The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma

. 2021 Oct 14 ; 9 (10) : . [epub] 20211014

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34680585

Grantová podpora
MUNI/A/1595/2020 Ministry of Health, Czech Republic

Odkazy

PubMed 34680585
PubMed Central PMC8533318
DOI 10.3390/biomedicines9101468
PII: biomedicines9101468
Knihovny.cz E-zdroje

Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.

Zobrazit více v PubMed

Cascinu S., Falconi M., Valentini V., Jelic S., Group E.G.W. Pancreatic cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2010;21((Suppl. 5)):v55–v58. doi: 10.1093/annonc/mdq165. PubMed DOI

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Cardini B., Primavesi F., Maglione M., Oberschmied J., Guschlbauer L., Gasteiger S., Kuscher S., Resch T., Oberhuber R., Margreiter C., et al. Outcomes following pancreatic resections—Results and challenges of an Austrian university hospital compared to nationwide data and international centres. Eur. Surg. 2019;51:81–89. doi: 10.1007/s10353-019-0585-x. DOI

Labori K.J., Katz M.H., Tzeng C.W., Bjornbeth B.A., Cvancarova M., Edwin B., Kure E.H., Eide T.J., Dueland S., Buanes T., et al. Impact of early disease progression and surgical complications on adjuvant chemotherapy completion rates and survival in patients undergoing the surgery first approach for resectable pancreatic ductal adenocarcinoma—A population-based cohort study. Acta Oncol. 2016;55:265–277. doi: 10.3109/0284186X.2015.1068445. PubMed DOI

Kim J.E., Lee K.T., Lee J.K., Paik S.W., Rhee J.C., Choi K.W. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J. Gastroenterol. Hepatol. 2004;19:182–186. doi: 10.1111/j.1440-1746.2004.03219.x. PubMed DOI

Kenner B., Chari S.T., Kelsen D., Klimstra D.S., Pandol S.J., Rosenthal M., Rustgi A.K., Taylor J.A., Yala A., Abul-Husn N., et al. Artificial Intelligence and Early Detection of Pancreatic Cancer: 2020 Summative Review. Pancreas. 2021;50:251–279. doi: 10.1097/MPA.0000000000001762. PubMed DOI PMC

Dell’Aquila E., Fulgenzi C.A.M., Minelli A., Citarella F., Stellato M., Pantano F., Russano M., Cursano M.C., Napolitano A., Zeppola T., et al. Prognostic and predictive factors in pancreatic cancer. Oncotarget. 2020;11:924–941. doi: 10.18632/oncotarget.27518. PubMed DOI PMC

El Nakeeb A., El Shobary M., El Dosoky M., Nabeh A., El Sorogy M., El Eneen A.A., abu Zeid M., Elwahab M.A. Prognostic factors affecting survival after pancreaticoduodenectomy for pancreatic adenocarcinoma (single center experience) Hepatogastroenterology. 2014;61:1426–1438. PubMed

Artemaki P.I., Letsos P.A., Zoupa I.C., Katsaraki K., Karousi P., Papageorgiou S.G., Pappa V., Scorilas A., Kontos C.K. The Multifaceted Role and Utility of MicroRNAs in Indolent B-Cell Non-Hodgkin Lymphomas. Biomedicines. 2021;9:333. doi: 10.3390/biomedicines9040333. PubMed DOI PMC

Katsaraki K., Karousi P., Artemaki P.I., Scorilas A., Pappa V., Kontos C.K., Papageorgiou S.G. MicroRNAs: Tiny Regulators of Gene Expression with Pivotal Roles in Normal B-Cell Development and B-Cell Chronic Lymphocytic Leukemia. Cancers. 2021;13:593. doi: 10.3390/cancers13040593. PubMed DOI PMC

Papanota A.M., Karousi P., Kontos C.K., Ntanasis-Stathopoulos I., Scorilas A., Terpos E. Multiple Myeloma Bone Disease: Implication of MicroRNAs in Its Molecular Background. Int. J. Mol. Sci. 2021;22:2375. doi: 10.3390/ijms22052375. PubMed DOI PMC

Redis R.S., Calin S., Yang Y., You M.J., Calin G.A. Cell-to-cell miRNA transfer: From body homeostasis to therapy. Pharmacol. Ther. 2012;136:169–174. doi: 10.1016/j.pharmthera.2012.08.003. PubMed DOI PMC

Adams B.D., Kasinski A.L., Slack F.J. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 2014;24:R762–R776. doi: 10.1016/j.cub.2014.06.043. PubMed DOI PMC

Daoud A.Z., Mulholland E.J., Cole G., McCarthy H.O. MicroRNAs in Pancreatic Cancer: Biomarkers, prognostic, and therapeutic modulators. BMC Cancer. 2019;19:1130. doi: 10.1186/s12885-019-6284-y. PubMed DOI PMC

Ye Z.Q., Zou C.L., Chen H.B., Jiang M.J., Mei Z., Gu D.N. MicroRNA-7 as a Potential Biomarker for Prognosis in Pancreatic Cancer. Dis. Markers. 2020;2020:2782101. doi: 10.1155/2020/2782101. PubMed DOI PMC

Berindan-Neagoe I., Calin G.A. Molecular pathways: microRNAs, cancer cells, and microenvironment. Clin. Cancer Res. 2014;20:6247–6253. doi: 10.1158/1078-0432.CCR-13-2500. PubMed DOI PMC

Rupaimoole R., Calin G.A., Lopez-Berestein G., Sood A.K. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov. 2016;6:235–246. doi: 10.1158/2159-8290.CD-15-0893. PubMed DOI PMC

Iwagami Y., Eguchi H., Nagano H., Akita H., Hama N., Wada H., Kawamoto K., Kobayashi S., Tomokuni A., Tomimaru Y., et al. miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br. J. Cancer. 2013;109:502–511. doi: 10.1038/bjc.2013.320. PubMed DOI PMC

Gablo N., Trachtova K., Prochazka V., Hlavsa J., Grolich T., Kiss I., Srovnal J., Rehulkova A., Lovecek M., Skalicky P., et al. Identification and Validation of Circulating Micrornas as Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma Patients Undergoing Surgical Resection. J. Clin. Med. 2020;9:2440. doi: 10.3390/jcm9082440. PubMed DOI PMC

De Rie D., Abugessaisa I., Alam T., Arner E., Arner P., Ashoor H., Astrom G., Babina M., Bertin N., Burroughs A.M., et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol. 2017;35:872–878. doi: 10.1038/nbt.3947. PubMed DOI PMC

Saini H.K., Griffiths-Jones S., Enright A.J. Genomic ana.alysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA. 2007;104:17719–17724. doi: 10.1073/pnas.0703890104. PubMed DOI PMC

Cai X., Hagedorn C.H., Cullen B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–1966. doi: 10.1261/rna.7135204. PubMed DOI PMC

Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., Kim V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–4060. doi: 10.1038/sj.emboj.7600385. PubMed DOI PMC

Lin S.L., Miller J.D., Ying S.Y. Intronic microRNA (miRNA) J. Biomed. Biotechnol. 2006;2006:26818. doi: 10.1155/JBB/2006/26818. PubMed DOI PMC

Garajova I., Le Large T.Y., Frampton A.E., Rolfo C., Voortman J., Giovannetti E. Molecular mechanisms underlying the role of microRNAs in the chemoresistance of pancreatic cancer. BioMed Res. Int. 2014;2014:678401. doi: 10.1155/2014/678401. PubMed DOI PMC

Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419. doi: 10.1038/nature01957. PubMed DOI

Lin Y.C., Chen T.H., Huang Y.M., Wei P.L., Lin J.C. Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms. Biomedicines. 2021;9:343. doi: 10.3390/biomedicines9040343. PubMed DOI PMC

O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC

Forman J.J., Legesse-Miller A., Coller H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. USA. 2008;105:14879–14884. doi: 10.1073/pnas.0803230105. PubMed DOI PMC

Xu W., San Lucas A., Wang Z., Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinform. 2014;15((Suppl. 7)):S4. doi: 10.1186/1471-2105-15-S7-S4. PubMed DOI PMC

