Acaricidal Activity of Bufadienolides Isolated from Drimia pancration against Tetranychus urticae, and Structural Elucidation of Arenobufagin-3-O-α-L-rhamnopyranoside

. 2022 Jun 21 ; 11 (13) : . [epub] 20220621

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35807580

Chemical characterization of the bulbs of Drimia pancration was conducted to isolate four steroidal saponins (1-4). Earlier, we focused on the structural elucidation of compounds 1-3. Herein, by means of 1H-NMR, 13C-NMR, Nuclear Overhauser Effects (NOE), and 2D-NMR spectra, the full stereochemical structure of 4 is reported, and all the 1H and 13C signals are assigned. Compounds 1-4 were tested for their acaricidal properties against the two-spotted spider mite Tetranychus urticae. Our results showed excellent activity of compound 1, with an LD50 (µg/cm2) of 0.29 and a LD90 (µg/cm2) of 0.96, whereas compounds 2, 3, and 4 showed moderate activity. Furthermore, the acaricidal and cytotoxic properties of the crude extract were also investigated. Of note, after 96 h of exposure, the acaricidal activity of compound 1 was higher than that of the positive control, hexythiazox. Indeed, for compound 1, LD50 and LD90 were 0.29 and 0.96 µg/cm2, respectively, while hexythiazox LD50(90) was 18.7 (132.5) µg/cm2. Additionally, D. pancration extract, after 72 h, induced a high cytotoxic effect in HaCaT and THP-1 cell lines, with an IC50 of 7.37 ± 0.5 µg/mL and 3.50 ± 0.15 µg/mL, respectively. Overall, D. pancration can be considered as a green source of novel acaricides effective against mites of agricultural importance, such as T. urticae, pending proper field validation and the assessment of non-target effects on other invertebrate species.

Zobrazit více v PubMed

Wang X., Xu X., Ullah F., Ding Q., Gao X., Desneux N., Song D. Comparison of full-length transcriptomes of different imidacloprid-resistant strains of Rhopalosiphum padi (L.) Entomol. Gen. 2021;41:289–304. doi: 10.1127/entomologia/2021/0972. DOI

Leska A., Nowak A., Nowak I., Gòrczynska A. Effects of insecticides and microbiological contaminants on Apis mellifera health. Molecules. 2021;26:5080. doi: 10.3390/molecules26165080. PubMed DOI PMC

Ricupero M., Desneux N., Zappalà L., Biondi A. Target and non-target impact of systemic insecticides on a polyphagous aphid pest and its parasitoid. Chemosphere. 2020;247:125728. doi: 10.1016/j.chemosphere.2019.125728. PubMed DOI

Passos L.C., Soares M.A., Collares L.J., Malagoli I., Desneux N., Carvalho G.A. Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol. Gen. 2018;38:127–143. doi: 10.1127/entomologia/2018/0744. DOI

Van Leeuwen T., Vontas J., Tsagkarakou A., Dermauw W., Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010;40:563–572. doi: 10.1016/j.ibmb.2010.05.008. PubMed DOI

Adesanya A.W., Lavine M.D., Moural T.W., Lavine L.C., Zhu F., Walsh D.B. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J. Pest Sci. 2021;94:639–663. doi: 10.1007/s10340-021-01342-x. DOI

Whalon M.E., Mota-Sanchez R.M., Hollingworth R.M., Duynslager L. Artrhopods Resistant to Pesticides Database (ARPD) [(accessed on 2 May 2022)]. Available online: http://www.pesticideresistance.org.

Van Leeuwen T., Tirry L., Yamamoto A., Nauen R., Dermauw W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem. Physiol. 2015;121:12–21. doi: 10.1016/j.pestbp.2014.12.009. PubMed DOI

Migeon A., Nouguier E., Dorkeld F. Trends in Acarology. Springer; Dordrecht, The Netherlands: 2010. Spider Mites Web: A comprehensive database for the Tetranychidae; pp. 557–560.

Cazaux M., Navarro M., Bruinsma K.A., Zhurov V., Negrave T., Van Leeuwen T., Grbic M. Application of two-spotted spider mite Tetranychus urticae for plant-pest interaction studies. J. Vis. Exp. 2014;89:e51738. doi: 10.3791/51738. PubMed DOI PMC

Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Benelli G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI

Benelli G., Pavela R., Canale A., Nicoletti M., Petrelli R., Cappellacci L., Galassi R., Maggi F. Isofuranodiene and germacrone from Smyrnium olusatrum essential oil as acaricides and oviposition inhibitors against Tetranychus urticae: Impact of chemical stabilization of isofuranodiene by interaction with silver triflate. J. Pest Sci. 2017;90:693–699. doi: 10.1007/s10340-016-0829-5. DOI

Pavela R., Murugan K., Canale A., Benelli G. Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind. Crop. Prod. 2017;97:338–344. doi: 10.1016/j.indcrop.2016.12.046. DOI

Pavela R., Dall’Acqua S., Sut S., Baldan V., Kamte S.L.N., Nya P.C.B., Benelli G. Oviposition inhibitory activity of the Mexican sunflower Tithonia diversifolia (Asteraceae) polar extracts against the two-spotted spider mite Tetranychus urticae (Tetranychidae) Physiol. Mol. Plant Pathol. 2018;101:85–92. doi: 10.1016/j.pmpp.2016.11.002. DOI

Sut S., Pavela R., Kolarčik V., Cappellacci L., Petrelli R., Maggi F., Benelli G. Identification of Onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules. 2017;22:1002. doi: 10.3390/molecules22061002. PubMed DOI PMC

Pavela R., Benelli G. Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI

Isman M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020;19:235–241. doi: 10.1007/s11101-019-09653-9. DOI

Euro Med Plant Base. [(accessed on 30 April 2022)]. Available online: https://ww2.bgbm.org/EuroPlusMed/query.asp.

Mitsuhashi H., Tanaka O., Nozoe S., Nagai M. Chemistry of Organic Natural Products. 4th ed. Nankoudou Press; Tokyo, Japan: 1994. pp. 168–174.

O’connor M.G., Buck R.E., Fellers C.R. Red squill investigations properties, toxicity, and palatability of red squill and powder baits to rats. Ind. Eng. Chem. 1935;27:1377–1380. doi: 10.1021/ie50311a035. DOI

Saadane F.Z., Habbachi W., Habbachi S., Boublata N.E.I., Slimani A., Tahraoui A. Toxic effects of Drimia maritima (Asparagaceae) ethanolic extracts on the mortality, development, sexual behaviour and oviposition behaviour of Drosophila melanogaster (Diptera: Drosophilidae) J. Anim. Behav. Biometeorol. 2020;9:2102. doi: 10.31893/jabb.21002. DOI

Kopp B., Krenn L., Draxler M., Hoyer A., Terkola R., Vallaster P., Robien W. Bufadienolides from Urginea maritima from Egypt. Phytochemistry. 1996;42:513–522. doi: 10.1016/0031-9422(95)00876-4. PubMed DOI

Krenn L., Jelovina M., Kopp B. New bufadienolides from Urginea maritima sensu strictu. Fitoterapia. 2000;71:126–129. doi: 10.1016/S0367-326X(99)00142-2. PubMed DOI

Fernandez M., Vega F.A., Arrupe T., Renedo J. Flavonoids of squill, Urginea maritima. Phytochemistry. 1972;11:1534. doi: 10.1016/S0031-9422(00)90144-4. DOI

Iizuka M., Warashina T., Noro T. Bufadienolides and a new lignan from the bulbs of Urginea maritima. Chem. Pharm. Bull. 2001;49:282–286. doi: 10.1248/cpb.49.282. PubMed DOI

Mulholland D.A., Schwikkardab S.L., Crouch N.R. The chemistry and biological activity of the Hyacinthaceae. Nat. Prod. Rep. 2013;30:1165–1210. doi: 10.1039/c3np70008a. PubMed DOI

Kopp B., Unterluggauer M., Robien W., Kubelka W. Bufadienolides from Urginea pancration. Planta Med. 1990;56:193–197. doi: 10.1055/s-2006-960924. PubMed DOI

Krenn L., Bamberger M., Kopp B. A new bufadienolide from Urginea pancration. Plant Med. 1992;58:284–285. doi: 10.1055/s-2006-961459. PubMed DOI

Badalamenti N., Rosselli S., Zito P., Bruno M. Phytochemical profile and insecticidal activity of Drimia pancration (Asparagaceae) against adults of Stegobium paniceum (Anobiidae) Nat. Prod. Res. 2021;35:4468–4478. doi: 10.1080/14786419.2020.1729154. PubMed DOI

Rosselli S., Tundis R., Bruno M., Leporini M., Falco T., Candela R.G., Badalamenti N., Loizzo M.R. Ceiba speciosa (A. St.-Hil.) seeds oil: Fatty acids profiling by GC-MS and NMR and bioactivity. Molecules. 2020;25:1037. doi: 10.3390/molecules25051037. PubMed DOI PMC

Sut S., Maggi F., Bruno S., Badalamenti N., Quassinti L., Bramucci M., Beghelli D., Lupidi G., Dall’Acqua S. Hairy garlic (Allium subhirsutum) from Sicily (Italy): LC-DAD-MSn analysis of secondary metabolites and in vitro biological properties. Molecules. 2020;25:2837. doi: 10.3390/molecules25122837. PubMed DOI PMC

Badalamenti N., Russi S., Bruno M., Maresca V., Vaglica A., Ilardi V., Zanfardino A., Di Napoli M., Varcamonti M., Cianciullo P., et al. Dihydrophenanthrenes from a Sicilian accession of Himantoglossum robertianum (Loisel.) P. Delforge showed antioxidant, antimicrobial, and antiproliferative activities. Plants. 2021;10:2776. doi: 10.3390/plants10122776. PubMed DOI PMC

Badalamenti N., Bruno M., Schicchi R., Geraci A., Leporini M., Gervasi L., Tundis R., Loizzo M.R. Chemical compositions and antioxidant activities of essential oils, and their combinations, obtained from flavedo by-product of seven cultivars of Sicilian Citrus aurantium L. Molecules. 2022;27:1580. PubMed PMC

Badalamenti N., Ilardi V., Bruno M., Pavela R., Boukouvala M.C., Kavallieratos N.G., Maggi F., Canale A., Benelli G. Chemical composition and broad-spectrum insecticidal activity of the flower essential oil from an ancient Sicilian food plant, Ridolfia segetum. Agriculture. 2021;11:304. doi: 10.3390/agriculture11040304. DOI

D’Agostino G., Giambra B., Palla F., Bruno M., Badalamenti N. The application of the essential oils of Thymus vulgaris L. and Crithmum maritimum L. as biocidal on two Tholu bommalu indian leather puppets. Plants. 2021;10:1508. doi: 10.3390/plants10081508. PubMed DOI PMC

Basile S., Badalamenti N., Riccobono O., Guarino S., Ilardi V., Bruno M., Peri E. Chemical composition and evaluation of insecticidal activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum essential oils against stored products pests. Molecules. 2022;27:588. doi: 10.3390/molecules27030588. PubMed DOI PMC

Pascual-Villalobos M.J. Anti-insect activity of bufadienolides from Urginea maritima. In: Janick J., Whipkey A., editors. Trends in New Crops and New Uses. ASHS Press; Alexandria, VA, USA: 2002. pp. 564–566.

Dagne E., Mammo W., Alemu M., Casser I. Two bufadienolides from Drimia altissima (Urginea altissima) Bull. Chem. Soc. Ethiop. 1994;8:85–89.

Ferreira C.B.S., Andrade F.H.N., Rodrigues A.R.S., Siqueira H.A.A., Gondim M.G.C. Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Prot. 2015;67:77–83. doi: 10.1016/j.cropro.2014.09.022. DOI

Rincón R.A., Rodríguez D., Coy-Barrera E. Botanicals against Tetranychus urticae Koch under laboratory conditions: A survey of alternatives for controlling pest mites. Plants. 2019;8:272. doi: 10.3390/plants8080272. PubMed DOI PMC

Schneider F., Maurer C., Friedberg R.C. International Organization for Standardization (ISO) 15189. Ann. Lab. Med. 2017;37:365–370. doi: 10.3343/alm.2017.37.5.365. PubMed DOI PMC

Pavela R. Acaricidal properties of extracts and major furanochromenes from the seeds of Ammi visnaga Linn. against Tetranychus urticae Koch. Ind. Crop. Prod. 2015;67:108–113. doi: 10.1016/j.indcrop.2015.01.011. DOI

Marris J.W. Ph.D. Thesis. University of Canterbury; Christchurch, New Zealand: 1988. The Toxicity of Hexythiazox to Twospotted Spider Mite (Tetranychus urticae Koch) Adults and Eggs.

Havasi M., Sangak Sani Bozhgani N., Golmohmmadi G., Kheradmand K. Impact of hexythiazox on life table parameters of the Amblyseius swirskii (Acari: Phytoseiidae) and its prey Tetranychus urticae. J. Crop. Prot. 2021;10:295–308.

Pavela R., Pavoni L., Bonacucina G., Cespi M., Cappellacci L., Petrelli R., Spinozzi E., Aguzzi C., Zeppa L., Ubaldi M., et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021;94:899–915. doi: 10.1007/s10340-020-01327-2. DOI

Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI

Finney D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press; Cambridge, UK: 1952.

Nabissi M., Morelli M.B., Offidani M., Amantini C., Gentili S., Soriani A., Cardinali C., Leoni P., Santoni G. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget. 2016;7:77543–77557. doi: 10.18632/oncotarget.12721. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...