MicroRNAs in Pancreatic Cancer: Involvement in Carcinogenesis and Potential Use for Diagnosis and Prognosis

. 2015 ; 2015 () : 892903. [epub] 20150419

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25960741

Pancreatic cancer is one of the most fatal malignancies with increasing incidence and high mortality. Possibilities for early diagnosis are limited and there is currently no efficient therapy. Molecular markers that have been introduced into diagnosis and treatment of other solid tumors remain unreciprocated in this disease. Recent discoveries have shown that certain microRNAs (miRNAs) take part in fundamental molecular processes associated with pancreatic cancer initiation and progression including cell cycle, DNA repair, apoptosis, invasivity, and metastasis. The mechanism involves both positive and negative regulation of expression of protooncogenes and tumor suppressor genes. Various miRNAs are expressed at different levels among normal pancreatic tissue, chronic pancreatitis, and pancreatic cancer and may therefore serve as a tool to differentiate chronic pancreatitis from early stages of cancer. Other miRNAs can indicate the probable course of the disease or determine the survival prognosis. In addition, there is a growing interest directed at the understanding of miRNA-induced molecular mechanisms. The possibility of intervention in the molecular mechanisms of miRNAs regulation could begin a new generation of pancreatic cancer therapies. This review summarizes the recent reports describing functions of miRNAs in cellular processes underlying pancreatic cancerogenesis and their utility in diagnosis, survival prognosis, and therapy.

Zobrazit více v PubMed

Jemal A., Murray T., Samuels A., Ghafoor A., Ward E., Thun M. J. Cancer statistics 2003. CA Cancer Journal for Clinicians. 2003;53(1):5–26. doi: 10.3322/canjclin.53.1.5. PubMed DOI

Hruban R. H., Adsay N. V., Albores-Saavedra J., et al. Pancreatic intraepithelial neoplasia (PanIN): a new nomenclature and classification system for pancreatic duct lesions. The American Journal of Surgical Pathology. 2001;25(5):579–586. doi: 10.1097/00000478-200105000-00003. PubMed DOI

Zavoral M., Minarikova P., Zavada F., Salek C., Minarik M. Molecular biology of pancreatic cancer. World Journal of Gastroenterology. 2011;17(24):2897–2908. doi: 10.3748/wjg.v17.i24.2897. PubMed DOI PMC

Lin L.-J., Asaoka Y., Tada M., et al. Integrated analysis of copy number alterations and loss of heterozygosity in human pancreatic cancer using a high-resolution, single nucleotide polymorphism array. Oncology. 2008;75(1-2):102–112. doi: 10.1159/000155813. PubMed DOI

Bakkevold K. E., Arnesjo B., Kambestad B. Carcinoma of the pancreas and papilla of Vater: presenting symptoms, signs, and diagnosis related to stage and tumour site. A prospective multicentre trial in 472 patients. Scandinavian Journal of Gastroenterology. 1992;27(4):317–325. doi: 10.3109/00365529209000081. PubMed DOI

Jiang X.-T., Tao H.-Q., Zou S.-C. Detection of serum tumor markers in the diagnosis and treatment of patients with pancreatic cancer. Hepatobiliary and Pancreatic Diseases International. 2004;3(3):464–468. PubMed

Tempero M. A., Behrman S., Ben-Josef E., et al. Pancreatic adenocarcinoma: Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network. 2005;3(5):598–626. PubMed

Burris H. A., III, Moore M. J., Andersen J., et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology. 1997;15(6):2403–2413. PubMed

Jemal A., Siegel R., Xu J., Ward E. Cancer statistics, 2010. CA: Cancer Journal for Clinicians. 2010;60(5):277–300. doi: 10.3322/caac.20073. PubMed DOI

Croce C. M. Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics. 2009;10(10):704–714. doi: 10.1038/nrg2634. PubMed DOI PMC

Negrini M., Nicoloso M. S., Calin G. A. MicroRNAs and cancer—new paradigms in molecular oncology. Current Opinion in Cell Biology. 2009;21(3):470–479. doi: 10.1016/j.ceb.2009.03.002. PubMed DOI

Dalmay T., Edwards D. R. MicroRNAs and the hallmarks of cancer. Oncogene. 2006;25(46):6170–6175. doi: 10.1038/sj.onc.1209911. PubMed DOI

Salek C., Benesova L., Zavoral M., et al. Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer. World Journal of Gastroenterology. 2007;13(27):3714–3720. PubMed PMC

