Molecular dynamics simulations of sarcin-ricin rRNA motif
Jazyk angličtina Země Anglie, Velká Británie Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
16456030
PubMed Central
PMC1360246
DOI
10.1093/nar/gkj470
PII: 34/2/697
Knihovny.cz E-zdroje
- MeSH
- endoribonukleasy metabolismus MeSH
- Escherichia coli genetika MeSH
- fungální proteiny metabolismus MeSH
- kationty chemie MeSH
- konformace nukleové kyseliny MeSH
- krysa rodu Rattus MeSH
- krystalografie rentgenová MeSH
- molekulární modely * MeSH
- párování bází MeSH
- počítačová simulace MeSH
- ricin metabolismus MeSH
- RNA ribozomální 23S chemie metabolismus MeSH
- RNA ribozomální 28S chemie metabolismus MeSH
- sacharidy chemie MeSH
- vazebná místa MeSH
- voda chemie MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- alpha-sarcin MeSH Prohlížeč
- endoribonukleasy MeSH
- fungální proteiny MeSH
- kationty MeSH
- ricin MeSH
- RNA ribozomální 23S MeSH
- RNA ribozomální 28S MeSH
- sacharidy MeSH
- voda MeSH
Explicit solvent molecular dynamics (MD) simulations were carried out for sarcin-ricin domain (SRD) motifs from 23S (Escherichia coli) and 28S (rat) rRNAs. The SRD motif consists of GAGA tetraloop, G-bulged cross-strand A-stack, flexible region and duplex part. Detailed analysis of the overall dynamics, base pairing, hydration, cation binding and other SRD features is presented. The SRD is surprisingly static in multiple 25 ns long simulations and lacks any non-local motions, with root mean square deviation (r.m.s.d.) values between averaged MD and high-resolution X-ray structures of 1-1.4 A. Modest dynamics is observed in the tetraloop, namely, rotation of adenine in its apex and subtle reversible shift of the tetraloop with respect to the adjacent base pair. The deformed flexible region in low-resolution rat X-ray structure is repaired by simulations. The simulations reveal few backbone flips, which do not affect positions of bases and do not indicate a force field imbalance. Non-Watson-Crick base pairs are rigid and mediated by long-residency water molecules while there are several modest cation-binding sites around SRD. In summary, SRD is an unusually stiff rRNA building block. Its intrinsic structural and dynamical signatures seen in simulations are strikingly distinct from other rRNA motifs such as Loop E and Kink-turns.
Zobrazit více v PubMed
Hausner T.P., Atmadja J., Nierhaus K.H. Evidence that the G2661 region of 23S ribosomal-RNA is located at the ribosomal-binding sites of both elongation-factors. Biochimie. 1987;69:911–923. PubMed
Moazed D., Robertson J.M., Noller H.F. Interaction of elongation-factors Ef-G and Ef-Tu with a conserved loop in 23S RNA. Nature. 1988;334:362–364. PubMed
Leontis N.B., Stombaugh J., Westhof E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002;30:3497–3531. PubMed PMC
Endo Y., Wool I.G. The site of action of alpha-sarcin on eukaryotic ribosomes—the sequence at the alpha-sarcin cleavage site in 28 S-ribosomal ribonucleic-acid. J. Biol. Chem. 1982;257:9054–9060. PubMed
Endo Y., Mitsui K., Motizuki M., Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes—the site and the characteristics of the modification in 28-S ribosomal-RNA caused by the toxins. J. Biol. Chem. 1987;262:5908–5912. PubMed
Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin a-chain—mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987;262:8128–8130. PubMed
Gluck A., Wool I.G. Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to the selection of the catalytic site. J. Mol. Biol. 1996;256:838–848. PubMed
Munishkin A., Wool I.G. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Proc. Natl Acad. Sci. USA. 1997;94:12280–12284. PubMed PMC
Perez-Canadillas J.M., Santoro J., Campos-Olivas R., Lacadena J., del Pozo A.M., Gavilanes J.G., Rico M., Bruix M. The highly refined solution structure of the cytotoxic ribonuclease alpha-sarcin reveals the structural requirements for substrate recognition and ribonucleolytic activity. J. Mol. Biol. 2000;299:1061–1073. PubMed
Correll C.C., Wool I.G., Munishkin A. The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: The structure at 1.11 angstrom resolution. J. Mol. Biol. 1999;292:275–287. PubMed
Correll C.C., Beneken J., Plantinga M.J., Lubbers M., Chan Y.L. The common and the distinctive features of the bulged-G motif based on a 1.04 angstrom resolution RNA structure. Nucleic Acids Res. 2003;31:6806–6818. PubMed PMC
Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science. 2000;289:905–920. PubMed
Schuwirth B.S., Borovinskaya M.A., Hau C.W., Zhang W., Vila-Sanjurjo A., Holton J.M., Cate J.H.D. Structures of the bacterial ribosome at 3.5 angstrom resolution. Science. 2005;310:827–834. PubMed
Correll C.C., Munishkin A., Chan Y.L., Ren Z., Wool I.G., Steitz T.A. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc. Natl Acad. Sci. USA. 1998;95:13436–13441. PubMed PMC
Szewczak A.A., Moore P.B. The sarcin ricin loop, a modular RNA. J. Mol. Biol. 1995;247:81–98. PubMed
Szewczak A.A., Moore P.B., Chan Y.L., Wool I.G. The conformation of the sarcin ricin loop from 28S ribosomal-RNA. Proc. Natl Acad. Sci. USA. 1993;90:9581–9585. PubMed PMC
Warren J.J., Moore P.B. Application of dipolar coupling data to the refinement of the solution structure of the sarcin–ricin loop RNA. J. Biomol. NMR. 2001;20:311–323. PubMed
Yang X.J., Gerczei T., Glover L., Correll C.C. Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping. Nature Struct. Biol. 2001;8:968–973. PubMed
Chan Y.L., Correll C.C., Wool I.G. The location and the significance of a cross-link between the sarcin/ricin domain of ribosomal RNA and the elongation factor-G. J. Mol. Biol. 2004;337:263–272. PubMed
Tung C.S., Sanbonmatsu K.Y. Atomic model of the Thermus thermophilus 70S ribosome developed in silico. Biophys. J. 2004;87:2714–2722. PubMed PMC
Cheatham T.E., Young M.A. Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers. 2000;56:232–256. PubMed
Auffinger P., Bielecki L., Westhof E. The Mg2+ binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations. Chem. Biol. 2003;10:551–561. PubMed
Krasovska M.V., Sefcikova J., Spackova N., Sponer J., Walter N.G. Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations. J. Mol. Biol. 2005;351:731–748. PubMed
Razga F., Spackova N., Reblova K., Koca J., Leontis N.B., Sponer J. Ribosomal RNA kink-turn motif—a flexible molecular hinge. J. Biomol. Struct. Dyn. 2004;22:183–193. PubMed
Razga F., Koca J., Sponer J., Leontis N.B. Hinge-like motions in RNA kink-turns: the role of the second A-minor motif and nominally unpaired bases. Biophys. J. 2005;88:3466–3485. PubMed PMC
Reblova K., Spackova N., Koca J., Leontis N.B., Sponer J. Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex. Biophys. J. 2004;87:3397–3412. PubMed PMC
Reblova K., Spackova N., Sponer J.E., Koca J., Sponer J. Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets. Nucleic Acids Res. 2003;31:6942–6952. PubMed PMC
Reblova K., Spackova N., Stefl R., Csaszar K., Koca J., Leontis N.B., Sponer J. Non-Watson–Crick basepairing and hydration in RNA motifs: Molecular dynamics of 5S rRNA loop E. Biophys. J. 2003;84:3564–3582. PubMed PMC
Auffinger P., Bielecki L., Westhof E. Symmetric K+ and Mg2+ ion-binding sites in the 5S rRNA loop E inferred from molecular dynamics simulations. J. Mol. Biol. 2004;335:555–571. PubMed
Cojocaru V., Nottrott S., Klement R., Jovin T.M. The snRNP 15.5K protein folds its cognate K-turn RNA: a combined theoretical and biochemical study. RNA. 2005;11:197–209. PubMed PMC
Golebiowski J., Antonczak S., Fernandez-Carmona J., Condom R., Cabrol-Bass D. Closing loop base pairs in RNA loop–loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations. J. Mol. Model. (Online) 2004;10:408–417. PubMed
Cojocaru V., Klement R., Jovin T.M. Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif. Nucleic Acids Res. 2005;33:3435–3446. PubMed PMC
Auffinger P., Westhof E. RNA solvation: a molecular dynamics simulation perspective. Biopolymers. 2000;56:266–274. PubMed
Pan Y.P., Priyakumar U.D., MacKerell A.D. Conformational determinants of tandem GU mismatches in RNA: Insights from molecular dynamics simulations and quantum mechanical calculations. Biochemistry. 2005;44:1433–1443. PubMed
Li W., Ma B.Y., Shapiro B.A. Molecular dynamics simulations of the denaturation and refolding of an RNA tetraloop. J. Biomol. Struct. Dyn. 2001;19:381–396. PubMed
Sanbonmatsu K.Y., Joseph S. Understanding discrimination by the ribosome: Stability testing and groove measurement of codon–anticodon pairs. J. Mol. Biol. 2003;328:33–47. PubMed
Sanbonmatsu K.Y., Joseph S., Tung C.S. Simulating movement of tRNA into the ribosome during decoding. Proc. Natl Acad. Sci. USA. 2005;102:15854–15859. PubMed PMC
Lankas F., Sponer J., Langowski J., Cheatham T.E. DNA basepair step deformability inferred from molecular dynamics simulations. Biophys. J. 2003;85:2872–2883. PubMed PMC
Jucker F.M., Heus H.A., Yip P.F., Moors E.H.M., Pardi A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 1996;264:968–980. PubMed
Correll C.C., Swinger K. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 angstrom resolution. RNA. 2003;9:355–363. PubMed PMC
Rife J.P., Stallings S.C., Correll C.C., Dallas A., Steitz T.A., Moore P.B. Comparison of the crystal and solution structures of two RNA oligonucleotides. Biophys. J. 1999;76:65–75. PubMed PMC
Pearlman D.A., Case D.A., Caldwell J.W., Ross W.S., Cheatham T.E., Debolt S., Ferguson D., Seibel G., Kollman P. Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995;91:1–41.
Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 1995;117:5179–5197.
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Darden T., York D., Pedersen L. Particle Mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constrains: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341.
Orozco M., Perez A., Noy A., Luque F.J. Theoretical methods for the simulation of nucleic acids. Chem. Soc. Rev. 2003;32:350–364. PubMed
Wlodek S.T., Clark T.W., Scott L.R., McCammon J.A. Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. J. Am. Chem. Soc. 1997;119:9513–9522.
Gilson M.K., Sharp K.A., Honig B.H. Calculating the electrostatic potential of molecules in solution—method and error assessment. J. Comput. Chem. 1988;9:327–335.
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. PubMed
Duarte C.M., Wadley L.M., Pyle A.M. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 2003;31:4755–4761. PubMed PMC
Schneider B., Moravek Z., Berman H.M. RNA conformational classes. Nucleic Acids Res. 2004;32:1666–1677. PubMed PMC
Sarzynska J., Kulinski T. Dynamics and stability of GCAA tetraloop with 2-aminopurine and purine substitutions. J. Biomol. Struct. Dyn. 2005;22:425–439. PubMed
Sarzynska J., Nilsson L., Kulinski T. Effects of base substitutions in an RNA hairpin from molecular dynamics and free energy simulations. Biophys. J. 2003;85:3445–3459. PubMed PMC
Zichi D.A. Molecular-dynamics of RNA with the OPLS force-field—aqueous simulation of a hairpin containing a tetranucleotide loop. J. Am. Chem. Soc. 1995;117:2957–2969.
Sarzynska J., Kulinski T., Nilsson L. Conformational dynamics of a 5S rRNA hairpin domain containing loop D and a single nucleotide bulge. Biophys. J. 2000;79:1213–1227. PubMed PMC
Sorin E.J., Engelhardt M.A., Herschlag D., Pande V.S. RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop. J. Mol. Biol. 2002;317:493–506. PubMed
Varnai P., Zakrzewska K. DNA and its counterions: a molecular dynamics study. Nucleic Acids Res. 2004;32:4269–4280. PubMed PMC
Beveridge D.L., Barreiro G., Byun K.S., Case D.A., Cheatham T.E., Dixit S.B., Giudice E., Lankas F., Lavery R., Maddocks J.H., et al. Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(C(p)G) steps. Biophys. J. 2004;87:3799–3813. PubMed PMC
Sponer J., Jurecka P., Hobza P. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J. Am. Chem. Soc. 2004;126:10142–10151. PubMed
Sponer J.E., Spackova N., Leszczynski J., Sponer J. Principles of RNA base pairing: structures and energies of the trans Watson–Crick/sugar edge base pairs. J. Phys. Chem. B. 2005;109:11399–11410. PubMed
Schneider C., Brandl M., Suhnel J. Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex. J. Mol. Biol. 2001;305:659–667. PubMed
Gabashvili I.S., Agrawal R.K., Spahn C.M.T., Grassucci R.A., Svergun D.I., Frank J., Penczek P. Solution structure of the E.coli 70S ribosome at 11.5 A resolution. Cell. 2000;100:537–549. PubMed
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study
Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM
Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics
Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme