Protein crystallization and structure determination at room temperature in the CrystalChip
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
USIAS-W21RSAUT
Université de Strasbourg
ANR-10-LABX-0036_NETRNA
Laboratoire d'Excellence NetRNA
French Ministry for Europe and Foreign Affairs
49306SC
French Ministry for Higher Education and Research
8J23FR035
Czech Ministry for Education, Youth and Sports
LX22NPO5102
NextGenerationEU
French Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences Biologiques (10.13039/501100017210 - CNRS biologie)
PubMed
39572886
PubMed Central
PMC11961392
DOI
10.1002/2211-5463.13932
Knihovny.cz E-zdroje
- Klíčová slova
- CrystalChip, crystallization, microcrystals, microfluidics, serial crystallography,
- MeSH
- konformace proteinů MeSH
- krystalizace metody přístrojové vybavení MeSH
- krystalografie rentgenová metody přístrojové vybavení MeSH
- proteiny * chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny * MeSH
The production of high-quality crystals is a key step in crystallography in general, but control of crystallization conditions is even more crucial in serial crystallography, which requires sets of crystals homogeneous in size and diffraction properties. This protocol describes the implementation of a simple and user-friendly microfluidic device that allows both the production of crystals by the counter-diffusion method and their in situ analysis by serial crystallography. As an illustration, the whole procedure is used to determine the crystal structure of three proteins from data collected at room temperature at a synchrotron radiation source.
CNRS CEA Institut de Biologie Structurale Université Grenoble Alpes France
CNRS Institut de Biologie Moléculaire des plantes UPR 2357 Université de Strasbourg France
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Praha 6 Czech Republic
Zobrazit více v PubMed
Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U et al. (2011) Femtosecond X‐ray protein nanocrystallography. Nature 470, 73–77. PubMed PMC
Stellato F, Oberthür D, Liang M, Bean R, Gati C, Yefanov O, Barty A, Burkhardt A, Fischer P, Galli L et al. (2014) Room‐temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1, 204–2012. PubMed PMC
Orville AM (2020) Recent results in time resolved serial femtosecond crystallography at XFELs. Curr Opin Struct Biol 65, 193–208. PubMed
Chaussavoine I, Isabet T, Lener R, Montaville P, Vasireddi R and Chavas LMG (2022) Implementation of wedged‐serial protein crystallography at PROXIMA‐1. J Synchrotron Radiat 29, 439–446. PubMed PMC
Aumonier S, Engilberge S, Caramello N, Von Stetten D, Gotthard G, Leonard GA, Mueller‐Dieckmann C and Royant A (2022) Slow protein dynamics probed by time‐resolved oscillation crystallography at room temperature. IUCrJ 9, 756–767. PubMed PMC
Levantino M, Yorke BA, Monteiro DC, Cammarata M and Pearson AR (2015) Using synchrotrons and XFELs for time‐resolved X‐ray crystallography and solution scattering experiments on biomolecules. Curr Opin Struct Biol 35, 41–48. PubMed
Kupitz C, Olmos JL, Holl M, Tremblay L, Pande K, Pandey S, Oberthür D, Hunter M, Liang M, Aquila A et al. (2017) Structural enzymology using X‐ray free electron lasers. Struct Dyn 4, 044003. PubMed PMC
Pearson AR and Mehrabi P (2020) Serial synchrotron crystallography for time‐resolved structural biology. Curr Opin Struct Biol 65, 168–174. PubMed
Martin‐Garcia JM (2021) Protein dynamics and time resolved protein crystallography at synchrotron radiation sources: past, present and future. Crystals 11, 521.
Sauter C, Lorber B, McPherson A and Giegé R (2012) Crystallization – general methods. In International Tables of Crystallography, Vol. F, Crystallography of Biological Macromolecules (Arnold E, Himmel DM and Rossmann MG, eds), 2nd edn, pp. 99–120. John Wiley and Sons, Chichester.
Beale JH, Bolton R, Marshall SA, Beale EV, Carr SB, Ebrahim A, Moreno‐Chicano T, Hough MA, Worrall JAR, Tews I et al. (2019) Successful sample preparation for serial crystallography experiments. J Appl Cryst 52, 1385–1396. PubMed PMC
Hansen C and Quake SR (2003) Microfluidics in structural biology: smaller, faster… better. Curr Opin Struct Biol 13, 538–544. PubMed
van der Woerd M, Ferree D and Pusey M (2003) The promise of macromolecular crystallization in microfluidic chips. J Struct Biol 142, 180–187. PubMed
Sauter C, Dhouib K and Lorber B (2007) From macrofluidics to microfluidics for the crystallization of biological macromolecules. Cryst Growth Des 7, 2247–2250.
Sui S and Perry SL (2017) Microfluidics: from crystallization to serial time‐resolved crystallography. Struct Dyn 4, 032202.
