• This record comes from PubMed

Lone pair-π interactions in biological systems: occurrence, function, and physical origin

. 2017 Dec ; 46 (8) : 729-737. [epub] 20170502

Language English Country Germany Media print-electronic

Document type Journal Article, Review

Grant support
14-14654S Grantová Agentura České Republiky

Links

PubMed 28466098
DOI 10.1007/s00249-017-1210-1
PII: 10.1007/s00249-017-1210-1
Knihovny.cz E-resources

Lone pair-π interactions are now recognized as a supramolecular bond whose existence in biological systems is documented by a growing number of examples. They are commonly attributed to electrostatic forces. This review attempts to highlight some recent discoveries evidencing the important role which lone pair-π interactions, and anion-π interactions in particular, play in stabilizing the structure and affecting the function of biomolecules. Special attention is paid to studies exploring the physical origin of these at first glance counterintuitive interactions between a lone pair of electrons of one residue and the π-cloud of another. Recent theoretical work went beyond the popular electrostatic model and inquired the extent to which orbital interactions have to be taken into account. In at least one biologically relevant case-that of anion-flavin interactions-a substantial charge-transfer component has been shown to operate.

See more in PubMed

Proteins. 2004 Oct 1;57(1):1-8 PubMed

Angew Chem Int Ed Engl. 2004 Sep 6;43(35):4650-2 PubMed

Angew Chem Int Ed Engl. 2011 May 16;50(21):4808-42 PubMed

Acc Chem Res. 2013 Apr 16;46(4):894-906 PubMed

Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7202-7 PubMed

Angew Chem Int Ed Engl. 2011 Jan 10;50(2):415-8 PubMed

Chemistry. 2017 Mar 8;23 (14 ):3246-3250 PubMed

Chem Asian J. 2011 Sep 5;6(9):2316-8 PubMed

Chem Commun (Camb). 2008 Jun 7;(21):2417-28 PubMed

FEBS Lett. 2012 Nov 30;586(23):4180-5 PubMed

Chem Commun (Camb). 2016 Jan 31;52(9):1778-95 PubMed

J Phys Chem A. 2005 Dec 29;109(51):11936-40 PubMed

Phys Chem Chem Phys. 2015 Nov 11;17(45):30670-9 PubMed

Phys Chem Chem Phys. 2016 Jul 28;18(28):19472-81 PubMed

Biochemistry. 2015 Nov 17;54(45):6815-29 PubMed

Acc Chem Res. 2007 Mar;40(3):197-205 PubMed

Phys Chem Chem Phys. 2015 Oct 21;17(39):26183-90 PubMed

J Am Chem Soc. 2002 Jun 5;124(22):6274-6 PubMed

Science. 2005 Sep 30;309(5744):2216-9 PubMed

Biophys J. 1997 Jul;73(1):76-87 PubMed

Nucleic Acids Res. 2014 Jun;42(10):6726-41 PubMed

Biochemistry. 2011 Apr 12;50(14):2939-50 PubMed

J Am Chem Soc. 2007 Jan 10;129(1):48-58 PubMed

Chem Soc Rev. 2015 May 21;44(10):3177-211 PubMed

Biochemistry. 1999 Mar 9;38(10):3000-11 PubMed

Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):180-4 PubMed

Phys Chem Chem Phys. 2015 Apr 21;17(15):9596-612 PubMed

Chem Asian J. 2013 Nov;8(11):2708-13 PubMed

Nat Chem Biol. 2010 Aug;6(8):615-20 PubMed

Chemistry. 2014 Jun 2;20(23):6985-90 PubMed

Chem Commun (Camb). 2009 Jun 14;(22):3143-53 PubMed

J Biol Chem. 2003 Oct 31;278(44):43699-708 PubMed

J Am Chem Soc. 2002 Jul 24;124(29):8593-8 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...