Ribosomal RNA kink-turn motif--a flexible molecular hinge

. 2004 Oct ; 22 (2) : 183-94.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid15317479

Grantová podpora
2R15 GM55898 NIGMS NIH HHS - United States

Odkazy

PubMed 15317479
DOI 10.1080/07391102.2004.10506994
PII: d=3016&c=4159&p=12444&do=detail
Knihovny.cz E-zdroje

Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in "V" shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carried out extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample, on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dynamics of K-turns is strikingly different for example from the bacterial 5S rRNA Loop E motif or BWYV frameshifting pseudoknot which appear to be rigid in the same type of simulations. Bistability and flexibility of K-turns was also suggested by several recent biochemical studies. Although the results of MD simulations should be considered as a qualitative picture of the K-turn dynamics due to force field and sampling limitations, the main advantage of the MD technique is its ability to investigate the region close to K-turn ribosomal-like geometries. This part of the conformational space is not well characterized by the solution experiments due to large-scale conformational changes seen in the experiments. We suggest that K-turns are well suited to act as flexible structural elements of ribosomal RNA. They can for example be involved in mediation of large-scale motions or they can allow a smooth assembling of the other parts of the ribosome.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

. 2018 Apr 25 ; 118 (8) : 4177-4338. [epub] 20180103

Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome

. 2010 Oct ; 38 (18) : 6247-64. [epub] 20100527

Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM

. 2010 Mar ; 38 (4) : 1325-40. [epub] 20091201

Elastic properties of ribosomal RNA building blocks: molecular dynamics of the GTPase-associated center rRNA

. 2007 ; 35 (12) : 4007-17. [epub] 20070606

Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme

. 2006 Jul 15 ; 91 (2) : 626-38. [epub] 20060414

Molecular dynamics simulations of sarcin-ricin rRNA motif

. 2006 ; 34 (2) : 697-708. [epub] 20060202

Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases

. 2005 May ; 88 (5) : 3466-85. [epub] 20050218

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace