Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer

. 2007 Jul 21 ; 13 (27) : 3714-20.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu hodnotící studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid17659731

AIM: To establish an optimum combination of molecular markers resulting in best overall diagnostic sensitivity and specificity for evaluation of suspicious pancreatic mass. METHODS: Endoscopic ultrasound (EUS)-guided fine needle aspiration cytology (FNA) was performed on 101 consecutive patients (63 males, 38 females, 60 +/- 12 years; 81 with subsequently diagnosed pancreatic cancer, 20 with chronic pancreatitis) with focal pancreatic mass. Samples were evaluated on-site by an experienced cytopathologist. DNA was extracted from Giemsa stained cells selected by laser microdissection and the presence of K-ras, p53 and p16 somatic mutations was tested by cycling-gradient capillary electrophoresis (CGCE) and single-strand conformation polymorphism (SSCP) techniques. In addition, allelic losses of tumor suppressor genes p16 (INK4, CDKN2A) and DPC4 (MADH4, SMAD4) were detected by monitoring the loss of heterozygosity (LOH) at 9p and 18q, respectively. RESULTS: Sensitivity and specificity of EUS-guided FNA were 75% and 85%, positive and negative predictive value reached 100%. The remaining 26% samples were assigned as inconclusive. Testing of molecular markers revealed sensitivity and specificity of 70% and 100% for K-ras mutations (P < 0.001), 24% and 90% for p53 mutations (NS), 13% and 100% for p16 mutations (NS), 85% and 64% for allelic losses at 9p (P < 0.001) and 78% and 57% for allelic losses at 18q (P < 0.05). When tests for different molecular markers were combined, the best results were obtained with K-ras + LOH at 9p (92% and 64%, P < 0.001), K-ras + LOH at 18q (92% and 57%, P < 0.001), and K-ras + LOH 9q + LOH 18q (96% and 43%, P < 0.001). When the molecular markers were used as complements to FNA cytology to evaluate inconclusive samples only, the overall sensitivity of cancer detection was 100% in all patients enrolled in the study. CONCLUSION: EUS-guided FNA cytology combined with screening of K-ras mutations and allelic losses of tumor suppressors p16 and DPC4 represents a very sensitive approach in screening for pancreatic malignancy. Molecular markers may find its use particularly in cases where FNA cytology has been inconclusive.

Zobrazit více v PubMed

Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L. SEER Cancer Statistics Review, 1973-1999, National Cancer Institute. Bethesda, Maryland. Available from: http: //seer.cancer.gov/csr/1973_1999/, 2002.

Gudjonsson B. Survival statistics gone awry: pancreatic cancer, a case in point. J Clin Gastroenterol. 2002;35:180–184. PubMed

Wong T, Howes N, Threadgold J, Smart HL, Lombard MG, Gilmore I, Sutton R, Greenhalf W, Ellis I, Neoptolemos JP. Molecular diagnosis of early pancreatic ductal adenocarcinoma in high-risk patients. Pancreatology. 2001;1:486–509. PubMed

Jimeno A, Hidalgo M. Molecular biomarkers: their increasing role in the diagnosis, characterization, and therapy guidance in pancreatic cancer. Mol Cancer Ther. 2006;5:787–796. PubMed

Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–2972. PubMed

Biankin AV, Kench JG, Dijkman FP, Biankin SA, Henshall SM. Molecular pathogenesis of precursor lesions of pancreatic ductal adenocarcinoma. Pathology. 2003;35:14–24. PubMed

Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53:549–554. PubMed

Hermanová M, Lukás Z, Nenutil R, Brázdil J, Kroupová I, Kren L, Pazourková M, Růzicka M, Díte P. Amplification and overexpression of HER-2/neu in invasive ductal carcinomas of the pancreas and pancreatic intraepithelial neoplasms and the relationship to the expression of p21(WAF1/CIP1) Neoplasma. 2004;51:77–83. PubMed

Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, Moskaluk CA, Hahn SA, Schwarte-Waldhoff I, Schmiegel W, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57:3126–3130. PubMed

Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–353. PubMed

Malumbres M, Pellicer A. RAS pathways to cell cycle control and cell transformation. Front Biosci. 1998;3:d887–d912. PubMed

Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49–53. PubMed

Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8:27–32. PubMed

Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–1754. PubMed PMC

Urban T, Ricci S, Grange JD, Lacave R, Boudghene F, Breittmayer F, Languille O, Roland J, Bernaudin JF. Detection of c-Ki-ras mutation by PCR/RFLP analysis and diagnosis of pancreatic adenocarcinomas. J Natl Cancer Inst. 1993;85:2008–2012. PubMed

Volmar KE, Vollmer RT, Jowell PS, Nelson RC, Xie HB. Pancreatic FNA in 1000 cases: a comparison of imaging modalities. Gastrointest Endosc. 2005;61:854–861. PubMed

Hruban RH, Petersen GM, Ha PK, Kern SE. Genetics of pancreatic cancer. From genes to families. Surg Oncol Clin N Am. 1998;7:1–23. PubMed

Costentin L, Pagès P, Bouisson M, Berthelémy P, Buscail L, Escourrou J, Pradayrol L, Vaysse N. Frequent deletions of tumor suppressor genes in pure pancreatic juice from patients with tumoral or nontumoral pancreatic diseases. Pancreatology. 2002;2:17–25. PubMed

Uehara H, Nakaizumi A, Tatsuta M, Baba M, Takenaka A, Uedo N, Sakai N, Yano H, Iishi H, Ohigashi H, et al. Diagnosis of pancreatic cancer by detecting telomerase activity in pancreatic juice: comparison with K-ras mutations. Am J Gastroenterol. 1999;94:2513–2518. PubMed