Salek C., Minarikova P., Benesova L., et al. Mutation status of K-ras, p53 and allelic losses at 9p and 18q are not prognostic markers in patients with pancreatic cancer. Anticancer Research. 2009;29(5):1803–1810. PubMed

Ambros V., Bartel B., Bartel D. P., et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–279. doi: 10.1261/rna.2183803. PubMed DOI PMC

Bartel D. P. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Nana-Sinkam S. P., Fabbri M., Croce C. M. MicroRNAs in cancer: personalizing diagnosis and therapy. Annals of the New York Academy of Sciences. 2010;1210(1):25–33. doi: 10.1111/j.1749-6632.2010.05822.x. PubMed DOI

Park J.-K., Lee E. J., Esau C., Schmittgen T. D. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas. 2009;38(7):e190–e199. doi: 10.1097/MPA.0b013e3181ba82e1. PubMed DOI

Zhao C., Zhang J., Zhang S., et al. Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncology Reports. 2013;30(1):276–284. doi: 10.3892/or.2013.2420. PubMed DOI

Wu K., Hu G., He X., et al. MicroRNA-424-5p suppresses the expression of socs6 in pancreatic cancer. Pathology and Oncology Research. 2013;19(4):739–748. doi: 10.1007/s12253-013-9637-x. PubMed DOI

Bayle J., Letard S., Frank R., Dubreuil P., de Sepulveda P. Suppressor of cytokine signaling 6 associates with KIT and regulates KIT receptor signaling. The Journal of Biological Chemistry. 2004;279(13):12249–12259. doi: 10.1074/jbc.m313381200. PubMed DOI

Wang P., Chen L., Zhang J., et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. 2014;33(4):514–524. doi: 10.1038/onc.2012.598. PubMed DOI

Ridley A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology. 2006;16(10):522–529. doi: 10.1016/j.tcb.2006.08.006. PubMed DOI

Xu D., Wang Q., An Y., Xu L. MiR-203 regulates the proliferation, apoptosis and cell cycle progression of pancreatic cancer cells by targeting Survivin. Molecular Medicine Reports. 2013;8(2):379–384. doi: 10.3892/mmr.2013.1504. PubMed DOI

Hu Y., Ou Y., Wu K., Chen Y., Sun W. MiR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway. Tumour Biology. 2012;33(6):1863–1870. doi: 10.1007/s13277-012-0446-8. PubMed DOI

Jiao L. R., Frampton A. E., Jacob J., et al. Micrornas targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS ONE. 2012;7(2) doi: 10.1371/journal.pone.0032068.e32068 PubMed DOI PMC

Collins M. A., di Magliano M. P. Kras as a key oncogene and therapeutic target in pancreatic cancer. Frontiers in Physiology. 2014;4, article 407 doi: 10.3389/fphys.2013.00407. PubMed DOI PMC

Raver-Shapira N., Marciano E., Meiri E., et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell. 2007;26(5):731–743. doi: 10.1016/j.molcel.2007.05.017. PubMed DOI

Chang T.-C., Wentzel E. A., Kent O. A., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell. 2007;26(5):745–752. doi: 10.1016/j.molcel.2007.05.010. PubMed DOI PMC

Kent O. A., Mullendore M., Wentzel E. A., et al. A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biology and Therapy. 2009;8(21):2013–2024. doi: 10.4161/cbt.8.21.9685. PubMed DOI PMC

Habbe N., Koorstra J.-B. M., Mendell J. T., et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biology and Therapy. 2009;8(4):340–346. doi: 10.4161/cbt.8.4.7338. PubMed DOI PMC

Gironella M., Seux M., Xie M.-J., et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(41):16170–16175. doi: 10.1073/pnas.0703942104. PubMed DOI PMC

Farhana L., Dawson M. I., Murshed F., Das J. K., Rishi A. K., Fontana J. A. Upregulation of miR-150∗ and miR630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0061015.e61015 PubMed DOI PMC

Li A., Omura N., Hong S.-M., et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Research. 2010;70(13):5226–5237. doi: 10.1158/0008-5472.CAN-09-4227. PubMed DOI PMC

Aigner K., Dampier B., Descovich L., et al. The transcription factor ZEB1 (δEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 2007;26(49):6979–6988. doi: 10.1038/sj.onc.1210508. PubMed DOI PMC

Spaderna S., Schmalhofer O., Wahlbuhl M., et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research. 2008;68(2):537–544. doi: 10.1158/0008-5472.can-07-5682. PubMed DOI