Zhang J., Zhou W., Liu Y., Liu T., Li C., Wang L. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5’UTR of RUNX3. Oncol. Lett. 2018;15:7215–7220. doi: 10.3892/ol.2018.8217. PubMed DOI PMC

Huntzinger E., Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011;12:99–110. doi: 10.1038/nrg2936. PubMed DOI

Qu K., Zhang X., Lin T., Liu T., Wang Z., Liu S., Zhou L., Wei J., Chang H., Li K., et al. Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: Evidence from comprehensive miRNA expression profiling analysis and clinical validation. Sci. Rep. 2017;7:1692. doi: 10.1038/s41598-017-01904-z. PubMed DOI PMC

Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367 doi: 10.1126/science.aau6977. PubMed DOI PMC

Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., Mitchell P.S., Bennett C.F., Pogosova-Agadjanyan E.L., Stirewalt D.L., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA. 2011;108:5003–5008. doi: 10.1073/pnas.1019055108. PubMed DOI PMC

Turchinovich A., Samatov T.R., Tonevitsky A.G., Burwinkel B. Circulating miRNAs: Cell-cell communication function? Front. Genet. 2013;4:119. doi: 10.3389/fgene.2013.00119. PubMed DOI PMC

Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–7233. doi: 10.1093/nar/gkr254. PubMed DOI PMC

Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011;13:423–433. doi: 10.1038/ncb2210. PubMed DOI PMC

Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC

Halkova T., Cuperkova R., Minarik M., Benesova L. MicroRNAs in Pancreatic Cancer: Involvement in Carcinogenesis and Potential Use for Diagnosis and Prognosis. Gastroenterol. Res. Pract. 2015;2015:892903. doi: 10.1155/2015/892903. PubMed DOI PMC

Eloubeidi M.A., Jhala D., Chhieng D.C., Chen V.K., Eltoum I., Vickers S., Mel Wilcox C., Jhala N. Yield of endoscopic ultrasound-guided fine-needle aspiration biopsy in patients with suspected pancreatic carcinoma. Cancer. 2003;99:285–292. doi: 10.1002/cncr.11643. PubMed DOI

Gilad S., Meiri E., Yogev Y., Benjamin S., Lebanony D., Yerushalmi N., Benjamin H., Kushnir M., Cholakh H., Melamed N., et al. Serum microRNAs are promising novel biomarkers. PLoS ONE. 2008;3:e3148. doi: 10.1371/journal.pone.0003148. PubMed DOI PMC

Kroh E.M., Parkin R.K., Mitchell P.S., Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR) Methods. 2010;50:298–301. doi: 10.1016/j.ymeth.2010.01.032. PubMed DOI PMC

Li Y., Kowdley K.V. Method for microRNA isolation from clinical serum samples. Anal. Biochem. 2012;431:69–75. doi: 10.1016/j.ab.2012.09.007. PubMed DOI PMC

McDonald J.S., Milosevic D., Reddi H.V., Grebe S.K., Algeciras-Schimnich A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin. Chem. 2011;57:833–840. doi: 10.1373/clinchem.2010.157198. PubMed DOI

Trakunram K., Champoochana N., Chaniad P., Thongsuksai P., Raungrut P. MicroRNA Isolation by Trizol-Based Method and Its Stability in Stored Serum and cDNA Derivatives. Asian Pac. J. Cancer Prev. 2019;20:1641–1647. doi: 10.31557/APJCP.2019.20.6.1641. PubMed DOI PMC

Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC

Kawaguchi T., Komatsu S., Ichikawa D., Morimura R., Tsujiura M., Konishi H., Takeshita H., Nagata H., Arita T., Hirajima S., et al. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br. J. Cancer. 2013;108:361–369. doi: 10.1038/bjc.2012.546. PubMed DOI PMC

Morimura R., Komatsu S., Ichikawa D., Takeshita H., Tsujiura M., Nagata H., Konishi H., Shiozaki A., Ikoma H., Okamoto K., et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br. J. Cancer. 2011;105:1733–1740. doi: 10.1038/bjc.2011.453. PubMed DOI PMC

Ideozu J.E., Zhang X., Rangaraj V., McColley S., Levy H. Microarray profiling identifies extracellular circulating miRNAs dysregulated in cystic fibrosis. Sci. Rep. 2019;9:15483. doi: 10.1038/s41598-019-51890-7. PubMed DOI PMC

Nagy Z.B., Bartak B.K., Kalmar A., Galamb O., Wichmann B., Dank M., Igaz P., Tulassay Z., Molnar B. Comparison of Circulating miRNAs Expression Alterations in Matched Tissue and Plasma Samples During Colorectal Cancer Progression. Pathol. Oncol. Res. 2019;25:97–105. doi: 10.1007/s12253-017-0308-1. PubMed DOI

Wang A., Kwee L.C., Grass E., Neely M.L., Gregory S.G., Fox K.A.A., Armstrong P.W., White H.D., Ohman E.M., Roe M.T., et al. Whole blood sequencing reveals circulating microRNA associations with high-risk traits in non-ST-segment elevation acute coronary syndrome. Atherosclerosis. 2017;261:19–25. doi: 10.1016/j.atherosclerosis.2017.03.041. PubMed DOI

Rawat M., Kadian K., Gupta Y., Kumar A., Chain P.S.G., Kovbasnjuk O., Kumar S., Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes. 2019;10:752. doi: 10.3390/genes10100752. PubMed DOI PMC

Shams R., Saberi S., Zali M., Sadeghi A., Ghafouri-Fard S., Aghdaei H.A. Identification of potential microRNA panels for pancreatic cancer diagnosis using microarray datasets and bioinformatics methods. Sci. Rep. 2020;10:7559. doi: 10.1038/s41598-020-64569-1. PubMed DOI PMC

Duell E.J., Lujan-Barroso L., Sala N., Deitz McElyea S., Overvad K., Tjonneland A., Olsen A., Weiderpass E., Busund L.T., Moi L., et al. Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. Int. J. Cancer. 2017;141:905–915. doi: 10.1002/ijc.30790. PubMed DOI PMC

Xue J., Jia E., Ren N., Lindsay A., Yu H. Circulating microRNAs as promising diagnostic biomarkers for pancreatic cancer: A systematic review. Onco Targets Ther. 2019;12:6665–6684. doi: 10.2147/OTT.S207963. PubMed DOI PMC

Hussein N.A., Kholy Z.A., Anwar M.M., Ahmad M.A., Ahmad S.M. Plasma miR-22-3p, miR-642b-3p and miR-885-5p as diagnostic biomarkers for pancreatic cancer. J. Cancer Res. Clin. Oncol. 2017;143:83–93. doi: 10.1007/s00432-016-2248-7. PubMed DOI PMC

Lai X., Wang M., McElyea S.D., Sherman S., House M., Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93. doi: 10.1016/j.canlet.2017.02.019. PubMed DOI PMC

Slater E.P., Strauch K., Rospleszcz S., Ramaswamy A., Esposito I., Kloppel G., Matthai E., Heeger K., Fendrich V., Langer P., et al. MicroRNA-196a and -196b as Potential Biomarkers for the Early Detection of Familial Pancreatic Cancer. Transl. Oncol. 2014;7:464–471. doi: 10.1016/j.tranon.2014.05.007. PubMed DOI PMC

Liu R., Chen X., Du Y., Yao W., Shen L., Wang C., Hu Z., Zhuang R., Ning G., Zhang C., et al. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin. Chem. 2012;58:610–618. doi: 10.1373/clinchem.2011.172767. PubMed DOI

Ganepola G.A., Rutledge J.R., Suman P., Yiengpruksawan A., Chang D.H. Novel blood-based microRNA biomarker panel for early diagnosis of pancreatic cancer. World J. Gastrointest. Oncol. 2014;6:22–33. doi: 10.4251/wjgo.v6.i1.22. PubMed DOI PMC

Xu J., Cao Z., Liu W., You L., Zhou L., Wang C., Lou W., Sun B., Miao Y., Liu X., et al. Plasma miRNAs Effectively Distinguish Patients With Pancreatic Cancer From Controls: A Multicenter Study. Ann. Surg. 2016;263:1173–1179. doi: 10.1097/SLA.0000000000001345. PubMed DOI

Khan I.A., Rashid S., Singh N., Rashid S., Singh V., Gunjan D., Das P., Dash N.R., Pandey R.M., Chauhan S.S., et al. Panel of serum miRNAs as potential non-invasive biomarkers for pancreatic ductal adenocarcinoma. Sci. Rep. 2021;11:2824. doi: 10.1038/s41598-021-82266-5. PubMed DOI PMC

Iorio M.V., Croce C.M. MicroRNAs in cancer: Small molecules with a huge impact. J. Clin. Oncol. 2009;27:5848–5856. doi: 10.1200/JCO.2009.24.0317. PubMed DOI PMC

Nagao Y., Hisaoka M., Matsuyama A., Kanemitsu S., Hamada T., Fukuyama T., Nakano R., Uchiyama A., Kawamoto M., Yamaguchi K., et al. Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod. Pathol. 2012;25:112–121. doi: 10.1038/modpathol.2011.142. PubMed DOI

Qi L., Bart J., Tan L.P., Platteel I., Sluis T., Huitema S., Harms G., Fu L., Hollema H., Berg A. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163. doi: 10.1186/1471-2407-9-163. PubMed DOI PMC

Feng Y.H., Tsao C.J. Emerging role of microRNA-21 in cancer. Biomed. Rep. 2016;5:395–402. doi: 10.3892/br.2016.747. PubMed DOI PMC

Yin C., Zhou X., Dang Y., Yan J., Zhang G. Potential Role of Circulating MiR-21 in the Diagnosis and Prognosis of Digestive System Cancer: A Systematic Review and Meta-Analysis. Medicine. 2015;94:e2123. doi: 10.1097/MD.0000000000002123. PubMed DOI PMC

Frampton A.E., Krell J., Jamieson N.B., Gall T.M., Giovannetti E., Funel N., Mato Prado M., Krell D., Habib N.A., Castellano L., et al. microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis. Eur. J. Cancer. 2015;51:1389–1404. doi: 10.1016/j.ejca.2015.04.006. PubMed DOI

Hruban R.H., Adsay N.V., Albores-Saavedra J., Compton C., Garrett E.S., Goodman S.N., Kern S.E., Klimstra D.S., Kloppel G., Longnecker D.S., et al. Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions. Am. J. Surg. Pathol. 2001;25:579–586. doi: 10.1097/00000478-200105000-00003. PubMed DOI

Hruban R.H., Takaori K., Klimstra D.S., Adsay N.V., Albores-Saavedra J., Biankin A.V., Biankin S.A., Compton C., Fukushima N., Furukawa T., et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am. J. Surg. Pathol. 2004;28:977–987. doi: 10.1097/01.pas.0000126675.59108.80. PubMed DOI

LaConti J.J., Shivapurkar N., Preet A., Deslattes Mays A., Peran I., Kim S.E., Marshall J.L., Riegel A.T., Wellstein A. Tissue and serum microRNAs in the Kras(G12D) transgenic animal model and in patients with pancreatic cancer. PLoS ONE. 2011;6:e20687. doi: 10.1371/journal.pone.0020687. PubMed DOI PMC

Yu J., Li A., Hong S.M., Hruban R.H., Goggins M. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin. Cancer Res. 2012;18:981–992. doi: 10.1158/1078-0432.CCR-11-2347. PubMed DOI PMC

Caponi S., Funel N., Frampton A.E., Mosca F., Santarpia L., Van der Velde A.G., Jiao L.R., De Lio N., Falcone A., Kazemier G., et al. The good, the bad and the ugly: A tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann. Oncol. 2013;24:734–741. doi: 10.1093/annonc/mds513. PubMed DOI

Jiao L.R., Frampton A.E., Jacob J., Pellegrino L., Krell J., Giamas G., Tsim N., Vlavianos P., Cohen P., Ahmad R., et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS ONE. 2012;7:e32068. doi: 10.1371/journal.pone.0032068. PubMed DOI PMC

Abue M., Yokoyama M., Shibuya R., Tamai K., Yamaguchi K., Sato I., Tanaka N., Hamada S., Shimosegawa T., Sugamura K., et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int. J. Oncol. 2015;46:539–547. doi: 10.3892/ijo.2014.2743. PubMed DOI PMC

Zhang J., Bai R., Li M., Ye H., Wu C., Wang C., Li S., Tan L., Mai D., Li G., et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun. 2019;10:1858. doi: 10.1038/s41467-019-09712-x. PubMed DOI PMC

Yu Y., Tong Y., Zhong A., Wang Y., Lu R., Guo L. Identification of Serum microRNA-25 as a novel biomarker for pancreatic cancer. Medicine. 2020;99:e23863. doi: 10.1097/MD.0000000000023863. PubMed DOI PMC

Artemaki P.I., Scorilas A., Kontos C.K. Circular RNAs: A New Piece in the Colorectal Cancer Puzzle. Cancers. 2020;12:2464. doi: 10.3390/cancers12092464. PubMed DOI PMC

Verheyen E.M., Gottardi C.J. Regulation of Wnt/beta-catenin signaling by protein kinases. Dev. Dyn. 2010;239:34–44. doi: 10.1002/dvdy.22019. PubMed DOI PMC

Papatsirou M., Artemaki P.I., Karousi P., Scorilas A., Kontos C.K. Circular RNAs: Emerging Regulators of the Major Signaling Pathways Involved in Cancer Progression. Cancers. 2021;13:2744. doi: 10.3390/cancers13112744. PubMed DOI PMC

Wang S., Ji J., Song J., Li X., Han S., Lian W., Cao C., Zhang X., Li M. MicroRNA-182 promotes pancreatic cancer cell proliferation and migration by targeting beta-TrCP2. Acta Biochim. Biophys. Sin. 2016;48:1085–1093. doi: 10.1093/abbs/gmw105. PubMed DOI

Chen Q., Yang L., Xiao Y., Zhu J., Li Z. Circulating microRNA-182 in plasma and its potential diagnostic and prognostic value for pancreatic cancer. Med. Oncol. 2014;31:225. doi: 10.1007/s12032-014-0225-z. PubMed DOI

Sarkar S., Dubaybo H., Ali S., Goncalves P., Kollepara S.L., Sethi S., Philip P.A., Li Y.W. Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am. J. Cancer Res. 2013;3:465–477. PubMed PMC

Xu Q.H., Li P., Chen X., Zong L., Jiang Z.D., Nan L.G., Lei J.J., Duan W.X., Zhang D., Li X.Q., et al. miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget. 2015;6:14153–14164. doi: 10.18632/oncotarget.3686. PubMed DOI PMC

Hao J., Zhang S., Zhou Y., Hu X., Shao C. MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 2011;585:207–213. doi: 10.1016/j.febslet.2010.11.039. PubMed DOI

Wilentz R.E., Iacobuzio-Donahue C.A., Argani P., McCarthy D.M., Parsons J.L., Yeo C.J., Kern S.E., Hruban R.H. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: Evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60:2002–2006. PubMed

Bloomston M., Frankel W.L., Petrocca F., Volinia S., Alder H., Hagan J.P., Liu C.G., Bhatt D., Taccioli C., Croce C.M. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297:1901–1908. doi: 10.1001/jama.297.17.1901. PubMed DOI

Ouyang H., Gore J., Deitz S., Korc M. microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene. 2014;33:4664–4674. doi: 10.1038/onc.2013.405. PubMed DOI PMC

Oliveira-Cunha M., Newman W.G., Siriwardena A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers. 2011;3:1513–1526. doi: 10.3390/cancers3021513. PubMed DOI PMC

Strobel O., Hank T., Hinz U., Bergmann F., Schneider L., Springfeld C., Jager D., Schirmacher P., Hackert T., Buchler M.W. Pancreatic Cancer Surgery: The New R-status Counts. Ann. Surg. 2017;265:565–573. doi: 10.1097/SLA.0000000000001731. PubMed DOI

Ji Q., Hao X., Zhang M., Tang W., Yang M., Li L., Xiang D., Desano J.T., Bommer G.T., Fan D., et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE. 2009;4:e6816. doi: 10.1371/journal.pone.0006816. PubMed DOI PMC

Dhayat S.A., Abdeen B., Kohler G., Senninger N., Haier J., Mardin W.A. MicroRNA-100 and microRNA-21 as markers of survival and chemotherapy response in pancreatic ductal adenocarcinoma UICC stage II. Clin. Epigenetics. 2015;7:132. doi: 10.1186/s13148-015-0166-1. PubMed DOI PMC

Giovannetti E., Funel N., Peters G.J., Del Chiaro M., Erozenci L.A., Vasile E., Leon L.G., Pollina L.E., Groen A., Falcone A., et al. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010;70:4528–4538. doi: 10.1158/0008-5472.CAN-09-4467. PubMed DOI

Hwang J.H., Voortman J., Giovannetti E., Steinberg S.M., Leon L.G., Kim Y.T., Funel N., Park J.K., Kim M.A., Kang G.H., et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS ONE. 2010;5:e10630. doi: 10.1371/journal.pone.0010630. PubMed DOI PMC

Jamieson N.B., Morran D.C., Morton J.P., Ali A., Dickson E.J., Carter C.R., Sansom O.J., Evans T.R., McKay C.J., Oien K.A. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2012;18:534–545. doi: 10.1158/1078-0432.CCR-11-0679. PubMed DOI

Ma M.Z., Kong X., Weng M.Z., Cheng K., Gong W., Quan Z.W., Peng C.H. Candidate microRNA biomarkers of pancreatic ductal adenocarcinoma: Meta-analysis, experimental validation and clinical significance. J. Exp. Clin. Cancer Res. 2013;32:71. doi: 10.1186/1756-9966-32-71. PubMed DOI PMC

Papaconstantinou I.G., Manta A., Gazouli M., Lyberopoulou A., Lykoudis P.M., Polymeneas G., Voros D. Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas. 2013;42:67–71. doi: 10.1097/MPA.0b013e3182592ba7. PubMed DOI

Wang P., Zhuang L., Zhang J., Fan J., Luo J., Chen H., Wang K., Liu L., Chen Z., Meng Z. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 2013;7:334–345. doi: 10.1016/j.molonc.2012.10.011. PubMed DOI PMC

Dillhoff M., Liu J., Frankel W., Croce C., Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 2008;12:2171–2176. doi: 10.1007/s11605-008-0584-x. PubMed DOI PMC

Kadera B.E., Li L., Toste P.A., Wu N., Adams C., Dawson D.W., Donahue T.R. MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS ONE. 2013;8:e71978. doi: 10.1371/journal.pone.0071978. PubMed DOI PMC

Khan K., Cunningham D., Peckitt C., Barton S., Tait D., Hawkins M., Watkins D., Starling N., Rao S., Begum R., et al. miR-21 expression and clinical outcome in locally advanced pancreatic cancer: Exploratory analysis of the pancreatic cancer Erbitux, radiotherapy and UFT (PERU) trial. Oncotarget. 2016;7:12672–12681. doi: 10.18632/oncotarget.7208. PubMed DOI PMC

Hu G.Y., Tao F., Wang W., Ji K.W. Prognostic value of microRNA-21 in pancreatic ductal adenocarcinoma: A meta-analysis. World J. Surg. Oncol. 2016;14:82. doi: 10.1186/s12957-016-0842-4. PubMed DOI PMC

Karasek P., Gablo N., Hlavsa J., Kiss I., Vychytilova-Faltejskova P., Hermanova M., Kala Z., Slaby O., Prochazka V. Pre-operative Plasma miR-21-5p Is a Sensitive Biomarker and Independent Prognostic Factor in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgical Resection. Cancer Genom. Proteom. 2018;15:321–327. doi: 10.21873/cgp.20090. PubMed DOI PMC

Kong X., Du Y., Wang G., Gao J., Gong Y., Li L., Zhang Z., Zhu J., Jing Q., Qin Y., et al. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig. Dis. Sci. 2011;56:602–609. doi: 10.1007/s10620-010-1285-3. PubMed DOI

