Magainin 2 and PGLa in bacterial membrane mimics III: Membrane fusion and disruption
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35134334
PubMed Central
PMC8943694
DOI
10.1016/j.bpj.2021.12.035
PII: S0006-3495(21)03959-X
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána chemie MeSH
- elektronová kryomikroskopie MeSH
- fúze membrán * MeSH
- lipidové dvojvrstvy * chemie MeSH
- magaininy chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidové dvojvrstvy * MeSH
- magaininy MeSH
We previously speculated that the synergistically enhanced antimicrobial activity of Magainin 2 and PGLa is related to membrane adhesion, fusion, and further membrane remodeling. Here we combined computer simulations with time-resolved in vitro fluorescence microscopy, cryoelectron microscopy, and small-angle X-ray scattering to interrogate such morphological and topological changes of vesicles at nanoscopic and microscopic length scales in real time. Coarse-grained simulations revealed formation of an elongated and bent fusion zone between vesicles in the presence of equimolar peptide mixtures. Vesicle adhesion and fusion were observed to occur within a few seconds by cryoelectron microscopy and corroborated by small-angle X-ray scattering measurements. The latter experiments indicated continued and time-extended structural remodeling for individual peptides or chemically linked peptide heterodimers but with different kinetics. Fluorescence microscopy further captured peptide-dependent adhesion, fusion, and occasional bursting of giant unilamellar vesicles a few seconds after peptide addition. The synergistic interactions between the peptides shorten the time response of vesicles and enhance membrane fusogenic and disruption properties of the equimolar mixture compared with the individual peptides.
Zobrazit více v PubMed
Matsuzaki K., Mitani Y., et al. Miyajima K. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998;37:15144–15153. PubMed
Leber R., Pachler M., et al. Pabst G. Synergism of antimicrobial frog peptides couples to membrane intrinsic curvature strain. Biophys. J. 2018;114:1945–1954. PubMed PMC
Strandberg E., Zerweck J., et al. Ulrich A.S. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys. J. 2013;104:L9–L11. PubMed PMC
Aisenbrey C., Bechinger B. Molecular packing of amphipathic peptides on the surface of lipid membranes. Langmuir. 2014;30:10374–10383. PubMed
Harmouche N., Bechinger B. Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophys. J. 2018;115:1033–1044. PubMed PMC
Zerweck J., Strandberg E., et al. Ulrich A.S. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci. Rep. 2017;7:13153. PubMed PMC
Pachler M., Kabelka I., et al. Pabst G. Magainin 2 and PGLa in bacterial membrane mimics I: peptide-peptide and lipid-peptide interactions. Biophys. J. 2019;117:1858–1869. PubMed PMC
Kabelka I., Pachler M., et al. Vácha R. Magainin 2 and PGLa in bacterial membrane mimics II: membrane fusion and sponge phase formation. Biophys. J. 2020;118:612–623. PubMed PMC
Aisenbrey C., Amaro M., et al. Bechinger B. Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids. Sci. Rep. 2020;10:11652. PubMed PMC
Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25.
Páll S., Abraham M.J., et al. Lindahl E. In: Solving Software Challenges for Exascale. Laure E., Markidis S., editors. Springer; 2015. Tackling exascale software challenges in molecular dynamics simulations with GROMACS; pp. 3–27. volume 8759 of LNCS Sublibrary: SL 1 - Theoretical Computer Science and General Issues.
Marrink S.J., Risselada H.J., et al. de Vries A.H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. PubMed
Monticelli L., Kandasamy S.K., et al. Marrink S.-J. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 2008;4:819–834. PubMed
de Jong D.H., Singh G., et al. Marrink S.J. Improved parameters for the Martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. PubMed
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. PubMed
Parrinello M., Rahman A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196–1199.
Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.
Lee J., Cheng X., et al. Im W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016;12:405–413. PubMed PMC
Bartlett G.R. Phosphorus assay in column chromatography. J. Biol. Chem. 1959;234:466–468. PubMed
Weinberger A., Tsai F.-C., et al. Marques C. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 2013;105:154–164. PubMed PMC
Amenitsch H., Rappolt M., et al. Bernstorff S. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J. Synchrotron Radiat. 1998;5:506–508. PubMed
Hammersley A.P., Svensson S.O., et al. Hausermann D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. Int. J. High Press. Res. 1996;14:235–248.
Marx L., Semeraro E.F., et al. Pabst G. Bridging the antimicrobial activity of two lactoferricin derivatives in E. coli and lipid-only membranes. Front. Med. Technol. 2021;3:625975. PubMed PMC
Yandrapalli N., Robinson T. Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies. Lab Chip. 2019;19:626–633. PubMed
Pozo Navas B., Lohner K., et al. Pabst G. Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochim. Biophys. Acta. 2005;1716:40–48. PubMed
Dimova R., Aranda S., et al. Lipowsky R. A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys. Condens. Matter. 2006;18:S1151–S1176. PubMed
Walde P., Cosentino K., et al. Stano P. Giant vesicles: preparations and applications. Chembiochem. 2010;11:848–865. PubMed
Dimova R., Marques C. Taylor & Francis Group, LLC; 2019. The Giant Vesicle Book.
Dimova R. Giant vesicles and their use in assays for assessing membrane phase state, curvature, mechanics, and electrical properties. Annu. Rev. Biophys. 2019;48:93–119. PubMed
Fenz S.F., Sengupta K. Giant vesicles as cell models. Integr. Biol. 2012;4:982–995. PubMed
Ellens H., Siegel D.P., et al. Bentz J. Membrane fusion and inverted phases. Biochemistry. 1989;28:3692–3703. PubMed
Nishida M., Imura Y., et al. Matsuzaki K. Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism. Biochemistry. 2007;46:14284–14290. PubMed
Lonhienne T.G.A., Sagulenko E., et al. Fuerst J.A. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc. Natl. Acad. Sci. U S A. 2010;107:12883–12888. PubMed PMC
Nanoparticle induced fusion of lipid membranes
Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning