Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
14627827
PubMed Central
PMC290250
DOI
10.1093/nar/gkg880
Knihovny.cz E-zdroje
- MeSH
- HIV-1 genetika MeSH
- hořčík metabolismus MeSH
- kationty metabolismus MeSH
- konformace nukleové kyseliny * MeSH
- molekulární modely MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- RNA virová chemie genetika metabolismus MeSH
- sodík metabolismus MeSH
- vazebná místa MeSH
- virus Moloneyho myší leukemie genetika MeSH
- voda chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hořčík MeSH
- kationty MeSH
- RNA virová MeSH
- sodík MeSH
- voda MeSH
Explicit solvent molecular dynamics (MD) simulations were carried out for three RNA kissing-loop complexes. The theoretical structure of two base pairs (2 bp) complex of H3 stem-loop of Moloney murine leukemia virus agrees with the NMR structure with modest violations of few NMR restraints comparable to violations present in the NMR structure. In contrast to the NMR structure, however, MD shows relaxed intermolecular G-C base pairs. The core region of the kissing complex forms a cation-binding pocket with highly negative electrostatic potential. The pocket shows nanosecond-scale breathing motions coupled with oscillations of the whole molecule. Additional simulations were carried out for 6 bp kissing complexes of the DIS HIV-1 subtypes A and B. The simulated structures agree well with the X-ray data. The subtype B forms a novel four-base stack of bulged-out adenines. Both 6 bp kissing complexes have extended cation-binding pockets in their central parts. While the pocket of subtype A interacts with two hexacoordinated Mg2+ ions and one sodium ion, pocket of subtype B is filled with a string of three delocalized Na+ ions with residency times of individual cations 1-2 ns. The 6 bp complexes show breathing motions of the cation-binding pockets and loop major grooves.
Zobrazit více v PubMed
Wagner E.G. and Simons,R.W. (1994) Antisense RNA control in bacteria, phages and plasmids. Annu. Rev. Microbiol., 48, 713–742. PubMed
Bender W. and Davidson,N. (1976) Mapping of poly(A) sequences in the electron microscope reveals unusual structure of type C oncornavirus RNA molecules. Cell, 7, 595–607. PubMed
Muriaux D., Fosse,P. and Paoletti,J. (1996) A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. Biochemistry, 35, 5075–5082. PubMed
Tounekti N., Mougel,M., Roy,C., Marquet,R., Darlix,J.L., Paoletti,J., Ehresmann,B. and Ehresmann,C. (1992) Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA. J. Mol. Biol., 223, 205–220. PubMed
Clever J.L., Wong,M.L. and Parslow,T.G. (1996) Requirements for kissing–loop-mediated dimerization of human immunodeficiency virus RNA. J. Virol., 70, 5902–5908. PubMed PMC
DeTapia M., Metzler,V., Mougel,M., Ehresmann,B. and Ehresmann,C. (1998) Dimerization of MoMuLV genomic RNA: redefinition of the role of the palindromic stem–loop H1 (278–303) and new roles for stem–loops H2 (310–352) and H3 (355–374). Biochemistry, 37, 6077–6085. PubMed
Kim C.H. and Tinoco,I.,Jr (2000) A retroviral RNA kissing complex containing only two GC base pairs. Proc. Natl Acad. Sci. USA, 97, 9396–9401. PubMed PMC
Ennifar E., Walter,P., Ehresmann,B., Ehresmann,C. and Dumas,P. (2001) Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat. Struct. Biol., 8, 1064–1068. PubMed
Mujeeb A., Clever,J.L., Billeci,T.M., James,T.L. and Parslow,T.G. (1998) Structure of the dimer initiation complex of HIV-1 genomic RNA. Nat. Struct. Biol., 5, 432–436. PubMed
Westhof E., Dumas,P. and Moras,D. (1985) Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol., 184, 119–145. PubMed
Ban N., Nissen,P., Hansen,J., Moore,P.B. and Steitz,T.A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science, 289, 905–920. PubMed
Lee A.J. and Crothers,D.M. (1998) The solution structure of an RNA loop–loop complex: the ColE1 inverted loop sequence. Structure, 6, 993–1005. PubMed
Chang K.Y. and Tinoco,I.,Jr (1997) The structure of an RNA kissing hairpin complex of the HIV TAR hairpin loop and its complement. J. Mol. Biol., 269, 52–66. PubMed
Laughrea M. and Jette,L. (1996) Kissing–loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms and all sequences upstream or downstream of hairpin 248–271 are dispensable for dimer formation. Biochemistry, 35, 1589–1598. PubMed
Lodmell J.S., Ehresmann,C., Ehresmann,B. and Marquet,R. (2001) Structure and dimerization of HIV-1 kissing loop aptamers. J. Mol. Biol., 311, 475–490. PubMed
Pattabiraman N., Martinez,H.M. and Shapiro,B.A. (2002) Molecular modeling and dynamics studies of HIV-1 kissing loop structures. J. Biomol. Struct. Dyn., 20, 397–412. PubMed
Beaurain F., Primo,C., Toulme,J.J. and Laguerre,M. (2003) Molecular dynamics reveals the stabilizing role of loop closing residues kissing interactions: comparison between TAR-TAR* and TAR-aptamer. Nucleic Acids Res., 31, 4275–4284. PubMed PMC
Jossinet F., Paillart,J.C., Westhof,E., Hermann,T., Skripkin,E., Lodmell,J.S., Ehresmann,B., Ehresmann,C. and Marquet,R. (1999) Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop structure and magnesium binding. RNA, 5, 1222–1234. PubMed PMC
Auffinger P. and Westhof,E. (2000) RNA solvation: A molecular dynamics simulation perspective. Biopolymers, 56, 266–274. PubMed
Guo J., Daizadeh,I. and Gmeiner,W.H. (2000) Structure of the Sm binding site from human U4 snRNA derived from a 3ns PME molecular dynamics simulation. J. Biomol. Struct. Dyn., 18, 335–344. PubMed
Hermann T. and Westhof,E. (1998) Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure, 6, 1303–1314. PubMed
Hermann T., Auffinger,P. and Westhof,E. (1998) Molecular dynamics investigations of hammerhead ribozyme RNA. Eur. Biophys. J., 27, 153–165. PubMed
Sarzynska J., Kulinski,T. and Nilsson,L. (2000) Conformational dynamics of a 5S rRNA hairpin domain containing Loop D and a single nucleotide bulge. Biophys. J., 79, 1213–1227. PubMed PMC
Schneider C. and Suhnel,J. (2000) A molecular dynamics simulation study of coaxial stacking in RNA. J. Biomol. Struct. Dyn., 18, 345–352. PubMed
Schneider C., Brandl,M. and Suhnel,J. (2001) Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex. J. Mol. Biol., 305, 659–667. PubMed
Norberg J. and Nilsson,L. (2002) Molecular dynamics applied to nucleic acids. Acc. Chem. Res., 35, 465–472. PubMed
Auffinger P., Louise-May,S. and Westhof,E. (1999) Molecular dynamics simulations of solvated yeast tRNA. Biophys. J., 76, 50–64. PubMed PMC
Giudice E. and Lavery,R. (2002) Simulations of nucleic acids and their complexes. Acc. Chem. Res., 35, 350–357. PubMed
Reblova K., Spackova,N., Stefl,R., Csaszar,K., Koca,J., Leontis,N.B. and Sponer,J. (2003) Non-Watson-Crick base pairing and hydration in RNA motifs: Molecular dynamics of 5S rRNA Loop E. Biophys. J., 84, 3564–3582. PubMed PMC
Nagan M.C., Beuning,P., Musier-Forsyth,K. and Cramer,C.J. (2000) Importance of discriminator base stacking interactions: molecular dynamics analysis of A73 microhelix (Ala) variants. Nucleic Acids Res., 28, 2527–2534. PubMed PMC
Nagan M.C., Kerimo,S.S., Musier-Forsyth,K. and Cramer,C.J. (1999) Wild-type RNA microhelix (Ala) and 3:70 variants: Molecular dynamics analysis of local helical structure and tightly bound water. J. Am. Chem. Soc., 121, 7310–7317.
Csaszar K., Spackova,N., Stefl,R., Sponer,J. and Leontis,N.B. (2001) Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: The role of non-Watson-Crick base pairing, ordered hydration, cation binding and base mutations on stability and unfolding. J. Mol. Biol., 313, 1073–1091. PubMed
Pearlman D.A., Case,D.A., Caldwell,J.W., Ross,W.S., Cheatham,T.E.,III, De Bolt,S., Ferguson,D., Seibel,G. and Kollman,P.A. (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecule. Comput. Phys. Commun., 91, 1–41.
Cornell W.D., Cieplak,P., Bayly,C.I., Gould,I.R., Merz,K.M., Ferguson,D.M.,Jr, Spellmeyer,D.C., Fox,T., Caldwell,J.W. and Kollman,P.A. (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids and organic molecules. J. Am. Chem. Soc., 117, 5179–5197.
Ross W.S. and Hardin,C.C. (1994) Ion-induced stabilization of the G-DNA quadruplex—free-energy perturbation studies. J. Am. Chem. Soc., 116, 6070–6080.
York D.M., Darden,T.A. and Pedersen,L.G. (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystal—a comparison of the ewald and truncated list methods. J. Chem. Phys., 99, 8345–8348.
Harvey S.C., Tan,R.K.Z. and Cheatham,T.E.,III (1998) The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem., 19, 726–740.
Humphrey W., Dalke,A. and Schulten,K. (1996) VMD—Visual Molecular Dynamics. J. Mol. Graph., 14, 33–38. PubMed
Ferrin T.E., Huang,C.C., Jarvis,L.E. and Langridge,R. (1988) The MIDAS display system. J. Mol. Graph., 6, 13–27.
Gilson M.K., Sharp,K.A. and Honig,B.H. (1998) Calculating the electrostatic potential of molecules in solution—method and error assessment. J. Comput. Chem., 9, 327–335.
Harris S.A., Gavathiotis,E., Searle,M.S., Orozco,M. and Laughton,C.A. (2001) Cooperativity in drug-DNA recognition: A molecular dynamics study. J. Am. Chem. Soc., 123, 12658–12663. PubMed
Vlieghe D., Sponer,J. and Van Meervelt,L. (1999) Crystal structure of d(GGCCAATTGG) complexed with DAPI reveals novel binding mode. Biochemistry, 38, 16443–16451. PubMed
Luisi B., Orozco,M., Sponer,J., Luque,F.J. and Shakked,Z. (1998) On the potential role of the amino nitrogen atom as a hydrogen acceptor in macromolecules. J. Mol. Biol., 279, 1123–1136. PubMed
Sponer J., Mokdad,A., Sponer,J.E., Spackova,N., Leszczynski,J. and Leontis,N.B. (2003) Unique tertiary and neighbor interactions determine conservation patterns of cis Watson-Crick A/G base pairs. J. Mol. Biol., 330, 967–978. PubMed
Spackova N., Berger,I. and Sponer,J. (2000) Nanosecond molecular dynamics of zipper-like DNA duplex structures containing sheared G.A mismatch pairs. J. Am. Chem. Soc., 122, 7564–7572.
Cai L., Chen,L.Q., Raghavan,S., Ratliff,R., Moyzis,R. and Rich,A. (1998) Intercalated cytosine motif and novel adenine clusters in the crystal structure of the Tetrahymena telomere. Nucleic Acids Res., 26, 4696–4705. PubMed PMC
Ennifar E., Yusupov,M., Walter,P., Marquet,R., Ehresmann,B., Ehresmann,C. and Dumas,P. (1999) The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure, 7, 1439–1449. PubMed
Misra V.K. and Draper,D.E. (2002) The linkage between magnesium binding and RNA folding. J. Mol. Biol., 317, 507–521. PubMed
Auffinger P., Bielecki,L. and Westhof,E. (2003) The Mg2+ binding sites of the 5S rRNA Loop E motif as investigated by molecular dynamics simulations. Chem. Biol., 10, 551–561. PubMed
Sponer J., Sabat,M., Gorb,L., Leszczynski,J., Lippert,B. and Hobza,P. (2000) The effect of metal binding to the N7 site of purine nucleotides on their structure, energy and involvement in base pairing. J. Phys. Chem. B, 104, 7535–7544.
Ennifar E., Walter,P. and Dumas,P. (2003) A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res., 31, 2671–2682. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Extended molecular dynamics of a c-kit promoter quadruplex
Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM
Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics
Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme
Molecular dynamics simulations of sarcin-ricin rRNA motif
Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex