Prognostic Role of Specific KRAS Mutations Detected in Aspiration and Liquid Biopsies from Patients with Pancreatic Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NT/13638-4
Ministry of Health of the Czech Republic
PubMed
39457426
PubMed Central
PMC11507146
DOI
10.3390/genes15101302
PII: genes15101302
Knihovny.cz E-zdroje
- Klíčová slova
- EUS-FNB, KRAS, ctDNA, liquid biopsy, mutation type, pancreatic cancer, prognosis,
- MeSH
- biopsie tenkou jehlou pod endosonografickou kontrolou * MeSH
- cirkulující nádorová DNA genetika krev MeSH
- dospělí MeSH
- duktální karcinom slinivky břišní * genetika patologie krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace * MeSH
- nádorové biomarkery genetika MeSH
- nádory slinivky břišní * genetika patologie mortalita MeSH
- prognóza MeSH
- protoonkogenní proteiny p21(ras) * genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- tekutá biopsie metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cirkulující nádorová DNA MeSH
- KRAS protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- protoonkogenní proteiny p21(ras) * MeSH
Background/Objectives: Although the overall survival prognosis of patients in advanced stages of pancreatic ductal adenocarcinoma (PDAC) is poor, typically ranging from days to months from diagnosis, there are rare cases of patients remaining in therapy for longer periods of time. Early estimations of survival prognosis would allow rational decisions on complex therapy interventions, including radical surgery and robust systemic therapy regimens. Understandably, there is great interest in finding prognostic markers that can be used for patient stratification. We determined the role of various KRAS mutations in the prognosis of PDAC patients using biopsy samples and circulating tumor DNA. Methods: A total of 118 patients with PDAC, clinically confirmed by endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNB), were included in the study. DNA was extracted from cytological slides following a standard cytology evaluation to ensure adequacy (viability and quantity) and to mark the tumor cell fraction. Circulating tumor DNA (ctDNA) was extracted from plasma samples of 45 patients in stage IV of the disease. KRAS mutations in exons 12 and 13 were detected by denaturing capillary electrophoresis (DCE), revealing a minute presence of mutation-specific heteroduplexes. Kaplan-Meier survival curves were calculated for individual KRAS mutation types. Results:KRAS mutations were detected in 90% of tissue (106/118) and 44% of plasma (20/45) samples. All mutations were localized at exon 2, codon 12, with G12D (GGT > GAT) being the most frequent at 44% (47/106) and 65% (13/20), followed by other types including G12V (GGT > GTT) at 31% (33/106) and 10% (2/20), G12R (GGT > CGT) at 17% (18/106) and 10% (2/20), G12C (GGT/TGT) at 5% (5/106) and 0% (0/20) and G12S (GGT/AGT) at 1% (1/106) and 5% (1/20) in tissue and plasma samples, respectively. Two patients had two mutations simultaneously (G12V + G12S and G12D + G12S) in both types of samples (2%, 2/106 and 10%, 2/20 in tissue and plasma samples, respectively). The median survival of patients with the G12D mutation in tissues was less than half that of other patients (median survival 101 days, 95% CI: 80-600 vs. 228 days, 95% CI: 184-602), with a statistically significant overall difference in survival (p = 0.0080, log-rank test), and furthermore it was less than that of all combined patients with other mutation types (101 days, 95% CI: 80-600 vs. 210 days, 95% CI: 161-602, p = 0.0166). For plasma samples, the survival of patients with this mutation was six times shorter than that of patients without the G12D mutation (27 days, 95% CI: 8-334 vs. 161 days, 95% CI: 107-536, p = 0.0200). In contrast, patients with detected KRAS G12R in the tissue survived nearly twice as long as other patients in the aggregate (286 days, 95% CI: 70-602 vs. 162 days, 95% CI: 122-600, p = 0.0374) or patients with other KRAS mutations (286 days, 95% CI: 70-602 vs. 137 days, 95% CI: 107-600, p = 0.0257). Conclusions: Differentiation of specific KRAS mutations in EUS-FNB and ctDNA (above all, the crucial G12D and G12R) is feasible in routine management of PDAC patients and imperative for assessment of prognosis.
Zobrazit více v PubMed
Ilic I., Ilic M. International patterns in incidence and mortality trends of pancreatic cancer in the last three decades: A joinpoint regression analysis. World J. Gastroenterol. 2022;28:4698–4715. doi: 10.3748/wjg.v28.i32.4698. PubMed DOI PMC
Whitley A., Kocián P., Nikov A., Krejčí D., Pehalová L., Blaha M., Dušek L., Gürlich R. Early-onset pancreatic cancer: A national cancer registry study from the Czech Republic and review of the literature. J. Hepatobiliary Pancreat. Sci. 2023;30:1324–1333. doi: 10.1002/jhbp.1359. PubMed DOI
Lewis R., Drebin J.A., Callery M.P., Fraker D., Kent T.S., Gates J., Vollmer C.M., Jr. A contemporary analysis of survival for resected pancreatic ductal adenocarcinoma. HPB. 2013;15:49–60. doi: 10.1111/j.1477-2574.2012.00571.x. PubMed DOI PMC
Luo J. KRAS mutation in pancreatic cancer. Semin. Oncol. 2021;48:10–18. doi: 10.1053/j.seminoncol.2021.02.003. PubMed DOI PMC
Goodsell D.S. The molecular perspective: The ras oncogene. Oncologist. 1999;4:263–264. doi: 10.1634/theoncologist.4-3-263. PubMed DOI
Downward J. Control of ras activation. Cancer Surv. 1996;27:87–100. PubMed
Boguski M.S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993;366:643–654. doi: 10.1038/366643a0. PubMed DOI
Castellano E., Downward J. RAS Interaction with PI3K, More Than Just Another Effector Pathway. Genes Cancer. 2011;2:261–274. doi: 10.1177/1947601911408079. PubMed DOI PMC
Castagnola P., Giaretti W. Mutant KRAS, chromosomal instability and prognosis in colorectal cancer. Biochim. Biophys. Acta. 2005;1756:115–125. doi: 10.1016/j.bbcan.2005.06.003. PubMed DOI
Salek C., Benesova L., Zavoral M., Nosek V., Kasperova L., Ryska M., Strnad R., Traboulsi E., Minarik M. Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer. World J. Gastroenterol. 2007;13:3714–3720. doi: 10.3748/wjg.v13.i27.3714. PubMed DOI PMC
Salek C., Minarikova P., Benesova L., Nosek V., Strnad R., Zavoral M., Minarik M. Mutation status of K-ras, p53 and allelic losses at 9p and 18q are not prognostic markers in patients with pancreatic cancer. Anticancer Res. 2009;29:1803–1810. PubMed
Benesova L., Halkova T., Bunganic B., Belsanova B., Zavoral M., Traboulsi E., Minarik M. Comparison of Native Aspirates and Cytological Smears Obtained by EUS-Guided Biopsies for Effective DNA/RNA Marker Testing in Pancreatic Cancer. Pathol. Oncol. Res. 2020;26:379–385. doi: 10.1007/s12253-018-0490-9. PubMed DOI
Schultz N.A., Roslind A., Christensen I.J., Horn T., Høgdall E., Pedersen L.N., Kruhøffer M., Burcharth F., Wøjdemann M., Johansen J.S. Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas. 2012;41:759–766. doi: 10.1097/MPA.0b013e31823cd9df. PubMed DOI
Oldani A., De Rosa C., Monni M., Terrone A., Miglio U., Garavoglia M., Boldorini R. KRAS mutation analysis in ductal carcinoma of the pancreas; prognostic implications in elderly patients. BMC Surg. 2013;13((Suppl. S1)):A31. doi: 10.1186/1471-2482-13-S1-A31. DOI
Bournet B., Muscari F., Buscail C., Assenat E., Barthet M., Hammel P., Selves J., Guimbaud R., Cordelier P., Buscail L. KRAS G12D Mutation Subtype Is A Prognostic Factor for Advanced Pancreatic Adenocarcinoma. Clin. Transl. Gastroenterol. 2016;7:e157. doi: 10.1038/ctg.2016.18. PubMed DOI PMC
Haas M., Ormanns S., Baechmann S., Remold A., Kruger S., Westphalen C.B., Siveke J.T., Wenzel P., Schlitter A.M., Esposito I., et al. Extended RAS analysis and correlation with overall survival in advanced pancreatic cancer. Br. J. Cancer. 2017;116:1462–1469. doi: 10.1038/bjc.2017.115. PubMed DOI PMC
Lee M.R., Woo S.M., Kim M.K., Han S.S., Park S.J., Lee W.J., Lee D.E., Choi S.I., Choi W., Yoon K.A., et al. Application of plasma circulating KRAS mutations as a predictive biomarker for targeted treatment of pancreatic cancer. Cancer Sci. 2024;115:1283–1295. doi: 10.1111/cas.16104. PubMed DOI PMC
Tao L.Y., Zhang L.F., Xiu D.R., Yuan C.H., Ma Z.L., Jiang B. Prognostic significance of K-ras mutations in pancreatic cancer: A meta-analysis. World J. Surg. Oncol. 2016;14:146. doi: 10.1186/s12957-016-0888-3. PubMed DOI PMC
Ihle N.T., Byers L.A., Kim E.S., Saintigny P., Lee J.J., Blumenschein G.R., Tsao A., Liu S., Larsen J.E., Wang J., et al. Effect of KRAS oncogene substitutions on protein behavior: Implications for signaling and clinical outcome. J. Natl. Cancer Inst. 2012;104:228–239. doi: 10.1093/jnci/djr523. PubMed DOI PMC
Eser S., Reiff N., Messer M., Seidler B., Gottschalk K., Dobler M., Hieber M., Arbeiter A., Klein S., Kong B., et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013;23:406–420. doi: 10.1016/j.ccr.2013.01.023. PubMed DOI
Dai M., Jahanzaib R., Liao Y., Yao F., Li J., Teng X., Chen K., Cheng W. Prognostic value of KRAS subtype in patients with PDAC undergoing radical resection. Front. Oncol. 2022;12:1074538. doi: 10.3389/fonc.2022.1074538. PubMed DOI PMC
Yousef A., Yousef M., Chowdhury S., Abdilleh K., Knafl M., Edelkamp P., Alfaro-Munoz K., Chacko R., Peterson J., Smaglo B.G., et al. Impact of KRAS mutations and co-mutations on clinical outcomes in pancreatic ductal adenocarcinoma. NPJ Precis. Oncol. 2024;8:27. doi: 10.1038/s41698-024-00505-0. PubMed DOI PMC
Benesova L., Belsanova B., Suchanek S., Kopeckova M., Minarikova P., Lipska L., Levy M., Visokai V., Zavoral M., Minarik M. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal. Biochem. 2013;433:227–234. doi: 10.1016/j.ab.2012.06.018. PubMed DOI
Pessoa L.S., Heringer M., Ferrer V.P. ctDNA as a cancer biomarker: A broad overview. Crit. Rev. Oncol. Hematol. 2020;155:103109. doi: 10.1016/j.critrevonc.2020.103109. PubMed DOI
Guven D.C., Sahin T.K., Yildirim H.C., Aktepe O.H., Dizdar O., Yalcin S. A systematic review and meta-analysis of the association between circulating tumor DNA (ctDNA) and prognosis in pancreatic cancer. Crit. Rev. Oncol. Hematol. 2021;168:103528. doi: 10.1016/j.critrevonc.2021.103528. PubMed DOI
Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC
COSMIC (Catalogue of Somatic Mutations in Cancer) [(accessed on 19 August 2024)]. Available online: http://cancer.sanger.ac.uk/cosmic/browse/tissue.
