Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber

. 2018 ; 7 () : 110. [epub] 20181219

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30588295

Grantová podpora
BB/P02730X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
G0701061 Medical Research Council - United Kingdom

Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system1-4. Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs)5-7. We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-μm-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca2+ responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.

Zobrazit více v PubMed

Ji N. The practical and fundamental limits of optical imaging in mammalian brains. Neuron. 2014;83:1242–1245. doi: 10.1016/j.neuron.2014.08.009. PubMed DOI

Andersen P, Morris R, Amaral D, Bliss T, O’ Keefe J. The Hippocampus Book. Oxford, New York: Oxford University Press; 2007.

Jones EG. The Thalamus. Cambridge: Cambridge University Press; 2007.

Misgeld T, Kerschensteiner M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 2006;7:449–463. doi: 10.1038/nrn1905. PubMed DOI

Čižmár T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express. 2011;19:18871–18884. doi: 10.1364/OE.19.018871. PubMed DOI

Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 2012;3:1027. doi: 10.1038/ncomms2024. PubMed DOI PMC

Plöschner M, Čižmár T. Compact multimode fiber beam-shaping system based on GPU accelerated digital holography. Opt. Lett. 2015;40:197–200. doi: 10.1364/OL.40.000197. PubMed DOI

Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 2010;13:1433–1440. doi: 10.1038/nn.2648. PubMed DOI PMC

Szabo V, Ventalon C, De Sars V, Bradley J, Emiliani V. Spatially selective holographic Photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron. 2014;84:1157–1169. doi: 10.1016/j.neuron.2014.11.005. PubMed DOI

Barretto RPJ, et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 2011;17:223–228. doi: 10.1038/nm.2292. PubMed DOI PMC

Resendez SL, et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 2016;11:566–597. doi: 10.1038/nprot.2016.021. PubMed DOI PMC

Bocarsly ME, et al. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express. 2015;6:4546–4556. doi: 10.1364/BOE.6.004546. PubMed DOI PMC

Xu HT, Pan F, Yang G, Gan WB. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 2007;10:549–551. doi: 10.1038/nn1883. PubMed DOI

Moshayedi P, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials. 2014;35:3919–3925. doi: 10.1016/j.biomaterials.2014.01.038. PubMed DOI

Popoff SM, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 2010;104:100601. doi: 10.1103/PhysRevLett.104.100601. PubMed DOI

Mahalati RN, Gu RY, Kahn JM. Resolution limits for imaging through multi-mode fiber. Opt. Express. 2013;21:1656–1668. doi: 10.1364/OE.21.001656. PubMed DOI

Kim G, et al. Deep-brain imaging via epi-fluorescence computational cannula microscopy. Sci. Rep. 2017;7:44791. doi: 10.1038/srep44791. PubMed DOI PMC

Feng G, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28:41–51. doi: 10.1016/S0896-6273(00)00084-2. PubMed DOI

Crowe SE, Ellis-Davies GCR. Longitudinal in vivo two-photon fluorescence imaging. J. Comp. Neurol. 2014;522:1708–1727. doi: 10.1002/cne.23502. PubMed DOI PMC

Ohayon S, Caravaca-Aguirre A, Piestun R, DiCarlo JJ. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express. 2018;9:1492–1509. doi: 10.1364/BOE.9.001492. PubMed DOI PMC

Plöschner M, Straka B, Dholakia K, Čižmár T. GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Opt. Express. 2014;22:2933–2947. doi: 10.1364/OE.22.002933. PubMed DOI

Conkey DB, Caravaca-Aguirre AM, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express. 2012;20:1733–1740. doi: 10.1364/OE.20.001733. PubMed DOI

Mitchell KJ, Turtaev S, Padgett MJ, Čižmár T, Phillips DB. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express. 2016;24:29269–29282. doi: 10.1364/OE.24.029269. PubMed DOI

Turtaev S, et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express. 2017;25:29874–29884. doi: 10.1364/OE.25.029874. PubMed DOI

Gigan S. Optical microscopy aims deep. Nat. Photon. 2017;11:14–16. doi: 10.1038/nphoton.2016.257. DOI

Loterie D, et al. Digital confocal microscopy through a multimode fiber. Opt. Express. 2015;23:23845–23858. doi: 10.1364/OE.23.023845. PubMed DOI

Morales-Delgado EE, Farahi S, Papadopoulos IN, Psaltis D, Moser C. Delivery of focused short pulses through a multimode fiber. Opt. Express. 2015;23:9109–9120. doi: 10.1364/OE.23.009109. PubMed DOI

Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 2017;18:685–701. doi: 10.1038/nrm.2017.71. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace