Prognostic Role of Specific KRAS Mutations Detected in Aspiration and Liquid Biopsies from Patients with Pancreatic Cancer

. 2024 Oct 07 ; 15 (10) : . [epub] 20241007

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39457426

Grantová podpora
NT/13638-4 Ministry of Health of the Czech Republic

Background/Objectives: Although the overall survival prognosis of patients in advanced stages of pancreatic ductal adenocarcinoma (PDAC) is poor, typically ranging from days to months from diagnosis, there are rare cases of patients remaining in therapy for longer periods of time. Early estimations of survival prognosis would allow rational decisions on complex therapy interventions, including radical surgery and robust systemic therapy regimens. Understandably, there is great interest in finding prognostic markers that can be used for patient stratification. We determined the role of various KRAS mutations in the prognosis of PDAC patients using biopsy samples and circulating tumor DNA. Methods: A total of 118 patients with PDAC, clinically confirmed by endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNB), were included in the study. DNA was extracted from cytological slides following a standard cytology evaluation to ensure adequacy (viability and quantity) and to mark the tumor cell fraction. Circulating tumor DNA (ctDNA) was extracted from plasma samples of 45 patients in stage IV of the disease. KRAS mutations in exons 12 and 13 were detected by denaturing capillary electrophoresis (DCE), revealing a minute presence of mutation-specific heteroduplexes. Kaplan-Meier survival curves were calculated for individual KRAS mutation types. Results:KRAS mutations were detected in 90% of tissue (106/118) and 44% of plasma (20/45) samples. All mutations were localized at exon 2, codon 12, with G12D (GGT > GAT) being the most frequent at 44% (47/106) and 65% (13/20), followed by other types including G12V (GGT > GTT) at 31% (33/106) and 10% (2/20), G12R (GGT > CGT) at 17% (18/106) and 10% (2/20), G12C (GGT/TGT) at 5% (5/106) and 0% (0/20) and G12S (GGT/AGT) at 1% (1/106) and 5% (1/20) in tissue and plasma samples, respectively. Two patients had two mutations simultaneously (G12V + G12S and G12D + G12S) in both types of samples (2%, 2/106 and 10%, 2/20 in tissue and plasma samples, respectively). The median survival of patients with the G12D mutation in tissues was less than half that of other patients (median survival 101 days, 95% CI: 80-600 vs. 228 days, 95% CI: 184-602), with a statistically significant overall difference in survival (p = 0.0080, log-rank test), and furthermore it was less than that of all combined patients with other mutation types (101 days, 95% CI: 80-600 vs. 210 days, 95% CI: 161-602, p = 0.0166). For plasma samples, the survival of patients with this mutation was six times shorter than that of patients without the G12D mutation (27 days, 95% CI: 8-334 vs. 161 days, 95% CI: 107-536, p = 0.0200). In contrast, patients with detected KRAS G12R in the tissue survived nearly twice as long as other patients in the aggregate (286 days, 95% CI: 70-602 vs. 162 days, 95% CI: 122-600, p = 0.0374) or patients with other KRAS mutations (286 days, 95% CI: 70-602 vs. 137 days, 95% CI: 107-600, p = 0.0257). Conclusions: Differentiation of specific KRAS mutations in EUS-FNB and ctDNA (above all, the crucial G12D and G12R) is feasible in routine management of PDAC patients and imperative for assessment of prognosis.

Zobrazit více v PubMed

Ilic I., Ilic M. International patterns in incidence and mortality trends of pancreatic cancer in the last three decades: A joinpoint regression analysis. World J. Gastroenterol. 2022;28:4698–4715. doi: 10.3748/wjg.v28.i32.4698. PubMed DOI PMC

Whitley A., Kocián P., Nikov A., Krejčí D., Pehalová L., Blaha M., Dušek L., Gürlich R. Early-onset pancreatic cancer: A national cancer registry study from the Czech Republic and review of the literature. J. Hepatobiliary Pancreat. Sci. 2023;30:1324–1333. doi: 10.1002/jhbp.1359. PubMed DOI

Lewis R., Drebin J.A., Callery M.P., Fraker D., Kent T.S., Gates J., Vollmer C.M., Jr. A contemporary analysis of survival for resected pancreatic ductal adenocarcinoma. HPB. 2013;15:49–60. doi: 10.1111/j.1477-2574.2012.00571.x. PubMed DOI PMC

Luo J. KRAS mutation in pancreatic cancer. Semin. Oncol. 2021;48:10–18. doi: 10.1053/j.seminoncol.2021.02.003. PubMed DOI PMC

Goodsell D.S. The molecular perspective: The ras oncogene. Oncologist. 1999;4:263–264. doi: 10.1634/theoncologist.4-3-263. PubMed DOI

Downward J. Control of ras activation. Cancer Surv. 1996;27:87–100. PubMed

Boguski M.S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993;366:643–654. doi: 10.1038/366643a0. PubMed DOI

Castellano E., Downward J. RAS Interaction with PI3K, More Than Just Another Effector Pathway. Genes Cancer. 2011;2:261–274. doi: 10.1177/1947601911408079. PubMed DOI PMC

Castagnola P., Giaretti W. Mutant KRAS, chromosomal instability and prognosis in colorectal cancer. Biochim. Biophys. Acta. 2005;1756:115–125. doi: 10.1016/j.bbcan.2005.06.003. PubMed DOI

Salek C., Benesova L., Zavoral M., Nosek V., Kasperova L., Ryska M., Strnad R., Traboulsi E., Minarik M. Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer. World J. Gastroenterol. 2007;13:3714–3720. doi: 10.3748/wjg.v13.i27.3714. PubMed DOI PMC

Salek C., Minarikova P., Benesova L., Nosek V., Strnad R., Zavoral M., Minarik M. Mutation status of K-ras, p53 and allelic losses at 9p and 18q are not prognostic markers in patients with pancreatic cancer. Anticancer Res. 2009;29:1803–1810. PubMed

Benesova L., Halkova T., Bunganic B., Belsanova B., Zavoral M., Traboulsi E., Minarik M. Comparison of Native Aspirates and Cytological Smears Obtained by EUS-Guided Biopsies for Effective DNA/RNA Marker Testing in Pancreatic Cancer. Pathol. Oncol. Res. 2020;26:379–385. doi: 10.1007/s12253-018-0490-9. PubMed DOI

Schultz N.A., Roslind A., Christensen I.J., Horn T., Høgdall E., Pedersen L.N., Kruhøffer M., Burcharth F., Wøjdemann M., Johansen J.S. Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas. 2012;41:759–766. doi: 10.1097/MPA.0b013e31823cd9df. PubMed DOI

Oldani A., De Rosa C., Monni M., Terrone A., Miglio U., Garavoglia M., Boldorini R. KRAS mutation analysis in ductal carcinoma of the pancreas; prognostic implications in elderly patients. BMC Surg. 2013;13((Suppl. S1)):A31. doi: 10.1186/1471-2482-13-S1-A31. DOI

Bournet B., Muscari F., Buscail C., Assenat E., Barthet M., Hammel P., Selves J., Guimbaud R., Cordelier P., Buscail L. KRAS G12D Mutation Subtype Is A Prognostic Factor for Advanced Pancreatic Adenocarcinoma. Clin. Transl. Gastroenterol. 2016;7:e157. doi: 10.1038/ctg.2016.18. PubMed DOI PMC

Haas M., Ormanns S., Baechmann S., Remold A., Kruger S., Westphalen C.B., Siveke J.T., Wenzel P., Schlitter A.M., Esposito I., et al. Extended RAS analysis and correlation with overall survival in advanced pancreatic cancer. Br. J. Cancer. 2017;116:1462–1469. doi: 10.1038/bjc.2017.115. PubMed DOI PMC

Lee M.R., Woo S.M., Kim M.K., Han S.S., Park S.J., Lee W.J., Lee D.E., Choi S.I., Choi W., Yoon K.A., et al. Application of plasma circulating KRAS mutations as a predictive biomarker for targeted treatment of pancreatic cancer. Cancer Sci. 2024;115:1283–1295. doi: 10.1111/cas.16104. PubMed DOI PMC

Tao L.Y., Zhang L.F., Xiu D.R., Yuan C.H., Ma Z.L., Jiang B. Prognostic significance of K-ras mutations in pancreatic cancer: A meta-analysis. World J. Surg. Oncol. 2016;14:146. doi: 10.1186/s12957-016-0888-3. PubMed DOI PMC

Ihle N.T., Byers L.A., Kim E.S., Saintigny P., Lee J.J., Blumenschein G.R., Tsao A., Liu S., Larsen J.E., Wang J., et al. Effect of KRAS oncogene substitutions on protein behavior: Implications for signaling and clinical outcome. J. Natl. Cancer Inst. 2012;104:228–239. doi: 10.1093/jnci/djr523. PubMed DOI PMC

Eser S., Reiff N., Messer M., Seidler B., Gottschalk K., Dobler M., Hieber M., Arbeiter A., Klein S., Kong B., et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013;23:406–420. doi: 10.1016/j.ccr.2013.01.023. PubMed DOI

Dai M., Jahanzaib R., Liao Y., Yao F., Li J., Teng X., Chen K., Cheng W. Prognostic value of KRAS subtype in patients with PDAC undergoing radical resection. Front. Oncol. 2022;12:1074538. doi: 10.3389/fonc.2022.1074538. PubMed DOI PMC

Yousef A., Yousef M., Chowdhury S., Abdilleh K., Knafl M., Edelkamp P., Alfaro-Munoz K., Chacko R., Peterson J., Smaglo B.G., et al. Impact of KRAS mutations and co-mutations on clinical outcomes in pancreatic ductal adenocarcinoma. NPJ Precis. Oncol. 2024;8:27. doi: 10.1038/s41698-024-00505-0. PubMed DOI PMC

Benesova L., Belsanova B., Suchanek S., Kopeckova M., Minarikova P., Lipska L., Levy M., Visokai V., Zavoral M., Minarik M. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal. Biochem. 2013;433:227–234. doi: 10.1016/j.ab.2012.06.018. PubMed DOI

Pessoa L.S., Heringer M., Ferrer V.P. ctDNA as a cancer biomarker: A broad overview. Crit. Rev. Oncol. Hematol. 2020;155:103109. doi: 10.1016/j.critrevonc.2020.103109. PubMed DOI

Guven D.C., Sahin T.K., Yildirim H.C., Aktepe O.H., Dizdar O., Yalcin S. A systematic review and meta-analysis of the association between circulating tumor DNA (ctDNA) and prognosis in pancreatic cancer. Crit. Rev. Oncol. Hematol. 2021;168:103528. doi: 10.1016/j.critrevonc.2021.103528. PubMed DOI

Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC

COSMIC (Catalogue of Somatic Mutations in Cancer) [(accessed on 19 August 2024)]. Available online: http://cancer.sanger.ac.uk/cosmic/browse/tissue.

Stefanoudakis D., Frountzas M., Schizas D., Michalopoulos N.V., Drakaki A., Toutouzas K.G. Significance of TP53, CDKN2A, SMAD4 and KRAS in Pancreatic Cancer. Curr. Issues Mol. Biol. 2024;46:2827–2844. doi: 10.3390/cimb46040177. PubMed DOI PMC

Nusrat F., Khanna A., Jain A., Jiang W., Lavu H., Yeo C.J., Bowne W., Nevler A. The Clinical Implications of KRAS Mutations and Variant Allele Frequencies in Pancreatic Ductal Adenocarcinoma. J. Clin. Med. 2024;13:2103. doi: 10.3390/jcm13072103. PubMed DOI PMC