Vandewalle C., Comijn J., de Craene B., et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Research. 2005;33(20):6566–6578. doi: 10.1093/nar/gki965. PubMed DOI PMC

Bracken C. P., Gregory P. A., Kolesnikoff N., et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research. 2008;68(19):7846–7854. doi: 10.1158/0008-5472.CAN-08-1942. PubMed DOI

Burk U., Schubert J., Wellner U., et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports. 2008;9(6):582–589. doi: 10.1038/embor.2008.74. PubMed DOI PMC

Gregory P. A., Bert A. G., Paterson E. L., et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology. 2008;10(5):593–601. doi: 10.1038/ncb1722. PubMed DOI

Park S.-M., Gaur A. B., Lengyel E., Peter M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development. 2008;22(7):894–907. doi: 10.1101/gad.1640608. PubMed DOI PMC

Korpal M., Lee E. S., Hu G., Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry. 2008;283(22):14910–14914. doi: 10.1074/jbc.c800074200. PubMed DOI PMC

Lu Y., Lu J., Li X., et al. MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer. 2014;14(1, article 85) doi: 10.1186/1471-2407-14-85. PubMed DOI PMC

Wellner U., Schubert J., Burk U. C., et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology. 2009;11(12):1487–1495. doi: 10.1038/ncb1998. PubMed DOI

Miao L., Xiong X., Lin Y., et al. miR-203 inhibits tumor cell migration and invasion via caveolin-1 in pancreatic cancer cells. Oncology Letters. 2014;7(3):658–662. doi: 10.3892/ol.2014.1807. PubMed DOI PMC

Liu A., Shao C., Jin G., et al. miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochemistry and Biophysics. 2014;69(2):341–346. doi: 10.1007/s12013-013-9805-3. PubMed DOI

Li Y., VandenBoom T. G., II, Wang Z., et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Research. 2010;70(4):1486–1495. doi: 10.1158/0008-5472.CAN-09-2792. PubMed DOI PMC

Weiss F. U., Marques I. J., Woltering J. M., et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology. 2009;137(6):2136.e7–2145.e7. doi: 10.1053/j.gastro.2009.08.065. PubMed DOI

Ohuchida K., Mizumoto K., Lin C., et al. MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Annals of Surgical Oncology. 2012;19(7):2394–2402. doi: 10.1245/s10434-012-2252-3. PubMed DOI

Pavlakis E., Papaconstantinou I., Gazouli M., et al. MicroRNA gene polymorphisms in pancreatic cancer. Pancreatology. 2013;13(3):273–278. doi: 10.1016/j.pan.2013.02.005. PubMed DOI

Zhu Z., Gao W., Qian Z., Miao Y. Genetic variation of miRNA sequence in pancreatic cancer. Acta Biochimica et Biophysica Sinica (Shanghai) 2009;41(5):407–413. doi: 10.1093/abbs/gmp023. PubMed DOI

Lowenfels A. B., Maisonneuve P., Lankisch P. G. Chronic pancreatitis and other risk factors for pancreatic cancer. Gastroenterology Clinics of North America. 1999;28(3):673–685. doi: 10.1016/S0889-8553(05)70080-7. PubMed DOI

Eun J. L., Gusev Y., Jiang J., et al. Expression profiling identifies microRNA signature in pancreatic cancer. International Journal of Cancer. 2007;120(5):1046–1054. doi: 10.1002/ijc.22394. PubMed DOI PMC

Dillhoff M., Liu J., Frankel W., Croce C., Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. Journal of Gastrointestinal Surgery. 2008;12(12):2171–2176. doi: 10.1007/s11605-008-0584-x. PubMed DOI PMC

Wang J., Chen J., Chang P., et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prevention Research. 2009;2(9):807–813. doi: 10.1158/1940-6207.CAPR-09-0094. PubMed DOI PMC

Bauer A. S., Keller A., Costello E., et al. Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PloS ONE. 2012;7(4)e34151 PubMed PMC

Liu R., Chen X., Du Y., et al. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clinical Chemistry. 2012;58(3):610–618. doi: 10.1373/clinchem.2011.172767. PubMed DOI

Kong X., Du Y., Wang G., et al. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR196a could be a potential marker for poor prognosis. Digestive Diseases and Sciences. 2011;56(2):602–609. doi: 10.1007/s10620-010-1285-3. PubMed DOI

Bloomston M., Frankel W. L., Petrocca F., et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. Journal of the American Medical Association. 2007;297(17):1901–1908. doi: 10.1001/jama.297.17.1901. PubMed DOI

