Nanoparticle induced fusion of lipid membranes

. 2024 May 30 ; 16 (21) : 10221-10229. [epub] 20240530

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38679949

Membrane fusion is crucial for infection of enveloped viruses, cellular transport, and drug delivery via liposomes. Nanoparticles can serve as fusogenic agents facilitating such membrane fusion for direct transmembrane transport. However, the underlying mechanisms of nanoparticle-induced fusion and the ideal properties of such nanoparticles remain largely unknown. Here, we used molecular dynamics simulations to investigate the efficacy of spheroidal nanoparticles with different size, prolateness, and ligand interaction strengths to enhance fusion between vesicles. By systematically varying nanoparticle properties, we identified how each parameter affects the fusion process and determined the optimal parameter range that promotes fusion. These findings provide valuable insights for the design and optimization of fusogenic nanoparticles with potential biotechnological and biomedical applications.

Zobrazit více v PubMed

Jahn R. Lang T. Südhof T. C. Membrane Fusion. Cell. 2003;112:519–533. doi: 10.1016/S0092-8674(03)00112-0. PubMed DOI

Stalder D. Gershlick D. C. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin. Cell Dev. Biol. 2020;107:112–125. doi: 10.1016/j.semcdb.2020.04.001. PubMed DOI PMC

Weissenhorn W. Hinz A. Gaudin Y. Virus membrane fusion. FEBS Lett. 2007;581:2150–2155. doi: 10.1016/j.febslet.2007.01.093. PubMed DOI PMC

Straubinger R. M. Hong K. Friend D. S. Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: Encounter with a low pH compartment after internalization in coated vesicles. Cell. 1983;32:1069–1079. doi: 10.1016/0092-8674(83)90291-X. PubMed DOI

Schneck E. Sedlmeier F. Netz R. R. Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc. Natl. Acad. Sci. U. S. A. 2012;109:14405–14409. doi: 10.1073/pnas.1205811109. PubMed DOI PMC

Kawamoto S. Shinoda W. Free energy analysis along the stalk mechanism of membrane fusion. Soft Matter. 2014;10:3048. doi: 10.1039/C3SM52344F. PubMed DOI

Chernomordik L. V. Kozlov M. M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 2008;15:675–683. doi: 10.1038/nsmb.1455. PubMed DOI PMC

Azimi F. C. Dean T. T. Minari K. Basso L. G. M. Vance T. D. R. Serrão V. H. B. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules. 2023;13:1130. doi: 10.3390/biom13071130. PubMed DOI PMC

Tahir M. A. Guven Z. P. Arriaga L. R. Tinao B. Yang Y.-S. S. Bekdemir A. Martin J. T. Bhanji A. N. Irvine D. Stellacci F. Alexander-Katz A. Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2020;117:18470–18476. doi: 10.1073/pnas.1902597117. PubMed DOI PMC

Canepa E. Bochicchio D. Brosio G. Silva P. H. J. Stellacci F. Dante S. Rossi G. Relini A. Cholesterol-Containing Liposomes Decorated With Au Nanoparticles as Minimal Tunable Fusion Machinery. Small. 2023;19:2207125. doi: 10.1002/smll.202207125. PubMed DOI

Perez M. A. Beales P. A. Biomimetic Curvature and Tension-Driven Membrane Fusion Induced by Silica Nanoparticles. Langmuir. 2021;37(47):13917–13931. doi: 10.1021/acs.langmuir.1c02492. PubMed DOI

Rørvig-Lund A. Bahadori A. Semsey S. Bendix P. M. Oddershede L. B. Vesicle Fusion Triggered by Optically Heated Gold Nanoparticles. Nano Lett. 2015;15:4183–4188. doi: 10.1021/acs.nanolett.5b01366. PubMed DOI

Deserno M. Mesoscopic Membrane Physics: Concepts, Simulations, and Selected Applications. Macromol. Rapid Commun. 2009;30:752–771. doi: 10.1002/marc.200900090. PubMed DOI

Mirjanian D. Dickey A. N. Hoh J. H. Woolf T. B. Stevens M. J. Splaying of Aliphatic Tails Plays a Central Role in Barrier Crossing During Liposome Fusion. J. Phys. Chem. B. 2010;114:11061–11068. doi: 10.1021/jp1055182. PubMed DOI PMC

Kabelka I. Georgiev V. Marx L. Pajtinka P. Lohner K. Pabst G. Dimova R. Vácha R. Magainin 2 and PGLa in bacterial membrane mimics III: Membrane fusion and disruption. Biophys. J. 2022;121:852–861. doi: 10.1016/j.bpj.2021.12.035. PubMed DOI PMC

Kawamoto S. Klein M. L. Shinoda W. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism. J. Chem. Phys. 2015;143:243112. doi: 10.1063/1.4933087. PubMed DOI

Risselada H. J. Grubmüller H. How SNARE molecules mediate membrane fusion: Recent insights from molecular simulations. Curr. Opin. Struct. Biol. 2012;22:187–196. doi: 10.1016/j.sbi.2012.01.007. PubMed DOI

Poojari C. S. Scherer K. C. Hub J. S. Free energies of membrane stalk formation from a lipidomics perspective. Nat. Commun. 2021;12:6594. doi: 10.1038/s41467-021-26924-2. PubMed DOI PMC

Cooke I. R. Kremer K. Deserno M. Tunable generic model for fluid bilayer membranes. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2005;72:011506. doi: 10.1103/PhysRevE.72.011506. PubMed DOI

Foley S. Deserno M. Stabilizing Leaflet Asymmetry under Differential Stress in a Highly Coarse-Grained Lipid Membrane Model. J. Chem. Theory Comput. 2020;16:7195–7206. doi: 10.1021/acs.jctc.0c00862. PubMed DOI

