Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids

. 2020 Jul 15 ; 10 (1) : 11652. [epub] 20200715

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32669585
Odkazy

PubMed 32669585
PubMed Central PMC7363891
DOI 10.1038/s41598-020-68416-1
PII: 10.1038/s41598-020-68416-1
Knihovny.cz E-zdroje

Magainin 2 and PGLa are cationic, amphipathic antimicrobial peptides which when added as equimolar mixture exhibit a pronounced synergism in both their antibacterial and pore-forming activities. Here we show for the first time that the peptides assemble into defined supramolecular structures along the membrane interface. The resulting mesophases are quantitatively described by state-of-the art fluorescence self-quenching and correlation spectroscopies. Notably, the synergistic behavior of magainin 2 and PGLa correlates with the formation of hetero-domains and an order-of-magnitude increased membrane affinity of both peptides. Enhanced membrane association of the peptide mixture is only observed in the presence of phophatidylethanolamines but not of phosphatidylcholines, lipids that dominate bacterial and eukaryotic membranes, respectively. Thereby the increased membrane-affinity of the peptide mixtures not only explains their synergistic antimicrobial activity, but at the same time provides a new concept to increase the therapeutic window of combinatorial drugs.

Zobrazit více v PubMed

Giovannini MG, Poulter L, Gibson BW, Williams DH. Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochem. J. 1987;243:113–120. PubMed PMC

Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA. 1987;84:5449–5453. PubMed PMC

Hoffmann W, Richter K, Kreil G. A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin. EMBO J. 1983;2:711–714. PubMed PMC

Gibson BW, Poulter L, Williams DH. A mass spectrometric method for the identification of novel peptides in Xenopus laevis skin secretions. J. Nat. Prod. 1986;49:26–34. PubMed

Nicolas P, Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 1995;49:277–304. PubMed

Westerhoff HV, et al. Functional synergism of the magainins pgla and magainin-2 in escherichia-coli tumor-cells and liposomes. Eur. J. Biochem. 1995;228:257–264. PubMed

Matsuzaki K, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998;37:15144–15153. PubMed

Glattard E, Salnikov ES, Aisenbrey C, Bechinger B. Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Biophys. Chem. 2016;210:35–44. PubMed

Strandberg E, et al. H-2-NMR and MD simulations reveal membrane-bound conformation of magainin 2 and its synergy with PGLa. Biophys. J . 2016;111:2149–2161. PubMed PMC

Marquette A, Salnikov ES, Glattard E, Aisenbrey C, Bechinger B. Magainin 2-PGLa interactions in membranes—two peptides that exhibit synergistic enhancement of antimicrobial activity. Curr. Top. Med. Chem. 2016;16:65–75. PubMed

Salnikov ES, et al. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. Sci. Rep. 2016;6:20895. PubMed PMC

Baumann G, Mueller P. A molecular model of membrane excitability. J. Supramol. Struct. 1974;2:538–557. PubMed

Zerweck J, et al. Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. Eur. Biophys. J. 2016;45:535–547. PubMed

Salnikov ES, Bechinger B. Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophys. J. 2011;100:1473–1480. PubMed PMC

Salnikov E, Aisenbrey C, Vidovic V, Bechinger B. Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. Biochim. Biophys. Acta BBA Biomembr. 2010;1798:258–265. PubMed

Moulay G, et al. Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. J. Pept. Sci. 2017;23:320–328. PubMed

Dürr UHN, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta BBA Biomembr. 2006;1758:1408–1425. PubMed

Bechinger B. Towards membrane protein design: PH-sensitive topology of histidine-containing polypeptides. J. Mol. Biol. 1996;263:768–775. PubMed

Vogt TCB, Bechinger B. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers - The effects of charges and pH. J. Biol. Chem. 1999;274:29115–29121. PubMed

Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66:236–248. PubMed

Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2006;1758:1529–1539. PubMed

Bechinger B. The SMART model: soft membranes adapt and respond, also transiently, in the presence of antimicrobial peptides. J. Pept. Sci. 2014;21:346–355. PubMed

Salnikov ES, et al. Alamethicin supramolecular organization in lipid membranes from 19F solid-state NMR. Biophys. J. 2016;111:2450–2459. PubMed PMC

Harmouche N, Bechinger B. Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophys. J. 2018;115:1033–1044. PubMed PMC

Strandberg E, Zerweck J, Wadhwani P, Ulrich A. Synergistic insertion of antimicrobial magainin-family peptides in-membranes depends on the lipid spontaneous curvature. Biophys. J. 2013;104:L9–L11. PubMed PMC

Leber R, et al. Synergism of antimicrobial frog peptides couples to membrane intrinsic curvature strain. Biophys. J. 2018;114:1945–1954. PubMed PMC

Pozo Navas B, et al. Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochim. Biophys. Acta Biomembr. 2005;1716:40–48. PubMed

Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. PubMed

Sixl F, Galla HJ. Cooperative lipid-protein interaction. Effect of pH and ionic strength on polymyxin binding to phosphatidic acid membranes. Biochim. Biophys. Acta Biomembr. 1979;557:320–330. PubMed

Russ WP, Engelman DM. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 2000;296:911–919. PubMed

Zerweck J, et al. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Scientific Reports. 2017;7:13153. PubMed PMC

Aisenbrey C, Bechinger B. Molecular packing of amphipathic peptides on the surface of lipid membranes. Langmuir. 2014;30:10374–10383. PubMed

Aisenbrey C, Bechinger B, Grobner G. Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides. J. Mol. Biol. 2008;375:376–385. PubMed

Voievoda N, Schulthess T, Bechinger B, Seelig J. Thermodynamic and biophysical analysis of the membrane-association of a histidine-rich peptide with efficient antimicrobial and transfection activities. J. Phys. Chem. B. 2015;119:9678–9687. PubMed

Bechinger B, Sizun C. Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopy. Concepts Magn. Reson. 2003;18A:130–145.

Marquette A, Bechinger B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules. 2018;8:1–22. PubMed PMC

Aisenbrey C, Marquette A, Bechinger B. In: Antimicrobial Peptides: Basics for Clinical Application. Matsuzaki K, editor. Singapore: Springer; 2019. pp. 33–64.

Porcelli F, Buck-Koehntop BA, Thennarasu S, Ramamoorthy A, Veglia G. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, Determined by NMR Spectroscopy. Biochemistry. 2006;45:5793–5799. PubMed

Matsuzaki K, et al. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994;33:3342–3349. PubMed

Roversi D, et al. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem. Biol. 2014;9:2003–2007. PubMed

Westerhoff HV, et al. Functional synergism of the magainins pgla and magainin-2 in escherichia-coli, Tumor-Cells and Liposomes. Eur. J. Biochem. 1995;228:257–264. PubMed

Glattard E, Salnikov ES, Aisenbrey C, Bechinger B. Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Biophys. Chem. 2015;210:35–44. PubMed

Hara T, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: GÇ a cross-linking study. Biochemistry. 2001;40:12395–12399. PubMed

Westerhoff HV, et al. Functional synergism of the Magainins Pgla and magainin-2 in Escherichia-Coli, Tumor-Cells and Liposomes. Eur. J. Biochem. 1995;228:257–264. PubMed

McNamara S, Wlizla M, Horb ME. Husbandry, general care, and transportation of Xenopus laevis and Xenopus tropicalis. Methods Mol. Biol. 2018;1865:1–17. PubMed PMC

Tumaneng PW, Pandit SA, Zhao G, Scott HL. Lateral organization of complex lipid mixtures from multiscale modeling. J. Chem. Phys. 2010;132:065104. PubMed PMC

Ben Naim A. In: Statistical Thermodynamics for Chemists and Biochemists. Ben Naim A, editor. Boston: Springer; 1992. pp. 359–457.

Yagi T, Sato H. A simple model of planar membrane: an integral equation investigation. J. Comput. Chem. 2018;39:2576–2581. PubMed

Wilkinson SG. In: Microbial Lipids. Ratledge C, Wilkinson SG, editors. London: Academic Press; 1988. pp. 299–488.

Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta Biomembr. 1999;1462:157–183. PubMed

Seelig J. Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta Biomembr. 2004;1666:40–50. PubMed

Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J. 2003;84:3052–3060. PubMed PMC

Henzler Wildman KA, Lee DK, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry. 2003;42:6545–6558. PubMed

Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47:451–463. PubMed

Gallaher J, Wodziäska K, Heimburg T, Bier M. Ion-channel-like behavior in lipid bilayer membranes at the melting transition. Phys. Rev. 2010;81:061925. PubMed

Antonov VF, Petrov VV, Molnar AA, Predvoditelev DA, Ivanov AS. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature. 1980;283:585. PubMed

Cruzeiro-Hansson L, Mouritsen OG. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim. Biophys. Acta Biomembr. 1988;944:63–72. PubMed

Papahadjopoulos D, Jacobson K, Nir S, Isac I. Phase transitions in phospholipid vesicles Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta Biomembr. 1973;311:330–348. PubMed

Dufau I, Mazarguil H. Design of a fluorescent amino acid derivative usable in peptide synthesis. Tetrahedron Lett. 2000;41:6063–6066.

Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta Biomembr. 1985;812:55–65. PubMed

Akashi K, Miyata H, Itoh H, Kinosita K., Jr Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 1996;71:3242–3250. PubMed PMC

Benda A, et al. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126.

Machán R, Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim. Biophys. Acta Biomembr. 2010;1798:1377–1391. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...