Nanoparticle induced fusion of lipid membranes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38679949
PubMed Central
PMC11138393
DOI
10.1039/d4nr00591k
Knihovny.cz E-zdroje
- MeSH
- fúze membrán * MeSH
- lipidové dvojvrstvy chemie MeSH
- liposomy chemie MeSH
- membránové lipidy chemie metabolismus MeSH
- nanočástice * chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
- liposomy MeSH
- membránové lipidy MeSH
Membrane fusion is crucial for infection of enveloped viruses, cellular transport, and drug delivery via liposomes. Nanoparticles can serve as fusogenic agents facilitating such membrane fusion for direct transmembrane transport. However, the underlying mechanisms of nanoparticle-induced fusion and the ideal properties of such nanoparticles remain largely unknown. Here, we used molecular dynamics simulations to investigate the efficacy of spheroidal nanoparticles with different size, prolateness, and ligand interaction strengths to enhance fusion between vesicles. By systematically varying nanoparticle properties, we identified how each parameter affects the fusion process and determined the optimal parameter range that promotes fusion. These findings provide valuable insights for the design and optimization of fusogenic nanoparticles with potential biotechnological and biomedical applications.
Zobrazit více v PubMed
Jahn R. Lang T. Südhof T. C. Membrane Fusion. Cell. 2003;112:519–533. doi: 10.1016/S0092-8674(03)00112-0. PubMed DOI
Stalder D. Gershlick D. C. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin. Cell Dev. Biol. 2020;107:112–125. doi: 10.1016/j.semcdb.2020.04.001. PubMed DOI PMC
Weissenhorn W. Hinz A. Gaudin Y. Virus membrane fusion. FEBS Lett. 2007;581:2150–2155. doi: 10.1016/j.febslet.2007.01.093. PubMed DOI PMC
Straubinger R. M. Hong K. Friend D. S. Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: Encounter with a low pH compartment after internalization in coated vesicles. Cell. 1983;32:1069–1079. doi: 10.1016/0092-8674(83)90291-X. PubMed DOI
Schneck E. Sedlmeier F. Netz R. R. Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc. Natl. Acad. Sci. U. S. A. 2012;109:14405–14409. doi: 10.1073/pnas.1205811109. PubMed DOI PMC
Kawamoto S. Shinoda W. Free energy analysis along the stalk mechanism of membrane fusion. Soft Matter. 2014;10:3048. doi: 10.1039/C3SM52344F. PubMed DOI
Chernomordik L. V. Kozlov M. M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 2008;15:675–683. doi: 10.1038/nsmb.1455. PubMed DOI PMC
Azimi F. C. Dean T. T. Minari K. Basso L. G. M. Vance T. D. R. Serrão V. H. B. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules. 2023;13:1130. doi: 10.3390/biom13071130. PubMed DOI PMC
Tahir M. A. Guven Z. P. Arriaga L. R. Tinao B. Yang Y.-S. S. Bekdemir A. Martin J. T. Bhanji A. N. Irvine D. Stellacci F. Alexander-Katz A. Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2020;117:18470–18476. doi: 10.1073/pnas.1902597117. PubMed DOI PMC
Canepa E. Bochicchio D. Brosio G. Silva P. H. J. Stellacci F. Dante S. Rossi G. Relini A. Cholesterol-Containing Liposomes Decorated With Au Nanoparticles as Minimal Tunable Fusion Machinery. Small. 2023;19:2207125. doi: 10.1002/smll.202207125. PubMed DOI
Perez M. A. Beales P. A. Biomimetic Curvature and Tension-Driven Membrane Fusion Induced by Silica Nanoparticles. Langmuir. 2021;37(47):13917–13931. doi: 10.1021/acs.langmuir.1c02492. PubMed DOI
Rørvig-Lund A. Bahadori A. Semsey S. Bendix P. M. Oddershede L. B. Vesicle Fusion Triggered by Optically Heated Gold Nanoparticles. Nano Lett. 2015;15:4183–4188. doi: 10.1021/acs.nanolett.5b01366. PubMed DOI
Deserno M. Mesoscopic Membrane Physics: Concepts, Simulations, and Selected Applications. Macromol. Rapid Commun. 2009;30:752–771. doi: 10.1002/marc.200900090. PubMed DOI
Mirjanian D. Dickey A. N. Hoh J. H. Woolf T. B. Stevens M. J. Splaying of Aliphatic Tails Plays a Central Role in Barrier Crossing During Liposome Fusion. J. Phys. Chem. B. 2010;114:11061–11068. doi: 10.1021/jp1055182. PubMed DOI PMC
Kabelka I. Georgiev V. Marx L. Pajtinka P. Lohner K. Pabst G. Dimova R. Vácha R. Magainin 2 and PGLa in bacterial membrane mimics III: Membrane fusion and disruption. Biophys. J. 2022;121:852–861. doi: 10.1016/j.bpj.2021.12.035. PubMed DOI PMC
Kawamoto S. Klein M. L. Shinoda W. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism. J. Chem. Phys. 2015;143:243112. doi: 10.1063/1.4933087. PubMed DOI
Risselada H. J. Grubmüller H. How SNARE molecules mediate membrane fusion: Recent insights from molecular simulations. Curr. Opin. Struct. Biol. 2012;22:187–196. doi: 10.1016/j.sbi.2012.01.007. PubMed DOI
Poojari C. S. Scherer K. C. Hub J. S. Free energies of membrane stalk formation from a lipidomics perspective. Nat. Commun. 2021;12:6594. doi: 10.1038/s41467-021-26924-2. PubMed DOI PMC
Cooke I. R. Kremer K. Deserno M. Tunable generic model for fluid bilayer membranes. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2005;72:011506. doi: 10.1103/PhysRevE.72.011506. PubMed DOI
Foley S. Deserno M. Stabilizing Leaflet Asymmetry under Differential Stress in a Highly Coarse-Grained Lipid Membrane Model. J. Chem. Theory Comput. 2020;16:7195–7206. doi: 10.1021/acs.jctc.0c00862. PubMed DOI
Bruckner R. Mansy S. Ricardo A. Mahadevan L. Szostak J. Flip-Flop-Induced Relaxation of Bending Energy: Implications for Membrane Remodeling. Biophys. J. 2009;97:3113–3122. doi: 10.1016/j.bpj.2009.09.025. PubMed DOI PMC
Wei C. Pohorille A. Fast bilayer-micelle fusion mediated by hydrophobic dipeptides. Biophys. J. 2021;120:2330–2342. doi: 10.1016/j.bpj.2021.04.012. PubMed DOI PMC
Risselada H. J. Bubnis G. Grubmuller H. Expansion of the fusion stalk and its implication for biological membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 2014;111:11043–11048. doi: 10.1073/pnas.1323221111. PubMed DOI PMC
Risselada H. J. Grubmüller H. How proteins open fusion pores: insights from molecular simulations. Eur. Biophys. J. 2020;50:279–293. doi: 10.1007/s00249-020-01484-3. PubMed DOI PMC
Smirnova Y. G. Marrink S.-J. Lipowsky R. Knecht V. Solvent-Exposed Tails as Prestalk Transition States for Membrane Fusion at Low Hydration. J. Am. Chem. Soc. 2010;132:6710–6718. doi: 10.1021/ja910050x. PubMed DOI
Marrink S. J. Mark A. E. The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. J. Am. Chem. Soc. 2003;125:11144–11145. doi: 10.1021/ja036138+. PubMed DOI
Shillcock J. C. Lipowsky R. Tension-induced fusion of bilayer membranes and vesicles. Nat. Mater. 2005;4:225–228. doi: 10.1038/nmat1333. PubMed DOI
Kasson P. M. Lindahl E. Pande V. S. Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails. PLoS Comput. Biol. 2010;6:e1000829. doi: 10.1371/journal.pcbi.1000829. PubMed DOI PMC