Bruckner R. Mansy S. Ricardo A. Mahadevan L. Szostak J. Flip-Flop-Induced Relaxation of Bending Energy: Implications for Membrane Remodeling. Biophys. J. 2009;97:3113–3122. doi: 10.1016/j.bpj.2009.09.025. PubMed DOI PMC

Wei C. Pohorille A. Fast bilayer-micelle fusion mediated by hydrophobic dipeptides. Biophys. J. 2021;120:2330–2342. doi: 10.1016/j.bpj.2021.04.012. PubMed DOI PMC

Risselada H. J. Bubnis G. Grubmuller H. Expansion of the fusion stalk and its implication for biological membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 2014;111:11043–11048. doi: 10.1073/pnas.1323221111. PubMed DOI PMC

Risselada H. J. Grubmüller H. How proteins open fusion pores: insights from molecular simulations. Eur. Biophys. J. 2020;50:279–293. doi: 10.1007/s00249-020-01484-3. PubMed DOI PMC

Smirnova Y. G. Marrink S.-J. Lipowsky R. Knecht V. Solvent-Exposed Tails as Prestalk Transition States for Membrane Fusion at Low Hydration. J. Am. Chem. Soc. 2010;132:6710–6718. doi: 10.1021/ja910050x. PubMed DOI

Marrink S. J. Mark A. E. The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. J. Am. Chem. Soc. 2003;125:11144–11145. doi: 10.1021/ja036138+. PubMed DOI

Shillcock J. C. Lipowsky R. Tension-induced fusion of bilayer membranes and vesicles. Nat. Mater. 2005;4:225–228. doi: 10.1038/nmat1333. PubMed DOI

Kasson P. M. Lindahl E. Pande V. S. Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails. PLoS Comput. Biol. 2010;6:e1000829. doi: 10.1371/journal.pcbi.1000829. PubMed DOI PMC

Chen E. H. Grote E. Mohler W. Vignery A. Cell-cell fusion. FEBS Lett. 2007;581:2181–2193. doi: 10.1016/j.febslet.2007.03.033. PubMed DOI

Yingchoncharoen P. Kalinowski D. S. Richardson D. R. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol. Rev. 2016;68:701–787. doi: 10.1124/pr.115.012070. PubMed DOI PMC

Fulton M. D. Najahi-Missaoui W. Liposomes in Cancer Therapy: How Did We Start and Where Are We Now. Int. J. Mol. Sci. 2023;24:6615. doi: 10.3390/ijms24076615. PubMed DOI PMC

Kim D. Wu Y. Kim Y. B. Oh Y.-K. Advances in vaccine delivery systems against viral infectious diseases. Drug Delivery Transl. Res. 2021;11:1401–1419. doi: 10.1007/s13346-021-00945-2. PubMed DOI PMC

Herrmann I. K. Wood M. J. A. Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021;16:748–759. doi: 10.1038/s41565-021-00931-2. PubMed DOI

Piffoux M. Silva A. K. A. Wilhelm C. Gazeau F. Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018;12:6830–6842. doi: 10.1021/acsnano.8b02053. PubMed DOI

Chernomordik L. V. Zimmerberg J. Kozlov M. M. Membranes of the world unite! J. Cell Biol. 2006;175:201–207. doi: 10.1083/jcb.200607083. PubMed DOI PMC

Brust M. Walker M. Bethell D. Schiffrin D. J. Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc., Chem. Commun. 1994:801–802. doi: 10.1039/C39940000801. DOI

Turkevich J. Stevenson P. C. Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55. doi: 10.1039/DF9511100055. DOI

Kundu S. Peng L. Liang H. A New Route to Obtain High-Yield Multiple-Shaped Gold Nanoparticles in Aqueous Solution using Microwave Irradiation. Inorg. Chem. 2008;47:6344–6352. doi: 10.1021/ic8004135. PubMed DOI

Jana N. R. Gearheart L. Murphy C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 2001;13:1389–1393. doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F. DOI

Amina S. J. Guo B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020;15:9823–9857. doi: 10.2147/IJN.S279094. PubMed DOI PMC

Pengo P. Şologan M. Pasquato L. Guida F. Pacor S. Tossi A. Stellacci F. Marson D. Boccardo S. Pricl S. Posocco P. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. Eur. Biophys. J. 2017;46:749–771. doi: 10.1007/s00249-017-1250-6. PubMed DOI PMC

Ferrando R. Jellinek J. Johnston R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008;108:845–910. doi: 10.1021/cr040090g. PubMed DOI

Thompson A. P. Aktulga H. M. Berger R. Bolintineanu D. S. Brown W. M. Crozier P. S. in ‘t Veld P. J. Kohlmeyer A. Moore S. G. Nguyen T. D. Shan R. Stevens M. J. Tranchida J. Trott C. Plimpton S. J. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171. DOI

Dunweg B. Paul W. Brownian Dynamics Simulations Without Gaussian Random Numbers. Int. J. Mod. Phys. C. 1991;02:817–827. doi: 10.1142/S0129183191001037. DOI

Grønbech-Jensen N. Hayre N. R. Farago O. Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations. Comput. Phys. Commun. 2014;185:524–527. doi: 10.1016/j.cpc.2013.10.006. DOI

Weeks J. D. Chandler D. Andersen H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 1971;54:5237–5247. doi: 10.1063/1.1674820. DOI

Sapay N. Bennett W. F. D. Tieleman D. P. Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids. Soft Matter. 2009;5:3295. doi: 10.1039/B902376C. DOI

Bennett W. F. D. Sapay N. Tieleman D. P. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers. Biophys. J. 2014;106:210–219. doi: 10.1016/j.bpj.2013.11.4486. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace