Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32669585
PubMed Central
PMC7363891
DOI
10.1038/s41598-020-68416-1
PII: 10.1038/s41598-020-68416-1
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky chemie izolace a purifikace farmakologie MeSH
- buněčná membrána chemie účinky léků MeSH
- ethanolaminy chemie MeSH
- fixní kombinace léků MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie MeSH
- fosfatidylcholiny chemie MeSH
- fosfatidylethanolaminy chemie MeSH
- fosfatidylglyceroly chemie MeSH
- kationické antimikrobiální peptidy chemie izolace a purifikace farmakologie MeSH
- kůže chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- magaininy chemie izolace a purifikace farmakologie MeSH
- proteiny Xenopus chemie izolace a purifikace farmakologie MeSH
- sloučeniny boru chemie MeSH
- synergismus léků MeSH
- vazba proteinů MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylglycero-3-phosphoglycerol MeSH Prohlížeč
- 1-palmitoyl-2-oleoylphosphatidylethanolamine MeSH Prohlížeč
- 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene MeSH Prohlížeč
- antibakteriální látky MeSH
- ethanolaminy MeSH
- fixní kombinace léků MeSH
- fluorescenční barviva MeSH
- fosfatidylcholiny MeSH
- fosfatidylethanolaminy MeSH
- fosfatidylglyceroly MeSH
- kationické antimikrobiální peptidy MeSH
- lipidové dvojvrstvy MeSH
- magainin 2 peptide, Xenopus MeSH Prohlížeč
- magaininy MeSH
- PGLa-H peptide, Xenopus MeSH Prohlížeč
- phosphorylethanolamine MeSH Prohlížeč
- proteiny Xenopus MeSH
- sloučeniny boru MeSH
Magainin 2 and PGLa are cationic, amphipathic antimicrobial peptides which when added as equimolar mixture exhibit a pronounced synergism in both their antibacterial and pore-forming activities. Here we show for the first time that the peptides assemble into defined supramolecular structures along the membrane interface. The resulting mesophases are quantitatively described by state-of-the art fluorescence self-quenching and correlation spectroscopies. Notably, the synergistic behavior of magainin 2 and PGLa correlates with the formation of hetero-domains and an order-of-magnitude increased membrane affinity of both peptides. Enhanced membrane association of the peptide mixture is only observed in the presence of phophatidylethanolamines but not of phosphatidylcholines, lipids that dominate bacterial and eukaryotic membranes, respectively. Thereby the increased membrane-affinity of the peptide mixtures not only explains their synergistic antimicrobial activity, but at the same time provides a new concept to increase the therapeutic window of combinatorial drugs.
Institut de Chimie UMR7177 CNRS University of Strasbourg 1 rue Blaise Pascal 67000 Strasbourg France
Zobrazit více v PubMed
Giovannini MG, Poulter L, Gibson BW, Williams DH. Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochem. J. 1987;243:113–120. PubMed PMC
Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA. 1987;84:5449–5453. PubMed PMC
Hoffmann W, Richter K, Kreil G. A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin. EMBO J. 1983;2:711–714. PubMed PMC
Gibson BW, Poulter L, Williams DH. A mass spectrometric method for the identification of novel peptides in Xenopus laevis skin secretions. J. Nat. Prod. 1986;49:26–34. PubMed
Nicolas P, Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 1995;49:277–304. PubMed
Westerhoff HV, et al. Functional synergism of the magainins pgla and magainin-2 in escherichia-coli tumor-cells and liposomes. Eur. J. Biochem. 1995;228:257–264. PubMed
Matsuzaki K, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998;37:15144–15153. PubMed
Glattard E, Salnikov ES, Aisenbrey C, Bechinger B. Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Biophys. Chem. 2016;210:35–44. PubMed
Strandberg E, et al. H-2-NMR and MD simulations reveal membrane-bound conformation of magainin 2 and its synergy with PGLa. Biophys. J . 2016;111:2149–2161. PubMed PMC
Marquette A, Salnikov ES, Glattard E, Aisenbrey C, Bechinger B. Magainin 2-PGLa interactions in membranes—two peptides that exhibit synergistic enhancement of antimicrobial activity. Curr. Top. Med. Chem. 2016;16:65–75. PubMed
Salnikov ES, et al. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. Sci. Rep. 2016;6:20895. PubMed PMC
Baumann G, Mueller P. A molecular model of membrane excitability. J. Supramol. Struct. 1974;2:538–557. PubMed
Zerweck J, et al. Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. Eur. Biophys. J. 2016;45:535–547. PubMed
Salnikov ES, Bechinger B. Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophys. J. 2011;100:1473–1480. PubMed PMC
Salnikov E, Aisenbrey C, Vidovic V, Bechinger B. Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. Biochim. Biophys. Acta BBA Biomembr. 2010;1798:258–265. PubMed
Moulay G, et al. Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. J. Pept. Sci. 2017;23:320–328. PubMed
Dürr UHN, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta BBA Biomembr. 2006;1758:1408–1425. PubMed
Bechinger B. Towards membrane protein design: PH-sensitive topology of histidine-containing polypeptides. J. Mol. Biol. 1996;263:768–775. PubMed
Vogt TCB, Bechinger B. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers - The effects of charges and pH. J. Biol. Chem. 1999;274:29115–29121. PubMed
Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66:236–248. PubMed
Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2006;1758:1529–1539. PubMed
Bechinger B. The SMART model: soft membranes adapt and respond, also transiently, in the presence of antimicrobial peptides. J. Pept. Sci. 2014;21:346–355. PubMed
Salnikov ES, et al. Alamethicin supramolecular organization in lipid membranes from 19F solid-state NMR. Biophys. J. 2016;111:2450–2459. PubMed PMC
Harmouche N, Bechinger B. Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophys. J. 2018;115:1033–1044. PubMed PMC
Strandberg E, Zerweck J, Wadhwani P, Ulrich A. Synergistic insertion of antimicrobial magainin-family peptides in-membranes depends on the lipid spontaneous curvature. Biophys. J. 2013;104:L9–L11. PubMed PMC
Leber R, et al. Synergism of antimicrobial frog peptides couples to membrane intrinsic curvature strain. Biophys. J. 2018;114:1945–1954. PubMed PMC
Pozo Navas B, et al. Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochim. Biophys. Acta Biomembr. 2005;1716:40–48. PubMed
Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. PubMed
Sixl F, Galla HJ. Cooperative lipid-protein interaction. Effect of pH and ionic strength on polymyxin binding to phosphatidic acid membranes. Biochim. Biophys. Acta Biomembr. 1979;557:320–330. PubMed
Russ WP, Engelman DM. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 2000;296:911–919. PubMed
Zerweck J, et al. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Scientific Reports. 2017;7:13153. PubMed PMC
Aisenbrey C, Bechinger B. Molecular packing of amphipathic peptides on the surface of lipid membranes. Langmuir. 2014;30:10374–10383. PubMed
Aisenbrey C, Bechinger B, Grobner G. Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides. J. Mol. Biol. 2008;375:376–385. PubMed
Voievoda N, Schulthess T, Bechinger B, Seelig J. Thermodynamic and biophysical analysis of the membrane-association of a histidine-rich peptide with efficient antimicrobial and transfection activities. J. Phys. Chem. B. 2015;119:9678–9687. PubMed
Bechinger B, Sizun C. Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopy. Concepts Magn. Reson. 2003;18A:130–145.
Marquette A, Bechinger B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules. 2018;8:1–22. PubMed PMC
Aisenbrey C, Marquette A, Bechinger B. In: Antimicrobial Peptides: Basics for Clinical Application. Matsuzaki K, editor. Singapore: Springer; 2019. pp. 33–64.
Porcelli F, Buck-Koehntop BA, Thennarasu S, Ramamoorthy A, Veglia G. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, Determined by NMR Spectroscopy. Biochemistry. 2006;45:5793–5799. PubMed
Matsuzaki K, et al. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994;33:3342–3349. PubMed
Roversi D, et al. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem. Biol. 2014;9:2003–2007. PubMed
Westerhoff HV, et al. Functional synergism of the magainins pgla and magainin-2 in escherichia-coli, Tumor-Cells and Liposomes. Eur. J. Biochem. 1995;228:257–264. PubMed
Glattard E, Salnikov ES, Aisenbrey C, Bechinger B. Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Biophys. Chem. 2015;210:35–44. PubMed
Hara T, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: GÇ a cross-linking study. Biochemistry. 2001;40:12395–12399. PubMed
Westerhoff HV, et al. Functional synergism of the Magainins Pgla and magainin-2 in Escherichia-Coli, Tumor-Cells and Liposomes. Eur. J. Biochem. 1995;228:257–264. PubMed
McNamara S, Wlizla M, Horb ME. Husbandry, general care, and transportation of Xenopus laevis and Xenopus tropicalis. Methods Mol. Biol. 2018;1865:1–17. PubMed PMC
Tumaneng PW, Pandit SA, Zhao G, Scott HL. Lateral organization of complex lipid mixtures from multiscale modeling. J. Chem. Phys. 2010;132:065104. PubMed PMC
Ben Naim A. In: Statistical Thermodynamics for Chemists and Biochemists. Ben Naim A, editor. Boston: Springer; 1992. pp. 359–457.
Yagi T, Sato H. A simple model of planar membrane: an integral equation investigation. J. Comput. Chem. 2018;39:2576–2581. PubMed
Wilkinson SG. In: Microbial Lipids. Ratledge C, Wilkinson SG, editors. London: Academic Press; 1988. pp. 299–488.
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta Biomembr. 1999;1462:157–183. PubMed
Seelig J. Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta Biomembr. 2004;1666:40–50. PubMed
Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J. 2003;84:3052–3060. PubMed PMC
Henzler Wildman KA, Lee DK, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry. 2003;42:6545–6558. PubMed
Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47:451–463. PubMed
Gallaher J, Wodziäska K, Heimburg T, Bier M. Ion-channel-like behavior in lipid bilayer membranes at the melting transition. Phys. Rev. 2010;81:061925. PubMed
Antonov VF, Petrov VV, Molnar AA, Predvoditelev DA, Ivanov AS. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature. 1980;283:585. PubMed
Cruzeiro-Hansson L, Mouritsen OG. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim. Biophys. Acta Biomembr. 1988;944:63–72. PubMed
Papahadjopoulos D, Jacobson K, Nir S, Isac I. Phase transitions in phospholipid vesicles Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta Biomembr. 1973;311:330–348. PubMed
Dufau I, Mazarguil H. Design of a fluorescent amino acid derivative usable in peptide synthesis. Tetrahedron Lett. 2000;41:6063–6066.
Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta Biomembr. 1985;812:55–65. PubMed
Akashi K, Miyata H, Itoh H, Kinosita K., Jr Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 1996;71:3242–3250. PubMed PMC
Benda A, et al. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126.
Machán R, Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim. Biophys. Acta Biomembr. 2010;1798:1377–1391. PubMed
Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning
Magainin 2 and PGLa in bacterial membrane mimics III: Membrane fusion and disruption