Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning

. 2022 Dec 06 ; 121 (23) : 4689-4701. [epub] 20221018

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36258677
Odkazy

PubMed 36258677
PubMed Central PMC9748257
DOI 10.1016/j.bpj.2022.10.018
PII: S0006-3495(22)00856-6
Knihovny.cz E-zdroje

We previously reported that the synergistically enhanced antimicrobial activity of magainin 2 (MG2a) and PGLa is related to membrane adhesion and fusion. Here, we demonstrate that equimolar mixtures of MG2a and L18W-PGLa induce positive monolayer curvature stress and sense, at the same time, positive mean and Gaussian bilayer curvatures already at low amounts of bound peptide. The combination of both abilities-membrane curvature sensing and inducing-is most likely the base for the synergistically enhanced peptide activity. In addition, our coarse-grained simulations suggest that fusion stalks are promoted by decreasing the free-energy barrier for their formation rather than by stabilizing their shape. We also interrogated peptide partitioning as a function of lipid and peptide concentration using tryptophan fluorescence spectroscopy and peptide-induced leakage of dyes from lipid vesicles. In agreement with a previous report, we find increased membrane partitioning of L18W-PGLa in the presence of MG2a. However, this effect does not prevail to lipid concentrations higher than 1 mM, above which all peptides associate with the lipid bilayers. This implies that synergistic effects of MG2a and L18W-PGLa in previously reported experiments with lipid concentrations >1 mM are due to peptide-induced membrane remodeling and not their specific membrane partitioning.

Zobrazit více v PubMed

Matsuzaki K., Mitani Y., et al. Miyajima K. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998;37:15144–15153. PubMed

Hara T., Mitani Y., et al. Matsuzaki K. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study. Biochemistry. 2001;40:12395–12399. PubMed

Nishida M., Imura Y., et al. Matsuzaki K. Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism. Biochemistry. 2007;46:14284–14290. PubMed

Zerweck J., Strandberg E., et al. Ulrich A.S. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci. Rep. 2017;7:13153. PubMed PMC

Leber R., Pachler M., et al. Pabst G. Synergism of antimicrobial frog peptides couples to membrane Intrinsic curvature strain. Biophys. J. 2018;114:1945–1954. PubMed PMC

Harmouche N., Bechinger B. Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophys. J. 2018;115:1033–1044. PubMed PMC

Strandberg E., Zerweck J., et al. Ulrich A.S. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys. J. 2013;104:L9–L11. PubMed PMC

Pachler M., Kabelka I., et al. Pabst G. Magainin 2 and PGLa in bacterial membrane mimics I: peptide-peptide and lipid-peptide interactions. Biophys. J. 2019;117:1858–1869. PubMed PMC

Kabelka I., Pachler M., et al. Vácha R. Magainin 2 and PGLa in bacterial membrane mimics II: membrane fusion and sponge phase formation. Biophys. J. 2020;118:612–623. PubMed PMC

Kabelka I., Georgiev V., et al. Vácha R. Magainin 2 and PGLa in bacterial membrane mimics III: membrane fusion and disruption. Biophys. J. 2022;121:852–861. PubMed PMC

Aisenbrey C., Amaro M., et al. Bechinger B. Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids. Sci. Rep. 2020;10:11652. PubMed PMC

White S.H., Wimley W.C., et al. Hristova K. Energetics of Biological Macromolecules Part B. Elsevier; 1998. [4] Protein folding in membranes: determining energetics of peptide-bilayer interactions; pp. 62–87. PubMed

Heerklotz H., Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur. Biophys. J. 2007;36:305–314. PubMed

Antonny B. Mechanisms of membrane curvature sensing. Ann. Rev. Biochem. 2011;80:101–123. PMID: 21438688. PubMed

Campelo F., Kozlov M.M. Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 2014;10:e1003556. PubMed PMC

Campelo F., Arnarez C., et al. Kozlov M.M. Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Coll. Interf. Sci. 2014;208:25–33. PubMed

Marx L., Semeraro E.F., et al. Pabst G. Bridging the antimicrobial activity of two lactoferricin derivatives in E. coli and lipid-only membranes. Front. Med. Technol. 2021;3:625975. PubMed PMC

Burstein E.A., Emelyanenko V.I. Log-normal description of fluorescence spectra of organic fluorophores. Photochem. Photobiol. 1996;64:316–320.

Ladokhin A.S., Jayasinghe S., White S.H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem. 2000;285:235–245. PubMed

Burstein E.A., Vedenkina N.S., Ivkova M.N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 1973;18:263–279. PubMed

Wimley W.C., Creamer T.P., White S.H. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry. 1996;35:5109–5124. PubMed

Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software. 2015;1-2:19–25.

Páll S., Abraham M.J., et al. Lindahl E. In: Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 2-3, 2014 : Revised Selected Papers. Laure E., Markidis S., editors. Springer; 2015. Tackling exascale software challenges in molecular dynamics simulations with GROMACS; pp. 3–27. Volume 8759 of LNCS Sublibrary: SL 1 - Theoretical Computer Science and General Issues.

Marrink S.J., Risselada H.J., et al. de Vries A.H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. PubMed

Monticelli L., Kandasamy S.K., et al. Marrink S.-J. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theor. Comput. 2008;4:819–834. PubMed

de Jong D.H., Singh G., et al. Marrink S.J. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theor. Comput. 2013;9:687–697. PubMed

Mandal T., Spagnolie S.E., et al. Cui Q. Protein-induced membrane curvature in coarse-grained simulations. Biophys. J. 2021;120:3211–3221. PubMed PMC

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. PubMed

Parrinello M., Rahman A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196–1199.

Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.

Lan Y., Ye Y., et al. Mason A.J. Structural contributions to the intracellular targeting strategies of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2010;1798:1934. PubMed PMC

Bechinger B., Zasloff M., Opella S. Structure and dynamics of the antibiotic peptide PGLa in membranes by multidimensional solution and solid-state NMR spectroscopy. Biophys. J. 1998;74:981–987. PubMed PMC

Gesell J., Zasloff M., Opella S.J. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is aαn α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR. 1997;9:127–135. PubMed

Lee J., Cheng X., et al. Qi Y. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theor. Comput. 2016;12:405–413. PubMed PMC

Goetz R., Lipowsky R. Computer simulations of bilayer membranes: self-assembly and interfacial tension. J. Chem. Phys. 1998;108:7397–7409.

Ollila O.S., Risselada H.J., et al. Marrink S.J. 3D pressure field in lipid membranes and membrane-protein complexes. Phys. Rev. Lett. 2009;102:078101. PubMed

Vanegas J.M., Torres-Sánchez A., Arroyo M. Importance of force decomposition for local stress calculations in biomembrane molecular simulations. J. Chem. Theor. Comput. 2014;10:691–702. PubMed

Hu M., de Jong D.H., et al. Deserno M. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model. Faraday Discuss. 2013;161:365–382. PubMed

Bhaskara R.M., Grumati P., et al. Hummer G. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 2019;10:1–13. PubMed PMC

Tieleman D., Sejdiu B., et al. Corradi V. Insights into lipid-protein interactions from computer simulations. Biophys. Rev. 2021:1–9. doi: 10.1007/s12551-021-00876-9. PubMed DOI PMC

Gómez-Llobregat J., Elías-Wolff F., Lindén M. Anisotropic membrane curvature sensing by amphipathic peptides. Biophys. J. 2016;110:197–204. PubMed PMC

Ben-Shaul A. In: Handbook of Biological Physics. Lipowsky R., Sackmann E., editors. Elsevier; Amterdam: 1995. Molecular theory of chain packing, elasticity and lipid-protein interaction in lipid bilayers; pp. 359–401.

Israelachvili J., Marčelja S., Horn R.G. Physical principles of membrane organization. Q. Rev. Biophys. 1980;13:121–200. PubMed

Sodt A.J., Pastor R.W. Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape. Biophys. J. 2014;106:1958–1969. PubMed PMC

Venable R.M., Brown F.L.H., Pastor R.W. Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids. 2015;192:60–74. PubMed PMC

Pabst G., Danner S., et al. Katsaras J. Entropy-driven softening of fluid lipid bilayers by alamethicin. Langmuir. 2007;23:11705–11711. PubMed

Chang W.-F., Chen S.-H., Chen Y.-F. Correlation of an antimicrobial peptide’s potency and its influences on membrane elasticity. Phys. Rev. E. 2018;98:042408.

Seelig J. Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta. 2004;1666:40–50. PubMed

Koller D., Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta Biomembr. 2014;1838:2250–2259. Interfacially Active Peptides and Proteins. PubMed

Wessman P., Morin M., et al. Edwards K. Effect of -helical peptides on liposome structure: a comparative study of melittin and alamethicin. J Colloid Interf Sci. 2010;346:127–135. PubMed

Larsen J.B., Rosholm K.R., et al. Stamou D. How membrane geometry regulates protein sorting independently of mean curvature. ACS Cent. Sci. 2020;6:1159–1168. doi: 10.1021/acscentsci.0c00419. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...