. doi: 10.1016/j.seppur.2018.08.046. DOI
Jankovský O., Marvan P., Nováček M., Luxa J., Mazánek V., Klímová K., Sedmidubský D., Sofer Z. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl. Mater. Today. 2016;4:45–53. doi: 10.1016/j.apmt.2016.06.001. DOI
Ahmad M.Z., Martin-Gil V., Perfilov V., Sysel P., Fila V. Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Sep. Purif. Technol. 2018;207:523–534. doi: 10.1016/j.seppur.2018.06.067. DOI
Martin-Gil V., Dujardin W., Sysel P., Koeckelberghs G., Vankelecom I., Fila V. Effect of benzoic acid content on aging of 6FDA copolyimides based thin film composite (TFC) membranes in CO2/CH4 environment. Sep. Purif. Technol. 2019;210:616–626. doi: 10.1016/j.seppur.2018.08.047. DOI
Hrabanek P., Zikanova A., Bernauer B., Fila V., Kočiřík M. Butane isomer separation with composite zeolite MFI mebranes. Desalination. 2009;245:437–443. doi: 10.1016/j.desal.2009.02.006. DOI
Pryde C.A. IR studies of polyimides. I. Effects of chemical and physical changes during cure. J. Polym. Sci. Part A Polym. Chem. 1989;27:711–724. doi: 10.1002/pola.1989.080270229. DOI
Qiu W., Xu L., Chen C.-C., Paul D.R., Koros W.J. Gas separation performance of 6FDA-based polyimides with different chemical structures. Polymers. 2013;54:6226–6235. doi: 10.1016/j.polymer.2013.09.007. DOI
Ahmad M.Z., Navarro M., Lhotka M., Zornoza B., Téllez C., de Vos W.M., Benes N.E., Konnertz N.M., Visser T., Semino R., et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. J. Membr. Sci. 2018;558:64–77. doi: 10.1016/j.memsci.2018.04.040. DOI
Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O’Keeffe M., Yaghi O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA. 2006;103:10186–10191. doi: 10.1073/pnas.0602439103. PubMed DOI PMC
Kaur H., Mohanta G.C., Gupta V., Kukkar D., Tyagi S. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J. Drug Deliv. Sci. Technol. 2017;41:106–112. doi: 10.1016/j.jddst.2017.07.004. DOI
Kim J., Koros W., Paul D. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranesPart Without crosslinking. J. Membr. Sci. 2006;282:21–31. doi: 10.1016/j.memsci.2006.05.004. DOI
Zornoza B., Tellez C., Coronas J., Gascon J., Kapteijn F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013;166:67–78. doi: 10.1016/j.micromeso.2012.03.012. DOI
Huang F., Rad A.T., Zheng W., Nieh M.-P., Cornelius C. Hybrid organic-inorganic 6FDA-6pFDA and multi-block 6FDA-DABA polyimide SiO2–TiO2 nanocomposites: Synthesis, FFV, FTIR, swelling, stability, and X-ray scattering. Polymers. 2017;108:105–120. doi: 10.1016/j.polymer.2016.11.046. DOI
Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V., Geim A.K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science. 2012;335:442–444. doi: 10.1126/science.1211694. PubMed DOI
Shin J.E., Lee S.K., Cho Y.H., Park H.B. Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation. J. Membr. Sci. 2019;572:300–308. doi: 10.1016/j.memsci.2018.11.025. DOI
Alberto M., Bhavsar R., Luque-Alled J.M., Vijayaraghavan A., Budd P.M., Gorgojo P. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. J. Membr. Sci. 2018;563:513–520. doi: 10.1016/j.memsci.2018.06.026. DOI
Chen M., Soyekwo F., Zhang Q., Hu C., Zhu A., Liu Q. Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J. Ind. Eng. Chem. 2018;63:296–302. doi: 10.1016/j.jiec.2018.02.030. DOI
Gonciaruk A., Althumayri K., Harrison W.J., Budd P.M., Siperstein F.R. PIM-1/graphene composite: A combined experimental and molecular simulation study. Microporous Mesoporous Mater. 2015;209:126–134. doi: 10.1016/j.micromeso.2014.07.007. DOI
Lively R.P., Dose M.E., Xu L., Vaughn J.T., Johnson J., Thompson J.A., Zhang K., Lydon M.E., Lee J.-S., Liu L., et al. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. J. Membr. Sci. 2012;423–424:302–313. doi: 10.1016/j.memsci.2012.08.026. DOI
Wind J.D., Paul D.R., Koros W.J. Natural gas permeation in polyimide membranes. J. Membr. Sci. 2004;228:227–236. doi: 10.1016/j.memsci.2003.10.011. DOI
Eguchi H., Kim D.J., Koros W.J. Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation. Polymers. 2015;58:121–129. doi: 10.1016/j.polymer.2014.12.064. DOI
Song Q., Cao S., Pritchard R.H., Qiblawey H., Terentjev E.M., Cheetham A.K., Sivaniah E. Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. J. Mater. Chem. A. 2015;4:270–279. doi: 10.1039/C5TA09060A. DOI
Xiang S., Zhou W., Gallegos J.M., Liu Y., Chen B. Exceptionally high acetylene uptake in a microporous metal−organic framework with open metal sites. J. Am. Chem. Soc. 2009;131:12415–12419. doi: 10.1021/ja904782h. PubMed DOI
Zornoza B., Seoane B., Zamaro J.M., Téllez C., Coronas J. Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem. 2011;12:2781–2785. doi: 10.1002/cphc.201100583. PubMed DOI
Knebel A., Bavykina A., Datta S.J., Sundermann L., Garzon-Tovar L., Lebedev Y., Durini S., Ahmad R., Kozlov S.M., Shterk G., et al. Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 2020;19:1346–1353. doi: 10.1038/s41563-020-0764-y. PubMed DOI
Ahmad M.Z., Fuoco A. Porous liquids—Future for CO2 capture and separation? Curr. Res. Green Sustain. Chem. 2021;4:100070. doi: 10.1016/j.crgsc.2021.100070. DOI
Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI
Comesaña-Gándara B., Chen J., Bezzu C.G., Carta M., Rose I., Ferrari M.-C., Esposito E., Fuoco A., Jansen J.C., McKeown N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019;12:2733–2740. doi: 10.1039/C9EE01384A. DOI
Park S., Bang J., Choi J., Lee S.H., Lee J.-H., Lee J.S. 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations. Sep. Purif. Technol. 2014;136:286–295. doi: 10.1016/j.seppur.2014.09.016. DOI
Jusoh N., Yeong Y.F., Cheong W.L., Lau K.K., Shariff A.M. Facile fabrication of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 nanofillers for CO2 capture. J. Ind. Eng. Chem. 2016;44:164–173. doi: 10.1016/j.jiec.2016.08.030. DOI
Wijenayake S.N., Panapitiya N.P., Versteeg S.H., Nguyen C.N., Goel S., Balkus J.K.J., Musselman I.H., Ferraris J.P. Surface cross-linking of ZIF-8/polyimide Mixed Matrix Membranes (MMMs) for gas separation. Ind. Eng. Chem. Res. 2013;52:6991–7001. doi: 10.1021/ie400149e. DOI
Visser T., Masetto N., Wessling M. Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J. Membr. Sci. 2007;306:16–28. doi: 10.1016/j.memsci.2007.07.048. DOI
Vinh-Thang H., Kaliaguine S. Predictive models for Mixed-Matrix Membrane performance: A review. Chem. Rev. 2013;113:4980–5028. doi: 10.1021/cr3003888. PubMed DOI
Ogieglo W., Wessling M., Benes N.E. Polymer relaxations in thin films in the vicinity of a penetrant- or temperature-induced glass transition. Macromolecules. 2014;47:3654–3660. doi: 10.1021/ma5002707. DOI