Stefanoudakis D., Frountzas M., Schizas D., Michalopoulos N.V., Drakaki A., Toutouzas K.G. Significance of TP53, CDKN2A, SMAD4 and KRAS in Pancreatic Cancer. Curr. Issues Mol. Biol. 2024;46:2827–2844. doi: 10.3390/cimb46040177. PubMed DOI PMC
Nusrat F., Khanna A., Jain A., Jiang W., Lavu H., Yeo C.J., Bowne W., Nevler A. The Clinical Implications of KRAS Mutations and Variant Allele Frequencies in Pancreatic Ductal Adenocarcinoma. J. Clin. Med. 2024;13:2103. doi: 10.3390/jcm13072103. PubMed DOI PMC
Andreyev H.J., Norman A.R., Cunningham D., Oates J.R., Clarke P.A. Kirsten ras mutations in patients with colorectal cancer: The multicenter “RASCAL” study. J. Natl. Cancer Inst. 1998;90:675–684. doi: 10.1093/jnci/90.9.675. PubMed DOI
Al-Mulla F., Milner-White E.J., Going J.J., Birnie G.D. Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression. J. Pathol. 1999;187:433–438. doi: 10.1002/(SICI)1096-9896(199903)187:4<433::AID-PATH273>3.0.CO;2-E. PubMed DOI
De Roock W., Jonker D.J., Di Nicolantonio F., Sartore-Bianchi A., Tu D., Siena S., Lamba S., Arena S., Frattini M., Piessevaux H., et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304:1812–1820. doi: 10.1001/jama.2010.1535. PubMed DOI
Garassino M.C., Marabese M., Rusconi P., Rulli E., Martelli O., Farina G., Scanni A., Broggini M. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann. Oncol. 2011;22:235–237. doi: 10.1093/annonc/mdq680. PubMed DOI
Tejpar S., Celik I., Schlichting M., Sartorius U., Bokemeyer C., Van Cutsem E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol. 2012;30:3570–3577. doi: 10.1200/JCO.2012.42.2592. PubMed DOI
Cox A.D., Fesik S.W., Kimmelman A.C., Luo J., Der C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov. 2014;13:828–851. doi: 10.1038/nrd4389. PubMed DOI PMC
McCormick F. Progress in targeting RAS with small molecule drugs. Biochem. J. 2019;476:365–374. doi: 10.1042/BCJ20170441. PubMed DOI
Hofmann M.H., Gerlach D., Misale S., Petronczki M., Kraut N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov. 2022;12:924–937. doi: 10.1158/2159-8290.CD-21-1331. PubMed DOI PMC
Hong D.S., Fakih M.G., Strickler J.H., Desai J., Durm G.A., Shapiro G.I., Falchook G.S., Price T.J., Sacher A., Denlinger C.S., et al. KRAS(G12C) Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020;383:1207–1217. doi: 10.1056/NEJMoa1917239. PubMed DOI PMC
Skoulidis F., Li B.T., Dy G.K., Price T.J., Falchook G.S., Wolf J., Italiano A., Schuler M., Borghaei H., Barlesi F., et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021;384:2371–2381. doi: 10.1056/NEJMoa2103695. PubMed DOI PMC
Bekaii-Saab T.S., Yaeger R., Spira A.I., Pelster M.S., Sabari J.K., Hafez N., Barve M., Velastegui K., Yan X., Shetty A., et al. Adagrasib in Advanced Solid Tumors Harboring a KRAS(G12C) Mutation. J. Clin. Oncol. 2023;41:4097–4106. doi: 10.1200/JCO.23.00434. PubMed DOI PMC
Fiala O., Pesek M., Finek J., Benesova L., Belsanova B., Minarik M. The dominant role of G12C over other KRAS mutation types in the negative prediction of efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Genet. 2013;206:26–31. doi: 10.1016/j.cancergen.2012.12.003. PubMed DOI
Ghimessy A., Radeczky P., Laszlo V., Hegedus B., Renyi-Vamos F., Fillinger J., Klepetko W., Lang C., Dome B., Megyesfalvi Z. Current therapy of KRAS-mutant lung cancer. Cancer Metastasis Rev. 2020;39:1159–1177. doi: 10.1007/s10555-020-09903-9. PubMed DOI PMC