Yan J.-W., Lin J.-S., He X.-X. The emerging role of miR-375 in cancer. Int. J. Cancer. 2014;135:1011–1018. doi: 10.1002/ijc.28563. PubMed DOI

Li D., Li X., Cao W., Qi Y., Yang X. Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 2014;116:723–729. doi: 10.1016/j.acthis.2013.12.013. PubMed DOI

Costello E., Greenhalf W., Neoptolemos J.P. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat. Rev. Gastroenterol. Hepatol. 2012;9:435–444. doi: 10.1038/nrgastro.2012.119. PubMed DOI

Giovannetti E., Erozenci A., Smit J., Danesi R., Peters G.J. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit. Rev. Oncol. Hematol. 2012;81:103–122. doi: 10.1016/j.critrevonc.2011.03.010. PubMed DOI

Du J., Gu J., Li J. Mechanisms of drug resistance of pancreatic ductal adenocarcinoma at different levels. Biosci. Rep. 2020;40 doi: 10.1042/BSR20200401. PubMed DOI PMC

Zahreddine H., Borden K. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013;4 doi: 10.3389/fphar.2013.00028. PubMed DOI PMC

Garofalo M., Croce C.M. MicroRNAs as therapeutic targets in chemoresistance. Drug Resist. Update. 2013;16:47–59. doi: 10.1016/j.drup.2013.05.001. PubMed DOI PMC

Gisel A., Valvano M., El Idrissi I.G., Nardulli P., Azzariti A., Carrieri A., Contino M., Colabufo N.A. miRNAs for the detection of multidrug resistance: Overview and perspectives. Molecules. 2014;19:5611–5623. doi: 10.3390/molecules19055611. PubMed DOI PMC

Meijer L.L., Garajova I., Caparello C., Le Large T.Y.S., Frampton A.E., Vasile E., Funel N., Kazemier G., Giovannetti E. Plasma miR-181a-5p Downregulation Predicts Response and Improved Survival After FOLFIRINOX in Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2020;271:1137–1147. doi: 10.1097/SLA.0000000000003084. PubMed DOI

Boni V., Bitarte N., Cristobal I., Zarate R., Rodriguez J., Maiello E., Garcia-Foncillas J., Bandres E. miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol. Cancer Ther. 2010;9:2265–2275. doi: 10.1158/1535-7163.MCT-10-0061. PubMed DOI

Paik W.H., Kim H.R., Park J.K., Song B.J., Lee S.H., Hwang J.H. Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res. 2013;33:1473–1481. PubMed

Wei X., Wang W., Wang L., Zhang Y., Zhang X., Chen M., Wang F., Yu J., Ma Y., Sun G. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med. 2016;5:693–702. doi: 10.1002/cam4.626. PubMed DOI PMC

Park J.K., Lee E.J., Esau C., Schmittgen T.D. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas. 2009;38:e190–e199. doi: 10.1097/MPA.0b013e3181ba82e1. PubMed DOI

Papatsirou M., Artemaki P.I., Scorilas A., Kontos C.K. The role of circular RNAs in therapy resistance of patients with solid tumors. Pers. Med. 2020;17:469–490. doi: 10.2217/pme-2020-0103. PubMed DOI

Krutzfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–689. doi: 10.1038/nature04303. PubMed DOI

Zhao Y., Zhao L., Ischenko I., Bao Q., Schwarz B., Niess H., Wang Y., Renner A., Mysliwietz J., Jauch K.W., et al. Antisense inhibition of microRNA-21 and microRNA-221 in tumor-initiating stem-like cells modulates tumorigenesis, metastasis, and chemotherapy resistance in pancreatic cancer. Target. Oncol. 2015;10:535–548. doi: 10.1007/s11523-015-0360-2. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Diabetes Mellitus in Pancreatic Cancer: A Distinct Approach to Older Subjects with New-Onset Diabetes Mellitus

. 2023 Jul 19 ; 15 (14) : . [epub] 20230719

Current Screening Strategies for Pancreatic Cancer

. 2022 Aug 23 ; 10 (9) : . [epub] 20220823

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...