Lone pair-π interactions in biological systems: occurrence, function, and physical origin
Language English Country Germany Media print-electronic
Document type Journal Article, Review
Grant support
14-14654S
Grantová Agentura České Republiky
PubMed
28466098
DOI
10.1007/s00249-017-1210-1
PII: 10.1007/s00249-017-1210-1
Knihovny.cz E-resources
- Keywords
- Ab initio calculations, Anion–π interactions, Donor–acceptor systems, Energy decomposition analysis, Lone pair–π interactions, π interactions,
- MeSH
- Biophysics * MeSH
- Electrons * MeSH
- Models, Molecular MeSH
- Static Electricity MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Lone pair-π interactions are now recognized as a supramolecular bond whose existence in biological systems is documented by a growing number of examples. They are commonly attributed to electrostatic forces. This review attempts to highlight some recent discoveries evidencing the important role which lone pair-π interactions, and anion-π interactions in particular, play in stabilizing the structure and affecting the function of biomolecules. Special attention is paid to studies exploring the physical origin of these at first glance counterintuitive interactions between a lone pair of electrons of one residue and the π-cloud of another. Recent theoretical work went beyond the popular electrostatic model and inquired the extent to which orbital interactions have to be taken into account. In at least one biologically relevant case-that of anion-flavin interactions-a substantial charge-transfer component has been shown to operate.
INSERM U 1134 DSIMB 75739 Paris France
Institut National de la Transfusion Sanguine 75739 Paris France
Laboratoire d'Excellence GR Ex 75739 Paris France
Université Paris Diderot Sorbonne Paris Cité UMR_S 1134 75739 Paris France
See more in PubMed
Proteins. 2004 Oct 1;57(1):1-8 PubMed
Angew Chem Int Ed Engl. 2004 Sep 6;43(35):4650-2 PubMed
Angew Chem Int Ed Engl. 2011 May 16;50(21):4808-42 PubMed
Acc Chem Res. 2013 Apr 16;46(4):894-906 PubMed
Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7202-7 PubMed
Angew Chem Int Ed Engl. 2011 Jan 10;50(2):415-8 PubMed
Chemistry. 2017 Mar 8;23 (14 ):3246-3250 PubMed
Chem Asian J. 2011 Sep 5;6(9):2316-8 PubMed
Chem Commun (Camb). 2008 Jun 7;(21):2417-28 PubMed
FEBS Lett. 2012 Nov 30;586(23):4180-5 PubMed
Chem Commun (Camb). 2016 Jan 31;52(9):1778-95 PubMed
J Phys Chem A. 2005 Dec 29;109(51):11936-40 PubMed
Phys Chem Chem Phys. 2015 Nov 11;17(45):30670-9 PubMed
Phys Chem Chem Phys. 2016 Jul 28;18(28):19472-81 PubMed
Biochemistry. 2015 Nov 17;54(45):6815-29 PubMed
Acc Chem Res. 2007 Mar;40(3):197-205 PubMed
Phys Chem Chem Phys. 2015 Oct 21;17(39):26183-90 PubMed
J Am Chem Soc. 2002 Jun 5;124(22):6274-6 PubMed
Science. 2005 Sep 30;309(5744):2216-9 PubMed
Biophys J. 1997 Jul;73(1):76-87 PubMed
Nucleic Acids Res. 2014 Jun;42(10):6726-41 PubMed
Biochemistry. 2011 Apr 12;50(14):2939-50 PubMed
J Am Chem Soc. 2007 Jan 10;129(1):48-58 PubMed
Chem Soc Rev. 2015 May 21;44(10):3177-211 PubMed
Biochemistry. 1999 Mar 9;38(10):3000-11 PubMed
Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):180-4 PubMed
Phys Chem Chem Phys. 2015 Apr 21;17(15):9596-612 PubMed
Chem Asian J. 2013 Nov;8(11):2708-13 PubMed
Nat Chem Biol. 2010 Aug;6(8):615-20 PubMed
Chemistry. 2014 Jun 2;20(23):6985-90 PubMed
Chem Commun (Camb). 2009 Jun 14;(22):3143-53 PubMed
J Biol Chem. 2003 Oct 31;278(44):43699-708 PubMed
J Am Chem Soc. 2002 Jul 24;124(29):8593-8 PubMed