Acaricidal Activity of Bufadienolides Isolated from Drimia pancration against Tetranychus urticae, and Structural Elucidation of Arenobufagin-3-O-α-L-rhamnopyranoside
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35807580
PubMed Central
PMC9268777
DOI
10.3390/plants11131629
PII: plants11131629
Knihovny.cz E-zdroje
- Klíčová slova
- Integrated Pest Management, NMR, botanical acaricide, crop pest, steroidal saponins,
- Publikační typ
- časopisecké články MeSH
Chemical characterization of the bulbs of Drimia pancration was conducted to isolate four steroidal saponins (1-4). Earlier, we focused on the structural elucidation of compounds 1-3. Herein, by means of 1H-NMR, 13C-NMR, Nuclear Overhauser Effects (NOE), and 2D-NMR spectra, the full stereochemical structure of 4 is reported, and all the 1H and 13C signals are assigned. Compounds 1-4 were tested for their acaricidal properties against the two-spotted spider mite Tetranychus urticae. Our results showed excellent activity of compound 1, with an LD50 (µg/cm2) of 0.29 and a LD90 (µg/cm2) of 0.96, whereas compounds 2, 3, and 4 showed moderate activity. Furthermore, the acaricidal and cytotoxic properties of the crude extract were also investigated. Of note, after 96 h of exposure, the acaricidal activity of compound 1 was higher than that of the positive control, hexythiazox. Indeed, for compound 1, LD50 and LD90 were 0.29 and 0.96 µg/cm2, respectively, while hexythiazox LD50(90) was 18.7 (132.5) µg/cm2. Additionally, D. pancration extract, after 72 h, induced a high cytotoxic effect in HaCaT and THP-1 cell lines, with an IC50 of 7.37 ± 0.5 µg/mL and 3.50 ± 0.15 µg/mL, respectively. Overall, D. pancration can be considered as a green source of novel acaricides effective against mites of agricultural importance, such as T. urticae, pending proper field validation and the assessment of non-target effects on other invertebrate species.
Crop Research Institute Drnovska 507 161 06 Prague Czech Republic
School of Pharmacy University of Camerino Via Madonna delle Carceri 9 62032 Camerino Italy
Zobrazit více v PubMed
Wang X., Xu X., Ullah F., Ding Q., Gao X., Desneux N., Song D. Comparison of full-length transcriptomes of different imidacloprid-resistant strains of Rhopalosiphum padi (L.) Entomol. Gen. 2021;41:289–304. doi: 10.1127/entomologia/2021/0972. DOI
Leska A., Nowak A., Nowak I., Gòrczynska A. Effects of insecticides and microbiological contaminants on Apis mellifera health. Molecules. 2021;26:5080. doi: 10.3390/molecules26165080. PubMed DOI PMC
Ricupero M., Desneux N., Zappalà L., Biondi A. Target and non-target impact of systemic insecticides on a polyphagous aphid pest and its parasitoid. Chemosphere. 2020;247:125728. doi: 10.1016/j.chemosphere.2019.125728. PubMed DOI
Passos L.C., Soares M.A., Collares L.J., Malagoli I., Desneux N., Carvalho G.A. Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol. Gen. 2018;38:127–143. doi: 10.1127/entomologia/2018/0744. DOI
Van Leeuwen T., Vontas J., Tsagkarakou A., Dermauw W., Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010;40:563–572. doi: 10.1016/j.ibmb.2010.05.008. PubMed DOI
Adesanya A.W., Lavine M.D., Moural T.W., Lavine L.C., Zhu F., Walsh D.B. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J. Pest Sci. 2021;94:639–663. doi: 10.1007/s10340-021-01342-x. DOI
Whalon M.E., Mota-Sanchez R.M., Hollingworth R.M., Duynslager L. Artrhopods Resistant to Pesticides Database (ARPD) [(accessed on 2 May 2022)]. Available online: http://www.pesticideresistance.org.
Van Leeuwen T., Tirry L., Yamamoto A., Nauen R., Dermauw W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem. Physiol. 2015;121:12–21. doi: 10.1016/j.pestbp.2014.12.009. PubMed DOI
Migeon A., Nouguier E., Dorkeld F. Trends in Acarology. Springer; Dordrecht, The Netherlands: 2010. Spider Mites Web: A comprehensive database for the Tetranychidae; pp. 557–560.
Cazaux M., Navarro M., Bruinsma K.A., Zhurov V., Negrave T., Van Leeuwen T., Grbic M. Application of two-spotted spider mite Tetranychus urticae for plant-pest interaction studies. J. Vis. Exp. 2014;89:e51738. doi: 10.3791/51738. PubMed DOI PMC
Pavela R., Morshedloo M.R., Mumivand H., Khorsand G.J., Karami A., Maggi F., Benelli G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020;40:421–435. doi: 10.1127/entomologia/2020/1131. DOI
Benelli G., Pavela R., Canale A., Nicoletti M., Petrelli R., Cappellacci L., Galassi R., Maggi F. Isofuranodiene and germacrone from Smyrnium olusatrum essential oil as acaricides and oviposition inhibitors against Tetranychus urticae: Impact of chemical stabilization of isofuranodiene by interaction with silver triflate. J. Pest Sci. 2017;90:693–699. doi: 10.1007/s10340-016-0829-5. DOI
Pavela R., Murugan K., Canale A., Benelli G. Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind. Crop. Prod. 2017;97:338–344. doi: 10.1016/j.indcrop.2016.12.046. DOI
Pavela R., Dall’Acqua S., Sut S., Baldan V., Kamte S.L.N., Nya P.C.B., Benelli G. Oviposition inhibitory activity of the Mexican sunflower Tithonia diversifolia (Asteraceae) polar extracts against the two-spotted spider mite Tetranychus urticae (Tetranychidae) Physiol. Mol. Plant Pathol. 2018;101:85–92. doi: 10.1016/j.pmpp.2016.11.002. DOI
Sut S., Pavela R., Kolarčik V., Cappellacci L., Petrelli R., Maggi F., Benelli G. Identification of Onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules. 2017;22:1002. doi: 10.3390/molecules22061002. PubMed DOI PMC
Pavela R., Benelli G. Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Isman M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020;19:235–241. doi: 10.1007/s11101-019-09653-9. DOI
Euro Med Plant Base. [(accessed on 30 April 2022)]. Available online: https://ww2.bgbm.org/EuroPlusMed/query.asp.
Mitsuhashi H., Tanaka O., Nozoe S., Nagai M. Chemistry of Organic Natural Products. 4th ed. Nankoudou Press; Tokyo, Japan: 1994. pp. 168–174.
O’connor M.G., Buck R.E., Fellers C.R. Red squill investigations properties, toxicity, and palatability of red squill and powder baits to rats. Ind. Eng. Chem. 1935;27:1377–1380. doi: 10.1021/ie50311a035. DOI
Saadane F.Z., Habbachi W., Habbachi S., Boublata N.E.I., Slimani A., Tahraoui A. Toxic effects of Drimia maritima (Asparagaceae) ethanolic extracts on the mortality, development, sexual behaviour and oviposition behaviour of Drosophila melanogaster (Diptera: Drosophilidae) J. Anim. Behav. Biometeorol. 2020;9:2102. doi: 10.31893/jabb.21002. DOI
Kopp B., Krenn L., Draxler M., Hoyer A., Terkola R., Vallaster P., Robien W. Bufadienolides from Urginea maritima from Egypt. Phytochemistry. 1996;42:513–522. doi: 10.1016/0031-9422(95)00876-4. PubMed DOI
Krenn L., Jelovina M., Kopp B. New bufadienolides from Urginea maritima sensu strictu. Fitoterapia. 2000;71:126–129. doi: 10.1016/S0367-326X(99)00142-2. PubMed DOI
Fernandez M., Vega F.A., Arrupe T., Renedo J. Flavonoids of squill, Urginea maritima. Phytochemistry. 1972;11:1534. doi: 10.1016/S0031-9422(00)90144-4. DOI
Iizuka M., Warashina T., Noro T. Bufadienolides and a new lignan from the bulbs of Urginea maritima. Chem. Pharm. Bull. 2001;49:282–286. doi: 10.1248/cpb.49.282. PubMed DOI
Mulholland D.A., Schwikkardab S.L., Crouch N.R. The chemistry and biological activity of the Hyacinthaceae. Nat. Prod. Rep. 2013;30:1165–1210. doi: 10.1039/c3np70008a. PubMed DOI
Kopp B., Unterluggauer M., Robien W., Kubelka W. Bufadienolides from Urginea pancration. Planta Med. 1990;56:193–197. doi: 10.1055/s-2006-960924. PubMed DOI
Krenn L., Bamberger M., Kopp B. A new bufadienolide from Urginea pancration. Plant Med. 1992;58:284–285. doi: 10.1055/s-2006-961459. PubMed DOI
Badalamenti N., Rosselli S., Zito P., Bruno M. Phytochemical profile and insecticidal activity of Drimia pancration (Asparagaceae) against adults of Stegobium paniceum (Anobiidae) Nat. Prod. Res. 2021;35:4468–4478. doi: 10.1080/14786419.2020.1729154. PubMed DOI
Rosselli S., Tundis R., Bruno M., Leporini M., Falco T., Candela R.G., Badalamenti N., Loizzo M.R. Ceiba speciosa (A. St.-Hil.) seeds oil: Fatty acids profiling by GC-MS and NMR and bioactivity. Molecules. 2020;25:1037. doi: 10.3390/molecules25051037. PubMed DOI PMC
Sut S., Maggi F., Bruno S., Badalamenti N., Quassinti L., Bramucci M., Beghelli D., Lupidi G., Dall’Acqua S. Hairy garlic (Allium subhirsutum) from Sicily (Italy): LC-DAD-MSn analysis of secondary metabolites and in vitro biological properties. Molecules. 2020;25:2837. doi: 10.3390/molecules25122837. PubMed DOI PMC
Badalamenti N., Russi S., Bruno M., Maresca V., Vaglica A., Ilardi V., Zanfardino A., Di Napoli M., Varcamonti M., Cianciullo P., et al. Dihydrophenanthrenes from a Sicilian accession of Himantoglossum robertianum (Loisel.) P. Delforge showed antioxidant, antimicrobial, and antiproliferative activities. Plants. 2021;10:2776. doi: 10.3390/plants10122776. PubMed DOI PMC
Badalamenti N., Bruno M., Schicchi R., Geraci A., Leporini M., Gervasi L., Tundis R., Loizzo M.R. Chemical compositions and antioxidant activities of essential oils, and their combinations, obtained from flavedo by-product of seven cultivars of Sicilian Citrus aurantium L. Molecules. 2022;27:1580. PubMed PMC
Badalamenti N., Ilardi V., Bruno M., Pavela R., Boukouvala M.C., Kavallieratos N.G., Maggi F., Canale A., Benelli G. Chemical composition and broad-spectrum insecticidal activity of the flower essential oil from an ancient Sicilian food plant, Ridolfia segetum. Agriculture. 2021;11:304. doi: 10.3390/agriculture11040304. DOI
D’Agostino G., Giambra B., Palla F., Bruno M., Badalamenti N. The application of the essential oils of Thymus vulgaris L. and Crithmum maritimum L. as biocidal on two Tholu bommalu indian leather puppets. Plants. 2021;10:1508. doi: 10.3390/plants10081508. PubMed DOI PMC
Basile S., Badalamenti N., Riccobono O., Guarino S., Ilardi V., Bruno M., Peri E. Chemical composition and evaluation of insecticidal activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum essential oils against stored products pests. Molecules. 2022;27:588. doi: 10.3390/molecules27030588. PubMed DOI PMC
Pascual-Villalobos M.J. Anti-insect activity of bufadienolides from Urginea maritima. In: Janick J., Whipkey A., editors. Trends in New Crops and New Uses. ASHS Press; Alexandria, VA, USA: 2002. pp. 564–566.
Dagne E., Mammo W., Alemu M., Casser I. Two bufadienolides from Drimia altissima (Urginea altissima) Bull. Chem. Soc. Ethiop. 1994;8:85–89.
Ferreira C.B.S., Andrade F.H.N., Rodrigues A.R.S., Siqueira H.A.A., Gondim M.G.C. Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Prot. 2015;67:77–83. doi: 10.1016/j.cropro.2014.09.022. DOI
Rincón R.A., Rodríguez D., Coy-Barrera E. Botanicals against Tetranychus urticae Koch under laboratory conditions: A survey of alternatives for controlling pest mites. Plants. 2019;8:272. doi: 10.3390/plants8080272. PubMed DOI PMC
Schneider F., Maurer C., Friedberg R.C. International Organization for Standardization (ISO) 15189. Ann. Lab. Med. 2017;37:365–370. doi: 10.3343/alm.2017.37.5.365. PubMed DOI PMC
Pavela R. Acaricidal properties of extracts and major furanochromenes from the seeds of Ammi visnaga Linn. against Tetranychus urticae Koch. Ind. Crop. Prod. 2015;67:108–113. doi: 10.1016/j.indcrop.2015.01.011. DOI
Marris J.W. Ph.D. Thesis. University of Canterbury; Christchurch, New Zealand: 1988. The Toxicity of Hexythiazox to Twospotted Spider Mite (Tetranychus urticae Koch) Adults and Eggs.
Havasi M., Sangak Sani Bozhgani N., Golmohmmadi G., Kheradmand K. Impact of hexythiazox on life table parameters of the Amblyseius swirskii (Acari: Phytoseiidae) and its prey Tetranychus urticae. J. Crop. Prot. 2021;10:295–308.
Pavela R., Pavoni L., Bonacucina G., Cespi M., Cappellacci L., Petrelli R., Spinozzi E., Aguzzi C., Zeppa L., Ubaldi M., et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021;94:899–915. doi: 10.1007/s10340-020-01327-2. DOI
Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI
Finney D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press; Cambridge, UK: 1952.
Nabissi M., Morelli M.B., Offidani M., Amantini C., Gentili S., Soriani A., Cardinali C., Leoni P., Santoni G. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget. 2016;7:77543–77557. doi: 10.18632/oncotarget.12721. PubMed DOI PMC