Andreyev H.J., Norman A.R., Cunningham D., Oates J.R., Clarke P.A. Kirsten ras mutations in patients with colorectal cancer: The multicenter “RASCAL” study. J. Natl. Cancer Inst. 1998;90:675–684. doi: 10.1093/jnci/90.9.675. PubMed DOI

Al-Mulla F., Milner-White E.J., Going J.J., Birnie G.D. Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression. J. Pathol. 1999;187:433–438. doi: 10.1002/(SICI)1096-9896(199903)187:4<433::AID-PATH273>3.0.CO;2-E. PubMed DOI

De Roock W., Jonker D.J., Di Nicolantonio F., Sartore-Bianchi A., Tu D., Siena S., Lamba S., Arena S., Frattini M., Piessevaux H., et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304:1812–1820. doi: 10.1001/jama.2010.1535. PubMed DOI

Garassino M.C., Marabese M., Rusconi P., Rulli E., Martelli O., Farina G., Scanni A., Broggini M. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann. Oncol. 2011;22:235–237. doi: 10.1093/annonc/mdq680. PubMed DOI

Tejpar S., Celik I., Schlichting M., Sartorius U., Bokemeyer C., Van Cutsem E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol. 2012;30:3570–3577. doi: 10.1200/JCO.2012.42.2592. PubMed DOI

Cox A.D., Fesik S.W., Kimmelman A.C., Luo J., Der C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov. 2014;13:828–851. doi: 10.1038/nrd4389. PubMed DOI PMC

McCormick F. Progress in targeting RAS with small molecule drugs. Biochem. J. 2019;476:365–374. doi: 10.1042/BCJ20170441. PubMed DOI

Hofmann M.H., Gerlach D., Misale S., Petronczki M., Kraut N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov. 2022;12:924–937. doi: 10.1158/2159-8290.CD-21-1331. PubMed DOI PMC

Hong D.S., Fakih M.G., Strickler J.H., Desai J., Durm G.A., Shapiro G.I., Falchook G.S., Price T.J., Sacher A., Denlinger C.S., et al. KRAS(G12C) Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020;383:1207–1217. doi: 10.1056/NEJMoa1917239. PubMed DOI PMC

Skoulidis F., Li B.T., Dy G.K., Price T.J., Falchook G.S., Wolf J., Italiano A., Schuler M., Borghaei H., Barlesi F., et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021;384:2371–2381. doi: 10.1056/NEJMoa2103695. PubMed DOI PMC

Bekaii-Saab T.S., Yaeger R., Spira A.I., Pelster M.S., Sabari J.K., Hafez N., Barve M., Velastegui K., Yan X., Shetty A., et al. Adagrasib in Advanced Solid Tumors Harboring a KRAS(G12C) Mutation. J. Clin. Oncol. 2023;41:4097–4106. doi: 10.1200/JCO.23.00434. PubMed DOI PMC

Fiala O., Pesek M., Finek J., Benesova L., Belsanova B., Minarik M. The dominant role of G12C over other KRAS mutation types in the negative prediction of efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Genet. 2013;206:26–31. doi: 10.1016/j.cancergen.2012.12.003. PubMed DOI

Ghimessy A., Radeczky P., Laszlo V., Hegedus B., Renyi-Vamos F., Fillinger J., Klepetko W., Lang C., Dome B., Megyesfalvi Z. Current therapy of KRAS-mutant lung cancer. Cancer Metastasis Rev. 2020;39:1159–1177. doi: 10.1007/s10555-020-09903-9. PubMed DOI PMC

McIntyre C.A., Lawrence S.A., Richards A.L., Chou J.F., Wong W., Capanu M., Berger M.F., Donoghue M.T.A., Yu K.H., Varghese A.M., et al. Alterations in driver genes are predictive of survival in patients with resected pancreatic ductal adenocarcinoma. Cancer. 2020;126:3939–3949. doi: 10.1002/cncr.33038. PubMed DOI PMC

Shen H., Lundy J., Strickland A.H., Harris M., Swan M., Desmond C., Jenkins B.J., Croagh D. KRAS G12D Mutation Subtype in Pancreatic Ductal Adenocarcinoma: Does It Influence Prognosis or Stage of Disease at Presentation? Cells. 2022;11:3175. doi: 10.3390/cells11193175. PubMed DOI PMC

Diehl A.C., Hannan L.M., Zhen D.B., Coveler A.L., King G., Cohen S.A., Harris W.P., Shankaran V., Wong K.M., Green S., et al. KRAS Mutation Variants and Co-occurring PI3K Pathway Alterations Impact Survival for Patients with Pancreatic Ductal Adenocarcinomas. Oncologist. 2022;27:1025–1033. doi: 10.1093/oncolo/oyac179. PubMed DOI PMC

Ogura T., Yamao K., Hara K., Mizuno N., Hijioka S., Imaoka H., Sawaki A., Niwa Y., Tajika M., Kondo S., et al. Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J. Gastroenterol. 2013;48:640–646. doi: 10.1007/s00535-012-0664-2. PubMed DOI

Earl J., Garcia-Nieto S., Martinez-Avila J.C., Montans J., Sanjuanbenito A., Rodríguez-Garrote M., Lisa E., Mendía E., Lobo E., Malats N., et al. Circulating tumor cells (Ctc) and kras mutant circulating free DNA (cfdna)detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer. 2015;15:797. doi: 10.1186/s12885-015-1779-7. PubMed DOI PMC

Kinugasa H., Nouso K., Miyahara K., Morimoto Y., Dohi C., Tsutsumi K., Kato H., Matsubara T., Okada H., Yamamoto K. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121:2271–2280. doi: 10.1002/cncr.29364. PubMed DOI

Singh N., Gupta S., Pandey R.M., Chauhan S.S., Saraya A. High levels of cell-free circulating nucleic acids in pancreatic cancer are associated with vascular encasement.; metastasis and poor survival. Cancer Investig. 2015;33:78–85. doi: 10.3109/07357907.2014.1001894. PubMed DOI

Hadano N., Murakami Y., Uemura K., Hashimoto Y., Kondo N., Nakagawa N., Sueda T., Hiyama E. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br. J. Cancer. 2016;115:59–65. doi: 10.1038/bjc.2016.175. PubMed DOI PMC

Cheng H., Liu C., Jiang J., Luo G., Lu Y., Jin K., Guo M., Zhang Z., Xu J., Liu L., et al. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int. J. Cancer. 2017;140:2344–2350. doi: 10.1002/ijc.30650. PubMed DOI

Perets R., Greenberg O., Shentzer T., Semenisty V., Epelbaum R., Bick T., Sarji S., Ben-Izhak O., Sabo E., Hershkovitz D. Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring. Oncologist. 2018;23:566–572. doi: 10.1634/theoncologist.2017-0467. PubMed DOI PMC

Groot V.P., Mosier S., Javed A.A., Teinor J.A., Gemenetzis G., Ding D., Haley L.M., Yu J., Burkhart R.A., Hasanain A., et al. Circulating Tumor DNA as a Clinical Test in Resected Pancreatic Cancer. Clin. Cancer Res. 2019;25:4973–4984. doi: 10.1158/1078-0432.CCR-19-0197. PubMed DOI PMC

Watanabe F., Suzuki K., Tamaki S., Abe I., Endo Y., Takayama Y., Ishikawa H., Kakizawa N., Saito M., Futsuhara K., et al. Longitudinal monitoring of KRAS-mutated circulating tumor DNA enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer. PLoS ONE. 2019;14:e0227366. doi: 10.1371/journal.pone.0227366. PubMed DOI PMC

Guo S., Shi X., Shen J., Gao S., Wang H., Shen S., Pan Y., Li B., Xu X., Shao Z., et al. Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br. J. Cancer. 2020;122:857–867. doi: 10.1038/s41416-019-0704-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...