McIntyre C.A., Lawrence S.A., Richards A.L., Chou J.F., Wong W., Capanu M., Berger M.F., Donoghue M.T.A., Yu K.H., Varghese A.M., et al. Alterations in driver genes are predictive of survival in patients with resected pancreatic ductal adenocarcinoma. Cancer. 2020;126:3939–3949. doi: 10.1002/cncr.33038. PubMed DOI PMC
Shen H., Lundy J., Strickland A.H., Harris M., Swan M., Desmond C., Jenkins B.J., Croagh D. KRAS G12D Mutation Subtype in Pancreatic Ductal Adenocarcinoma: Does It Influence Prognosis or Stage of Disease at Presentation? Cells. 2022;11:3175. doi: 10.3390/cells11193175. PubMed DOI PMC
Diehl A.C., Hannan L.M., Zhen D.B., Coveler A.L., King G., Cohen S.A., Harris W.P., Shankaran V., Wong K.M., Green S., et al. KRAS Mutation Variants and Co-occurring PI3K Pathway Alterations Impact Survival for Patients with Pancreatic Ductal Adenocarcinomas. Oncologist. 2022;27:1025–1033. doi: 10.1093/oncolo/oyac179. PubMed DOI PMC
Ogura T., Yamao K., Hara K., Mizuno N., Hijioka S., Imaoka H., Sawaki A., Niwa Y., Tajika M., Kondo S., et al. Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J. Gastroenterol. 2013;48:640–646. doi: 10.1007/s00535-012-0664-2. PubMed DOI
Earl J., Garcia-Nieto S., Martinez-Avila J.C., Montans J., Sanjuanbenito A., Rodríguez-Garrote M., Lisa E., Mendía E., Lobo E., Malats N., et al. Circulating tumor cells (Ctc) and kras mutant circulating free DNA (cfdna)detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer. 2015;15:797. doi: 10.1186/s12885-015-1779-7. PubMed DOI PMC
Kinugasa H., Nouso K., Miyahara K., Morimoto Y., Dohi C., Tsutsumi K., Kato H., Matsubara T., Okada H., Yamamoto K. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121:2271–2280. doi: 10.1002/cncr.29364. PubMed DOI
Singh N., Gupta S., Pandey R.M., Chauhan S.S., Saraya A. High levels of cell-free circulating nucleic acids in pancreatic cancer are associated with vascular encasement.; metastasis and poor survival. Cancer Investig. 2015;33:78–85. doi: 10.3109/07357907.2014.1001894. PubMed DOI
Hadano N., Murakami Y., Uemura K., Hashimoto Y., Kondo N., Nakagawa N., Sueda T., Hiyama E. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br. J. Cancer. 2016;115:59–65. doi: 10.1038/bjc.2016.175. PubMed DOI PMC
Cheng H., Liu C., Jiang J., Luo G., Lu Y., Jin K., Guo M., Zhang Z., Xu J., Liu L., et al. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int. J. Cancer. 2017;140:2344–2350. doi: 10.1002/ijc.30650. PubMed DOI
Perets R., Greenberg O., Shentzer T., Semenisty V., Epelbaum R., Bick T., Sarji S., Ben-Izhak O., Sabo E., Hershkovitz D. Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring. Oncologist. 2018;23:566–572. doi: 10.1634/theoncologist.2017-0467. PubMed DOI PMC
Groot V.P., Mosier S., Javed A.A., Teinor J.A., Gemenetzis G., Ding D., Haley L.M., Yu J., Burkhart R.A., Hasanain A., et al. Circulating Tumor DNA as a Clinical Test in Resected Pancreatic Cancer. Clin. Cancer Res. 2019;25:4973–4984. doi: 10.1158/1078-0432.CCR-19-0197. PubMed DOI PMC
Watanabe F., Suzuki K., Tamaki S., Abe I., Endo Y., Takayama Y., Ishikawa H., Kakizawa N., Saito M., Futsuhara K., et al. Longitudinal monitoring of KRAS-mutated circulating tumor DNA enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer. PLoS ONE. 2019;14:e0227366. doi: 10.1371/journal.pone.0227366. PubMed DOI PMC
Guo S., Shi X., Shen J., Gao S., Wang H., Shen S., Pan Y., Li B., Xu X., Shao Z., et al. Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br. J. Cancer. 2020;122:857–867. doi: 10.1038/s41416-019-0704-2. PubMed DOI PMC