Liu J., Gao J., Du Y., et al. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. International Journal of Cancer. 2012;131(3):683–691. doi: 10.1002/ijc.26422. PubMed DOI

Jamieson N. B., Morran D. C., Morton J. P., et al. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clinical Cancer Research. 2012;18(2):534–545. doi: 10.1158/1078-0432.CCR-11-0679. PubMed DOI

Preis M., Gardner T. B., Gordon S. R., et al. MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clinical Cancer Research. 2011;17(17):5812–5821. doi: 10.1158/1078-0432.CCR-11-0695. PubMed DOI PMC

Park J. K., Henry J. C., Jiang J., et al. MiR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochemical and Biophysical Research Communications. 2011;406(4):518–523. doi: 10.1016/j.bbrc.2011.02.065. PubMed DOI PMC

Zhang S., Hao J., Xie F., et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis. 2011;32(8):1183–1189. doi: 10.1093/carcin/bgr105. PubMed DOI

Yu S., Lu Z., Liu C., et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Research. 2010;70(14):6015–6025. doi: 10.1158/0008-5472.CAN-09-4531. PubMed DOI

Vogt M., Munding J., Grüner M., et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv. 2011;458(3):313–322. doi: 10.1007/s00428-010-1030-5. PubMed DOI

Torrisani J., Bournet B., Du Rieu M. C., et al. Let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Human Gene Therapy. 2009;20(8):831–844. doi: 10.1089/hum.2008.134. PubMed DOI

Ho A. S., Huang X., Cao H., et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Translational Oncology. 2010;3(2):109–113. doi: 10.1593/tlo.09256. PubMed DOI PMC

Wang W.-S., Liu L.-X., Li G.-P., et al. Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer. Cancer Prevention Research. 2013;6(4):331–338. doi: 10.1158/1940-6207.CAPR-12-0307. PubMed DOI

Greither T., Grochola L. F., Udelnow A., Lautenschläger C., Würl P., Taubert H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. International Journal of Cancer. 2010;126(1):73–80. doi: 10.1002/ijc.24687. PubMed DOI

Ikenaga N., Ohuchida K., Mizumoto K., et al. MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Annals of Surgical Oncology. 2010;17(12):3120–3128. doi: 10.1245/s10434-010-1188-8. PubMed DOI

Szafranska A. E., Davison T. S., John J., et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26(30):4442–4452. doi: 10.1038/sj.onc.1210228. PubMed DOI

Schultz N. A., Werner J., Willenbrock H., et al. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma. Modern Pathology. 2012;25(12):1609–1622. doi: 10.1038/modpathol.2012.122. PubMed DOI

Szafranska A. E., Doleshal M., Edmunds H. S., et al. Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clinical Chemistry. 2008;54(10):1716–1724. doi: 10.1373/clinchem.2008.109603. PubMed DOI PMC

Kawaguchi T., Komatsu S., Ichikawa D., et al. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. British Journal of Cancer. 2013;108(2):361–369. doi: 10.1038/bjc.2012.546. PubMed DOI PMC

Ryu J. K., Hong S. M., Karikari C. A., Hruban R. H., Goggins M. G., Maitra A. Aberrant microRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology. 2010;10(1):66–73. doi: 10.1159/000231984. PubMed DOI PMC

Yu J., Li A., Hong S.-M., Hruban R. H., Goggins M. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clinical Cancer Research. 2012;18(4):981–992. doi: 10.1158/1078-0432.CCR-11-2347. PubMed DOI PMC

Xue Y., Abou Tayoun A. N., Abo K. M., et al. MicroRNAs as diagnostic markers for pancreatic ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm. Cancer Genetics. 2013;206(6):217–221. doi: 10.1016/j.cancergen.2013.05.020. PubMed DOI

يu Rieu M. C., Torrisani J., Selves J., et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clinical Chemistry. 2010;56(4):603–612. doi: 10.1373/clinchem.2009.137364. PubMed DOI

Hanoun N., Delpu Y., Suriawinata A. A., et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clinical Chemistry. 2010;56(7):1107–1118. doi: 10.1373/clinchem.2010.144709. PubMed DOI

Weber J. A., Baxter D. H., Zhang S., et al. The microRNA spectrum in 12 body fluids. Clinical Chemistry. 2010;56(11):1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC

Brase J. C., Wuttig D., Kuner R., Sültmann H. Serum microRNAs as non-invasive biomarkers for cancer. Molecular Cancer. 2010;9, article 306 doi: 10.1186/1476-4598-9-306. PubMed DOI PMC

Mitchell P. S., Parkin R. K., Kroh E. M., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(30):10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC

Morimura R., Komatsu S., Ichikawa D., et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. British Journal of Cancer. 2011;105(11):1733–1740. doi: 10.1038/bjc.2011.453. PubMed DOI PMC

Schultz N. A., Dehlendorff C., Jensen B. V., et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. Journal of the American Medical Association. 2014;311(4):392–404. doi: 10.1001/jama.2013.284664. PubMed DOI

Ganepola G. A., Rutledge J. R., Suman P., Yiengpruksawan A., Chang D. H. Novel blood-based microRNA biomarker panel for early diagnosis of pancreatic cancer. World Journal of Gastrointestinal Oncology. 2014;6(1):22–33. PubMed PMC

Gao L., He S.-B., Li D.-C. Effects of miR-16 plus CA19-9 detections on pancreatic cancer diagnostic performance. Clinical Laboratory. 2014;60(1):73–77. doi: 10.7754/Clin.Lab.2013.121210. PubMed DOI

Humeau M., Torrisani J., Cordelier P. MiRNA in clinical practice: pancreatic cancer. Clinical Biochemistry. 2013;46(10-11):933–936. doi: 10.1016/j.clinbiochem.2013.03.019. PubMed DOI

Ali S., Saleh H., Sethi S., Sarkar F. H., Philip P. A. MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. British Journal of Cancer. 2012;107(8):1354–1360. doi: 10.1038/bjc.2012.383. PubMed DOI PMC

Ohuchida K., Mizumoto K., Kayashima T., et al. MicroRNA expression as a predictive marker for gemcitabine response after surgical resection of pancreatic cancer. Annals of Surgical Oncology. 2011;18(8):2381–2387. doi: 10.1245/s10434-011-1602-x. PubMed DOI PMC

Hwang J. H., Voortman J., Giovannetti E., et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS ONE. 2010;5(5) doi: 10.1371/journal.pone.0010630.e10630 PubMed DOI PMC

Giovannetti E., Funel N., Peters G. J., et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Research. 2010;70(11):4528–4538. doi: 10.1158/0008-5472.can-09-4467. PubMed DOI

Sicard F., Gayral M., Lulka H., Buscail L., Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Molecular Therapy. 2013;21(5):986–994. doi: 10.1038/mt.2013.35. PubMed DOI PMC

MacKenzie T. N., Mujumdar N., Banerjee S., et al. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Molecular Cancer Therapeutics. 2013;12(7):1266–1275. doi: 10.1158/1535-7163.mct-12-1231. PubMed DOI PMC

Ji Q., Hao X., Zhang M., et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE. 2009;4(8) doi: 10.1371/journal.pone.0006816.e6816 PubMed DOI PMC

Schultz N. A., Andersen K. K., Roslind A., Willenbrock H., Wøjdemann M., Johansen J. S. Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer—five microRNAs in a prognostic index. World Journal of Surgery. 2012;36(11):2699–2707. doi: 10.1007/s00268-012-1705-y. PubMed DOI

Singh S., Chitkara D., Kumar V., Behrman S. W., Mahato R. I. MiRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Letters. 2013;334(2):211–220. doi: 10.1016/j.canlet.2012.10.008. PubMed DOI

Nakata K., Ohuchida K., Mizumoto K., et al. MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery. 2011;150(5):916–922. doi: 10.1016/j.surg.2011.06.017. PubMed DOI

Papaconstantinou I. G., Manta A., Gazouli M., et al. Expression of micrornas in patients with pancreatic cancer and its prognostic significance. Pancreas. 2013;42(1):67–71. doi: 10.1097/mpa.0b013e3182592ba7. PubMed DOI

Yu J., Ohuchida K., Mizumoto K., et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Molecular Cancer. 2010;9, article 169 doi: 10.1186/1476-4598-9-169. PubMed DOI PMC

Zhu Z., Xu Y., Du J., Tan J., Jiao H. Expression of microRNA-218 in human pancreatic ductal adenocarcinoma and its correlation with tumor progression and patient survival. Journal of Surgical Oncology. 2014;109(2):89–94. doi: 10.1002/jso.23475. PubMed DOI

Meyer S. U., Pfaffl M. W., Ulbrich S. E. Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnology Letters. 2010;32(12):1777–1788. doi: 10.1007/s10529-010-0380-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...