Magainin 2 and PGLa in Bacterial Membrane Mimics II: Membrane Fusion and Sponge Phase Formation

. 2020 Feb 04 ; 118 (3) : 612-623. [epub] 20191225

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31952806
Odkazy

PubMed 31952806
PubMed Central PMC7004946
DOI 10.1016/j.bpj.2019.12.019
PII: S0006-3495(19)34404-2
Knihovny.cz E-zdroje

We studied the synergistic mechanism of equimolar mixtures of magainin 2 (MG2a) and PGLa in phosphatidylethanolamine/phosphatidylglycerol mimics of Gram-negative cytoplasmic membranes. In a preceding article of this series, we reported on the early onset of parallel heterodimer formation of the two antimicrobial peptides already at low concentrations and the resulting defect formation in the membranes. Here, we focus on the structures of the peptide-lipid aggregates occurring in the synergistic regime at elevated peptide concentrations. Using a combination of calorimetric, scattering, electron microscopic, and in silico techniques, we demonstrate that the two peptides, even if applied individually, transform originally large unilamellar vesicles into multilamellar vesicles with a collapsed interbilayer spacing resulting from peptide-induced adhesion. Interestingly, the adhesion does not lead to a peptide-induced lipid separation of charged and charge-neutral species. In addition to this behavior, equimolar mixtures of MG2a and PGLa formed surface-aligned fibril-like structures, which induced adhesion zones between the membranes and the formation of transient fusion stalks in molecular dynamics simulations and a coexisting sponge phase observed by small-angle x-ray scattering. The previously reported increased leakage of lipid vesicles of identical composition in the presence of MG2a/PGLa mixtures is therefore related to a peptide-induced cross-linking of bilayers.

Zobrazit více v PubMed

Matsuzaki K., Mitani Y., Miyajima K. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998;37:15144–15153. PubMed

Zerweck J., Strandberg E., Ulrich A.S. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci. Rep. 2017;7:13153. PubMed PMC

Marquette A., Salnikov E.S., Bechinger B. Magainin 2-PGLa interactions in membranes - two peptides that exhibit synergistic enhancement of antimicrobial activity. Curr. Top. Med. Chem. 2016;16:65–75. PubMed

Leber R., Pachler M., Pabst G. Synergism of antimicrobial frog peptides couples to membrane intrinsic curvature strain. Biophys. J. 2018;114:1945–1954. PubMed PMC

Strandberg E., Zerweck J., Ulrich A.S. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys. J. 2013;104:L9–L11. PubMed PMC

Harmouche N., Bechinger B. Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers. Biophys. J. 2018;115:1033–1044. PubMed PMC

Pachler M., Kabelka I., Pabst G. Magainin 2 and PGLa in bacterial membrane mimics I: peptide-peptide and lipid-peptide interactions. Biophys. J. 2019;117:1858–1869. PubMed PMC

Kingsley P.B., Feigenson G.W. The synthesis of a perdeuterated phospholipid: 1,2-dimyristoyl-sn-glycero-3-phosphocholine-d72. Chem. Phys. Lipids. 1979;24:135–147.

Rappolt M. Chapter 9 The biologically relevant lipid mesophases as “seen” by X-rays. In: Leitmannova Liu A., editor. Advances in Planar Lipid Bilayers and Liposomes. Volume 5. Elsevier Science & Technology; 2006. pp. 253–283.

Heberle F.A., Petruzielo R.S., Katsaras J. Bilayer thickness mismatch controls domain size in model membranes. J. Am. Chem. Soc. 2013;135:6853–6859. PubMed

Eicher B., Marquardt D., Pabst G. Intrinsic curvature-mediated transbilayer coupling in asymmetric lipid vesicles. Biophys. J. 2018;114:146–157. PubMed PMC

Abraham M.J., Murtola T., Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Páll S., Abraham M.J., Lindahl E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Laure E., Markidis S., editors. Solving Software Challenges for Exascale, volume 8759 of LNCS Sublibrary: SL 1 - Theoretical Computer Science and General Issues. Springer; 2015. pp. 3–27.

Jämbeck J.P., Lyubartsev A.P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 2012;8:2938–2948. PubMed

Jämbeck J.P., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. PubMed PMC

Lindorff-Larsen K., Piana S., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. PubMed PMC

Sorin E.J., Pande V.S. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J. 2005;88:2472–2493. PubMed PMC

Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984;81:511–519.

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268.

Hoover W.G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985;31:1695–1697. PubMed

Parrinello M., Rahman A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196–1199.

Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.

Essmann U., Perera L., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.

Allen M.P., Tildesley D.J. Second Edition. Oxford University Press, Inc.; New York: 2017. Computer Simulation of Liquids.

Marrink S.J., Risselada H.J., de Vries A.H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. PubMed

Monticelli L., Kandasamy S.K., Marrink S.J. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 2008;4:819–834. PubMed

de Jong D.H., Singh G., Marrink S.J. Improved parameters for the Martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. PubMed

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. PubMed

Jo S., Kim T., Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed

Pozo Navas B., Lohner K., Pabst G. Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochim. Biophys. Acta. 2005;1716:40–48. PubMed

Biltonen R.L., Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem. Phys. Lipids. 1993;64:129–142.

Epand R.M., Epand R.F., Shai Y. Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Biochim. Biophys. Acta. 2010;1798:1272–1280. PubMed

Pabst G., Katsaras J., Rappolt M. Structure and interactions in the anomalous swelling regime of phospholipid bilayers. Langmuir. 2003;19:1716–1722.

Siegel D.P. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys. J. 1999;76:291–313. PubMed PMC

Tamm L.K., Crane J., Kiessling V. Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr. Opin. Struct. Biol. 2003;13:453–466. PubMed

Chernomordik L.V., Kozlov M.M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 2008;15:675–683. PubMed PMC

Salditt T., Koltover I., Safinya C.R. Self-assembled DNA–cationic-lipid complexes: two-dimensional smectic ordering, correlations, and interactions. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1998;58:889–904.

Roux D., Coulon C., Cates M.E. Sponge phases in surfactant solutions. J. Phys. Chem. 1992;96:4174–4187.

Lei N., Safinya C.R., Liang K.S. Synchrotron x-ray-scattering studies on the sodium dodecyl sulfate–water–pentanol–dodecane L3 sponge phase. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1997;56:608–613.

Angelov B., Angelova A., Couvreur P. Long-living intermediates during a lamellar to a diamond-cubic lipid phase transition: a small-angle X-ray scattering investigation. Langmuir. 2009;25:3734–3742. PubMed

Silva T., Claro B., Bastos M. Unravelling a mechanism of action for a cecropin A-melittin hybrid antimicrobial peptide: the induced formation of multilamellar lipid stacks. Langmuir. 2018;34:2158–2170. PubMed

Risselada H.J., Bubnis G., Grubmüller H. Expansion of the fusion stalk and its implication for biological membrane fusion. Proc. Natl. Acad. Sci. USA. 2014;111:11043–11048. PubMed PMC

Yang S.-T., Zaitseva E., Melikov K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys. J. 2010;99:2525–2533. PubMed PMC

Alam P., Bousset L., Otzen D.E. α-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J. Neurochem. 2019;150:522–534. PubMed

Deng Y., Mieczkowski M. Three-dimensional periodic cubic membrane structure in the mitochondria of amoebaeChaos carolinensis. Protoplasma. 1998;203:16–25.

Koller D., Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta. 2014;1838:2250–2259. PubMed

Lonhienne T.G., Sagulenko E., Fuerst J.A. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc. Natl. Acad. Sci. USA. 2010;107:12883–12888. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...