Echelmeier A, Sonker M and Ros A (2019) Microfluidic sample delivery for serial crystallography using XFELs. Anal Bioanal Chem 411, 6535–6547. PubMed
Otálora F, Gavira JA, Ng JD and García‐Ruiz JM (2009) Counterdiffusion methods applied to protein crystallization. Prog Biophys Mol Biol 101, 26–37. PubMed
Dhouib K, Khan Malek C, Pfleging W, Gauthier‐Manuel B, Duffait R, Thuillier G, Ferrigno R, Jacquamet L, Ohana J, Ferrer J‐L et al. (2009) Microfluidic chips for the crystallization of biomacromolecules by counter‐diffusion and on‐chip crystal X‐ray analysis. Lab Chip 9, 1412–1421. PubMed
Pinker F, Brun M, Morin P, Deman A‐L, Chateaux J‐F, Oliéric V, Stirnimann C, Lorber B, Terrier N, Ferrigno R et al. (2013) ChipX: a novel microfluidic chip for counter‐diffusion crystallization of biomolecules and in situ crystal analysis at room temperature. Cryst Growth Des 13, 3333–3340.
Pinard MA, Boone CD, Rife BD, Supuran CT and McKenna R (2013) Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases. Bioorg Med Chem 21, 7210–7215. PubMed
de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez‐Millan P, Brillet K, Betat H, Mörl M, Roussel A et al. (2019) A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ 6, 454–464. PubMed PMC
Monaco S, Gordon E, Bowler MW, Delagenière S, Guijarro M, Spruce D, Svensson O, McSweeney SM, McCarthy AA, Leonard G et al. (2013) Automatic processing of macromolecular crystallography X‐ray diffraction data at the ESRF. J Appl Cryst 46, 804–810. PubMed PMC
Delagenière S, Brenchereau P, Launer L, Ashton AW, Leal R, Veyrier S, Gabadinho J, Gordon EJ, Jones SD, Levik KE et al. (2011) ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27, 3186–3192. PubMed
Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66, 125–132. PubMed PMC
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al. (2011) Overview of the CCP 4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235–242. PubMed PMC
Foadi J, Aller P, Alguel Y, Cameron A, Axford D, Owen RL, Armour W, Waterman DG, Iwata S and Evans G (2013) Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 69, 1617–1632. PubMed PMC
Brehm W, Triviño J, Krahn JM, Usón I and Diederichs K (2023) XDSGUI: a graphical user interface for XDS, SHELX and ARCIMBOLDO . J Appl Cryst 56, 1585–1594. PubMed PMC
Jumper J and Hassabis D (2022) Protein structure predictions to atomic accuracy with AlphaFold. Nat Methods 19, 11–12. PubMed
Simpkin AJ, Simkovic F, Thomas JMH, Savko M, Lebedev A, Uski V, Ballard CC, Wojdyr M, Shepard W, Rigden DJ et al. (2020) Using Phaser and ensembles to improve the performance of SIMBAD . Acta Crystallogr D Struct Biol 76, 1–8. PubMed PMC
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung L‐W, Jain S, McCoy AJ et al. (2019) Macromolecular structure determination using X‐rays, neutrons and electrons: recent developments in Phenix . Acta Crystallogr D Struct Biol 75, 861–877. PubMed PMC
Biertümpfel C, Basquin J, Suck D and Sauter C (2002) Crystallization of biological macromolecules using agarose gel. Acta Crystallogr D Biol Crystallogr 58, 1657–1659. PubMed
Gavira JA, García‐Ruiz JM and IUCr (2002) Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals. Acta Crystallogr D Biol Crystallogr 58, 1653–1656. PubMed
Lorber B, Sauter C, Théobald‐Dietrich A, Moreno A, Schellenberger P, Robert M‐C, Capelle B, Sanglier S, Potier N and Giegé R (2009) Crystal growth of proteins, nucleic acids, and viruses in gels. Prog Biophys Mol Biol 101, 13–25. PubMed
Gavira JA, Hernandez‐Hernandez MA, Gonzalez‐Ramirez LA, Briggs RA, Kolek SA and Shaw Stewart PD (2011) Combining counter‐diffusion and microseeding to increase the success rate in protein crystallization. Cryst Growth Des 11, 2122–2126.
González‐Ramírez LA, Ruiz‐Martínez CR, Estremera‐Andújar RA, Nieves‐Marrero CA, García‐Caballero A, Gavira JA, López‐Garriga J and García‐Ruiz JM (2017) Efficient screening methodology for protein crystallization based on the counter‐diffusion technique. Cryst Growth Des 17, 6780–6786.
Gavira JA, Toh D, Lopéz‐Jaramillo J, García‐Ruíz JM and Ng JD (2002) Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. Acta Crystallogr D Biol Crystallogr 58, 1147–1154. PubMed
Meyer A, Betzel C and Pusey M (2015) Latest methods of fluorescence‐based protein crystal identification. Acta Crystallogr F Struct Biol Commun 71, 121–131. PubMed PMC
Pusey M, Barcena J, Morris M, Singhal A, Yuan Q and Ng J (2015) Trace fluorescent labeling for protein crystallization. Acta Crystallogr F Struct Biol Commun 71, 806–814. PubMed PMC
de Wijn R, Rollet K, Olieric V, Hennig O, Thome N, Noûs C, Paulus C, Lorber B, Betat H, Mörl M et al. (2021) Crystallization and structural determination of an enzyme:substrate complex by serial crystallography in a versatile microfluidic chip. J Vis Exp 169, e61972. PubMed