Zhou GX, Huang JF, Li ZS, Xu GM, Liu F, Zhang H. Detection of K-ras point mutation and telomerase activity during endoscopic retrograde cholangiopancreatography in diagnosis of pancreatic cancer. World J Gastroenterol. 2004;10:1337–1340. PubMed PMC

Van Laethem JL, Vertongen P, Deviere J, Van Rampelbergh J, Rickaert F, Cremer M, Robberecht P. Detection of c-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumours. Gut. 1995;36:781–787. PubMed PMC

Uemura T, Hibi K, Kaneko T, Takeda S, Inoue S, Okochi O, Nagasaka T, Nakao A. Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients. J Gastroenterol. 2004;39:56–60. PubMed

Trümper L, Menges M, Daus H, Köhler D, Reinhard JO, Sackmann M, Moser C, Sek A, Jacobs G, Zeitz M, et al. Low sensitivity of the ki-ras polymerase chain reaction for diagnosing pancreatic cancer from pancreatic juice and bile: a multicenter prospective trial. J Clin Oncol. 2002;20:4331–4337. PubMed

Wilentz RE, Chung CH, Sturm PD, Musler A, Sohn TA, Offerhaus GJ, Yeo CJ, Hruban RH, Slebos RJ. K-ras mutations in the duodenal fluid of patients with pancreatic carcinoma. Cancer. 1998;82:96–103. PubMed

Lu X, Xu T, Qian J, Wen X, Wu D. Detecting K-ras and p53 gene mutation from stool and pancreatic juice for diagnosis of early pancreatic cancer. Chin Med J (Engl) 2002;115:1632–1636. PubMed

Watanabe H, Yamaguchi Y, Ha A, Hu YX, Motoo Y, Okai T, Yoshimura T, Sawabu N. Quantitative determination of K-ras mutations in pancreatic juice for diagnosis of pancreatic cancer using hybridization protection assay. Pancreas. 1998;17:341–347. PubMed

Fukushima N, Walter KM, Uek T, Sato N, Matsubayashi H, Cameron JL, Hruban RH, Canto M, Yeo CJ, Goggins M. Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. Cancer Biol Ther. 2003;2:78–83. PubMed

Klump B, Hsieh CJ, Nehls O, Dette S, Holzmann K, Kiesslich R, Jung M, Sinn U, Ortner M, Porschen R, et al. Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. Br J Cancer. 2003;88:217–222. PubMed PMC

Wang Y, Yamaguchi Y, Watanabe H, Ohtsubo K, Motoo Y, Sawabu N. Detection of p53 gene mutations in the supernatant of pancreatic juice and plasma from patients with pancreatic carcinomas. Pancreas. 2004;28:13–19. PubMed

Fukushige S, Furukawa T, Satoh K, Sunamura M, Kobari M, Koizumi M, Horii A. Loss of chromosome 18q is an early event in pancreatic ductal tumorigenesis. Cancer Res. 1998;58:4222–4226. PubMed

Takahashi K, Yamao K, Okubo K, Sawaki A, Mizuno N, Ashida R, Koshikawa T, Ueyama Y, Kasugai K, Hase S, et al. Differential diagnosis of pancreatic cancer and focal pancreatitis by using EUS-guided FNA. Gastrointest Endosc. 2005;61:76–79. PubMed

Minarik M, Minarikova L, Bjørheim J, Ekstrøm PO. Cycling gradient capillary electrophoresis: a low-cost tool for high-throughput analysis of genetic variations. Electrophoresis. 2003;24:1716–1722. PubMed

Minarik M, Minarikova L, Hrabikova M, Minarikova P, Hrabal P, Zavoral M. Application of cycling gradient capillary electrophoresis to detection of APC, K-ras, and DCC point mutations in patients with sporadic colorectal tumors. Electrophoresis. 2004;25:1016–1021. PubMed

Kristensen AT, Bjørheim J, Ekstrøm PO. Detection of mutations in exon 8 of TP53 by temperature gradient 96-capillary array electrophoresis. Biotechniques. 2002;33:650–653. PubMed

Attri J, Srinivasan R, Majumdar S, Radotra BD, Wig J. Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma. BMC Gastroenterol. 2005;5:22. PubMed PMC

Gu K, Mes-Masson AM, Gauthier J, Saad F. Analysis of the p16 tumor suppressor gene in early-stage prostate cancer. Mol Carcinog. 1998;21:164–170. PubMed

Trkova M, Babjuk M, Duskova J, Benesova-Minarikova L, Soukup V, Mares J, Minarik M, Sedlacek Z. Analysis of genetic events in 17p13 and 9p21 regions supports predominant monoclonal origin of multifocal and recurrent bladder cancer. Cancer Lett. 2006;242:68–76. PubMed

Lassus H, Salovaara R, Aaltonen LA, Butzow R. Allelic analysis of serous ovarian carcinoma reveals two putative tumor suppressor loci at 18q22-q23 distal to SMAD4, SMAD2, and DCC. Am J Pathol. 2001;159:35–42. PubMed PMC

Dewitt J, Devereaux BM, Lehman GA, Sherman S, Imperiale TF. Comparison of endoscopic ultrasound and computed tomography for the preoperative evaluation of pancreatic cancer: a systematic review. Clin Gastroenterol Hepatol. 2006;4:717–725; quiz 664. PubMed

Chang KJ. State of the art lecture: endoscopic ultrasound (EUS) and FNA in pancreatico-biliary tumors. Endoscopy. 2006;38 Suppl 1:S56–S60. PubMed

Robins DB, Katz RL, Evans DB, Atkinson EN, Green L. Fine needle aspiration of the pancreas. In quest of accuracy. Acta Cytol. 1995;39:1–10. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...