Chen E. H. Grote E. Mohler W. Vignery A. Cell-cell fusion. FEBS Lett. 2007;581:2181–2193. doi: 10.1016/j.febslet.2007.03.033. PubMed DOI
Yingchoncharoen P. Kalinowski D. S. Richardson D. R. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol. Rev. 2016;68:701–787. doi: 10.1124/pr.115.012070. PubMed DOI PMC
Fulton M. D. Najahi-Missaoui W. Liposomes in Cancer Therapy: How Did We Start and Where Are We Now. Int. J. Mol. Sci. 2023;24:6615. doi: 10.3390/ijms24076615. PubMed DOI PMC
Kim D. Wu Y. Kim Y. B. Oh Y.-K. Advances in vaccine delivery systems against viral infectious diseases. Drug Delivery Transl. Res. 2021;11:1401–1419. doi: 10.1007/s13346-021-00945-2. PubMed DOI PMC
Herrmann I. K. Wood M. J. A. Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021;16:748–759. doi: 10.1038/s41565-021-00931-2. PubMed DOI
Piffoux M. Silva A. K. A. Wilhelm C. Gazeau F. Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018;12:6830–6842. doi: 10.1021/acsnano.8b02053. PubMed DOI
Chernomordik L. V. Zimmerberg J. Kozlov M. M. Membranes of the world unite! J. Cell Biol. 2006;175:201–207. doi: 10.1083/jcb.200607083. PubMed DOI PMC
Brust M. Walker M. Bethell D. Schiffrin D. J. Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc., Chem. Commun. 1994:801–802. doi: 10.1039/C39940000801. DOI
Turkevich J. Stevenson P. C. Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55. doi: 10.1039/DF9511100055. DOI
Kundu S. Peng L. Liang H. A New Route to Obtain High-Yield Multiple-Shaped Gold Nanoparticles in Aqueous Solution using Microwave Irradiation. Inorg. Chem. 2008;47:6344–6352. doi: 10.1021/ic8004135. PubMed DOI
Jana N. R. Gearheart L. Murphy C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 2001;13:1389–1393. doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F. DOI
Amina S. J. Guo B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020;15:9823–9857. doi: 10.2147/IJN.S279094. PubMed DOI PMC
Pengo P. Şologan M. Pasquato L. Guida F. Pacor S. Tossi A. Stellacci F. Marson D. Boccardo S. Pricl S. Posocco P. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. Eur. Biophys. J. 2017;46:749–771. doi: 10.1007/s00249-017-1250-6. PubMed DOI PMC
Ferrando R. Jellinek J. Johnston R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008;108:845–910. doi: 10.1021/cr040090g. PubMed DOI
Thompson A. P. Aktulga H. M. Berger R. Bolintineanu D. S. Brown W. M. Crozier P. S. in ‘t Veld P. J. Kohlmeyer A. Moore S. G. Nguyen T. D. Shan R. Stevens M. J. Tranchida J. Trott C. Plimpton S. J. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171. DOI
Dunweg B. Paul W. Brownian Dynamics Simulations Without Gaussian Random Numbers. Int. J. Mod. Phys. C. 1991;02:817–827. doi: 10.1142/S0129183191001037. DOI
Grønbech-Jensen N. Hayre N. R. Farago O. Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations. Comput. Phys. Commun. 2014;185:524–527. doi: 10.1016/j.cpc.2013.10.006. DOI
Weeks J. D. Chandler D. Andersen H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 1971;54:5237–5247. doi: 10.1063/1.1674820. DOI
Sapay N. Bennett W. F. D. Tieleman D. P. Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids. Soft Matter. 2009;5:3295. doi: 10.1039/B902376C. DOI
Bennett W. F. D. Sapay N. Tieleman D. P. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers. Biophys. J. 2014;106:210–219. doi: 10.1016/j.bpj.2013.11.4486. PubMed DOI PMC