Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
BB/P02730X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
G0701061
Medical Research Council - United Kingdom
PubMed
30588295
PubMed Central
PMC6298975
DOI
10.1038/s41377-018-0111-0
PII: 111
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system1-4. Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs)5-7. We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-μm-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca2+ responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.
Department of Engineering Science University of Oxford Parks Road Oxford OX1 3PJ UK
Department of Pharmacology University of Oxford Mansfield Road Oxford OX1 3QT UK
Institute of Scientific Instruments of the CAS Královopolská 147 612 64 Brno Czech Republic
Zobrazit více v PubMed
Ji N. The practical and fundamental limits of optical imaging in mammalian brains. Neuron. 2014;83:1242–1245. doi: 10.1016/j.neuron.2014.08.009. PubMed DOI
Andersen P, Morris R, Amaral D, Bliss T, O’ Keefe J. The Hippocampus Book. Oxford, New York: Oxford University Press; 2007.
Jones EG. The Thalamus. Cambridge: Cambridge University Press; 2007.
Misgeld T, Kerschensteiner M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 2006;7:449–463. doi: 10.1038/nrn1905. PubMed DOI
Čižmár T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express. 2011;19:18871–18884. doi: 10.1364/OE.19.018871. PubMed DOI
Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 2012;3:1027. doi: 10.1038/ncomms2024. PubMed DOI PMC
Plöschner M, Čižmár T. Compact multimode fiber beam-shaping system based on GPU accelerated digital holography. Opt. Lett. 2015;40:197–200. doi: 10.1364/OL.40.000197. PubMed DOI
Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 2010;13:1433–1440. doi: 10.1038/nn.2648. PubMed DOI PMC
Szabo V, Ventalon C, De Sars V, Bradley J, Emiliani V. Spatially selective holographic Photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron. 2014;84:1157–1169. doi: 10.1016/j.neuron.2014.11.005. PubMed DOI
Barretto RPJ, et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 2011;17:223–228. doi: 10.1038/nm.2292. PubMed DOI PMC
Resendez SL, et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 2016;11:566–597. doi: 10.1038/nprot.2016.021. PubMed DOI PMC
Bocarsly ME, et al. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express. 2015;6:4546–4556. doi: 10.1364/BOE.6.004546. PubMed DOI PMC
Xu HT, Pan F, Yang G, Gan WB. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 2007;10:549–551. doi: 10.1038/nn1883. PubMed DOI
Moshayedi P, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials. 2014;35:3919–3925. doi: 10.1016/j.biomaterials.2014.01.038. PubMed DOI
Popoff SM, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 2010;104:100601. doi: 10.1103/PhysRevLett.104.100601. PubMed DOI
Mahalati RN, Gu RY, Kahn JM. Resolution limits for imaging through multi-mode fiber. Opt. Express. 2013;21:1656–1668. doi: 10.1364/OE.21.001656. PubMed DOI
Kim G, et al. Deep-brain imaging via epi-fluorescence computational cannula microscopy. Sci. Rep. 2017;7:44791. doi: 10.1038/srep44791. PubMed DOI PMC
Feng G, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28:41–51. doi: 10.1016/S0896-6273(00)00084-2. PubMed DOI
Crowe SE, Ellis-Davies GCR. Longitudinal in vivo two-photon fluorescence imaging. J. Comp. Neurol. 2014;522:1708–1727. doi: 10.1002/cne.23502. PubMed DOI PMC
Ohayon S, Caravaca-Aguirre A, Piestun R, DiCarlo JJ. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express. 2018;9:1492–1509. doi: 10.1364/BOE.9.001492. PubMed DOI PMC
Plöschner M, Straka B, Dholakia K, Čižmár T. GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Opt. Express. 2014;22:2933–2947. doi: 10.1364/OE.22.002933. PubMed DOI
Conkey DB, Caravaca-Aguirre AM, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express. 2012;20:1733–1740. doi: 10.1364/OE.20.001733. PubMed DOI
Mitchell KJ, Turtaev S, Padgett MJ, Čižmár T, Phillips DB. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express. 2016;24:29269–29282. doi: 10.1364/OE.24.029269. PubMed DOI
Turtaev S, et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express. 2017;25:29874–29884. doi: 10.1364/OE.25.029874. PubMed DOI
Gigan S. Optical microscopy aims deep. Nat. Photon. 2017;11:14–16. doi: 10.1038/nphoton.2016.257. DOI
Loterie D, et al. Digital confocal microscopy through a multimode fiber. Opt. Express. 2015;23:23845–23858. doi: 10.1364/OE.23.023845. PubMed DOI
Morales-Delgado EE, Farahi S, Papadopoulos IN, Psaltis D, Moser C. Delivery of focused short pulses through a multimode fiber. Opt. Express. 2015;23:9109–9120. doi: 10.1364/OE.23.009109. PubMed DOI
Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 2017;18:685–701. doi: 10.1038/nrm.2017.71. PubMed DOI
"There's plenty of room at the bottom": deep brain imaging with holographic endo-microscopy
Suppression of the non-linear background in a multimode fibre CARS endoscope
Neurophotonic tools for microscopic measurements and manipulation: status report