Dissection of chromosome 18 blood pressure and salt-sensitivity quantitative trait loci in the spontaneously hypertensive rat
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL056028
NHLBI NIH HHS - United States
PX0460
Wellcome Trust - United Kingdom
HL 56028
NHLBI NIH HHS - United States
T32 GM007753
NIGMS NIH HHS - United States
MC_U120061454
Medical Research Council - United Kingdom
R01 HL084553
NHLBI NIH HHS - United States
Wellcome Trust - United Kingdom
Howard Hughes Medical Institute - United States
PubMed
19620519
PubMed Central
PMC4046892
DOI
10.1161/hypertensionaha.108.126664
PII: HYPERTENSIONAHA.108.126664
Knihovny.cz E-zdroje
- MeSH
- genetická predispozice k nemoci genetika MeSH
- hypertenze etiologie genetika patofyziologie MeSH
- jednonukleotidový polymorfismus MeSH
- krevní tlak genetika fyziologie MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl škodlivé účinky MeSH
- ledviny metabolismus MeSH
- lokus kvantitativního znaku genetika MeSH
- mapování chromozomů MeSH
- northern blotting MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteiny regulující apoptózu genetika MeSH
- receptor melanokortinový typ 2 genetika MeSH
- receptor melanokortinový typ 4 genetika MeSH
- receptory melanokortinové genetika MeSH
- savčí chromozomy genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stanovení celkové genové exprese MeSH
- transplantace ledvin metody MeSH
- tyrosinfosfatasa nereceptorového typu 2 genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- CIDEA protein, rat MeSH Prohlížeč
- kuchyňská sůl MeSH
- melanocortin 5 receptor MeSH Prohlížeč
- proteiny regulující apoptózu MeSH
- Ptpn2 protein, rat MeSH Prohlížeč
- receptor melanokortinový typ 2 MeSH
- receptor melanokortinový typ 4 MeSH
- receptory melanokortinové MeSH
- tyrosinfosfatasa nereceptorového typu 2 MeSH
Hypertension in humans and experimental models has a strong hereditary basis, but identification of causative genes remains challenging. Quantitative trait loci (QTLs) for hypertension and salt sensitivity have been reported on rat chromosome 18. We set out to genetically isolate and prioritize genes within the salt-sensitivity and hypertension QTLs on the spontaneously hypertensive rat (SHR) chromosome 18 by developing and characterizing a series of congenic strains derived from the SHR and normotensive Brown Norway rat strains. The SHR.BN-D18Rat113/D18Rat82 congenic strain exhibits significantly lower blood pressure and is salt resistant compared with the SHR. Transplantation of kidneys from SHR.BN-D18Rat113/D18Rat82 donors into SHR recipients is sufficient to attenuate increased blood pressure but not salt sensitivity. Derivation of congenic sublines allowed for the separation of salt sensitivity from hypertension QTL regions. Renal expression studies with microarray and Solexa-based sequencing in parental and congenic strains identified 4 differentially expressed genes within the hypertension QTL region, one of which is an unannotated transcript encoding a previously undescribed, small, nonprotein coding RNA. Sequencing selected biological candidate genes within the minimal congenic interval revealed a nonsynonymous variant in SHR transcription factor 4. The minimal congenic interval is syntenic to a region of human chromosome 18 where significant linkage to hypertension was observed in family based linkage studies. These congenic lines provide reagents for identifying causative genes that underlie the chromosome 18 SHR QTLs for hypertension and salt sensitivity. Candidate genes identified in these studies merit further investigation as potentially causative hypertension genes in SHR and human hypertension.
Zobrazit více v PubMed
Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–556. PubMed
Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation. 1999;99:1407–1410. PubMed
Binder A. A review of the genetics of essential hypertension. Curr Opin Cardiol. 2007;22:176–184. PubMed
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678. PubMed PMC
Rapp JP. Genetic analysis of inherited hypertension in the rat. Physiol Rev. 2000;80:135–172. PubMed
Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gosele C, Heuser A, Fischer R, Schmidt C, Schirdewan A, Gross V, Hummel O, Maatz H, Patone G, Saar K, Vingron M, Weldon SM, Lindpaintner K, Hammock BD, Rohde K, Dietz R, Cook SA, Schunck WH, Luft FC, Hubner N. Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet. 2008;40:529–537. PubMed PMC
Petretto E, Sarwar R, Grieve I, Lu H, Kumaran MK, Muckett PJ, Mangion J, Schroen B, Benson M, Punjabi PP, Prasad SK, Pennell DJ, Kiesewetter C, Tasheva ES, Corpuz LM, Webb MD, Conrad GW, Kurtz TW, Kren V, Fischer J, Hubner N, Pinto YM, Pravenec M, Aitman TJ, Cook SA. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet. 2008;40:546–552. PubMed PMC
Cowley AW., Jr The genetic dissection of essential hypertension. Nat Rev Genet. 2006;7:829–840. PubMed
Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27:481–490. PubMed
Kren V, Qi N, Krenova D, Zidek V, Sladka M, Jachymova M, Mikova B, Horky K, Bonne A, Van Lith HA, Van Zutphen BF, Lau YF, Pravenec M, St Lezin E. Y-chromosome transfer induces changes in blood pressure and blood lipids in SHR. Hypertension. 2001;37:1147–1152. PubMed
Churchill PC, Churchill MC, Bidani AK, Griffin KA, Picken M, Pravenec M, Kren V, St Lezin E, Wang JM, Wang N, Kurtz TW. Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer. J Clin Invest. 1997;100:1373–1382. PubMed PMC
Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A. 2005;102:2454–2459. PubMed PMC
St Lezin E, Liu W, Wang JM, Wang N, Kren V, Krenova D, Musilova A, Zdobinska M, Zidek V, Lau D, Pravenec M. Genetic isolation of a chromosome 1 region affecting blood pressure in the spontaneously hypertensive rat. Hypertension. 1997;30:854–859. PubMed
Pravenec M, Zidek V, Simakova M, Kren V, Krenova D, Horky K, Jachymova M, Mikova B, Kazdova L, Aitman TJ, Churchill PC, Webb RC, Hingarh NH, Yang Y, Wang JM, Lezin EM, Kurtz TW. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J Clin Invest. 1999;103:1651–1657. PubMed PMC
Kren V, Pravenec M, Lu S, Krenova D, Wang JM, Wang N, Merriouns T, Wong A, St Lezin E, Lau D, Szpirer C, Szpirer J, Kurtz TW. Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. J Clin Invest. 1997;99:577–581. PubMed PMC
St Lezin E, Liu W, Wang N, Wang JM, Kren V, Zidek V, Zdobinska M, Krenova D, Bottger A, van Zutphen BF, Pravenec M. Effect of renin gene transfer on blood pressure in the spontaneously hypertensive rat. Hypertension. 1998;31:373–377. PubMed
St Lezin E, Zhang L, Yang Y, Wang JM, Wang N, Qi N, Steadman JS, Liu W, Kren V, Zidek V, Krenova D, Churchill PC, Churchill MC, Pravenec M. Effect of chromosome 19 transfer on blood pressure in the spontaneously hypertensive rat. Hypertension. 1999;33:256–260. PubMed
Kovacs P, Voigt B, Kloting I. Novel quantitative trait loci for blood pressure and related traits on rat chromosomes 1, 10, and 18. Biochem Biophys Res Commun. 1997;235:343–348. PubMed
Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell. 1991;67:213–224. PubMed
Garrett MR, Dene H, Walder R, Zhang QY, Cicila GT, Assadnia S, Deng AY, Rapp JP. Genome scan and congenic strains for blood pressure QTL using Dahl salt-sensitive rats. Genome Res. 1998;8:711–723. PubMed
Liang M, Lee NH, Wang H, Greene AS, Kwitek AE, Kaldunski ML, Luu TV, Frank BC, Bugenhagen S, Jacob HJ, Cowley AW., Jr Molecular networks in Dahl salt-sensitive hypertension based on transcriptome analysis of a panel of consomic rats. Physiol Genomics. 2008;34:54–64. PubMed
Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet. 2005;37:243–253. PubMed
Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, Reardon W, Saraiva J, Cabral A, Gohring I, Devriendt K, de Ravel T, Bijlsma EK, Hennekam RC, Orrico A, Cohen M, Dreweke A, Reis A, Nurnberg P, Rauch A. Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome) Am J Hum Genet. 2007;80:994–1001. PubMed PMC
Brockschmidt A, Todt U, Ryu S, Hoischen A, Landwehr C, Birnbaum S, Frenck W, Radlwimmer B, Lichter P, Engels H, Driever W, Kubisch C, Weber RG. Severe mental retardation with breathing abnormalities (Pitt-Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4. Hum Mol Genet. 2007;16:1488–1494. PubMed
Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, Plouin P, Carter NP, Lyonnet S, Munnich A, Colleaux L. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet. 2007;80:988–993. PubMed PMC
Wang X, Xiao Y, Mou Y, Zhao Y, Blankesteijn WM, Hall JL. A role for the beta-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res. 2002;90:340–347. PubMed
Hu MC, Rosenblum ND. Smad1, beta-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development. 2005;132:215–225. PubMed
Pankow JS, Rose KM, Oberman A, Hunt SC, Atwood LD, Djousse L, Province MA, Rao DC. Possible locus on chromosome 18q influencing postural systolic blood pressure changes. Hypertension. 2000;36:471–476. PubMed
Kristjansson K, Manolescu A, Kristinsson A, Hardarson T, Knudsen H, Ingason S, Thorleifsson G, Frigge ML, Kong A, Gulcher JR, Stefansson K. Linkage of essential hypertension to chromosome 18q. Hypertension. 2002;39:1044–1049. PubMed
Bielinski SJ, Lynch AI, Miller MB, Weder A, Cooper R, Oberman A, Chen YD, Turner ST, Fornage M, Province M, Arnett DK. Genome-wide linkage analysis for loci affecting pulse pressure: the Family Blood Pressure Program. Hypertension. 2005;46:1286–1293. PubMed
Atwood LD, Samollow PB, Hixson JE, Stern MP, MacCluer JW. Genome-wide linkage analysis of blood pressure in Mexican Americans. Genet Epidemiol. 2001;20:373–382. PubMed
Pinnaduwage D, Beyene J, Fallah S. Genome-wide linkage analysis of systolic blood pressure slope using the Genetic Analysis Workshop 13 data sets. BMC Genet. 2003;4 (Suppl 1):S1–S86. PubMed PMC