Neurophotonic tools for microscopic measurements and manipulation: status report
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
U01 NS103488
NINDS NIH HHS - United States
R01 NS108472
NINDS NIH HHS - United States
R01 NS108034
NINDS NIH HHS - United States
R01 NS121919
NINDS NIH HHS - United States
R01 NS109885
NINDS NIH HHS - United States
R01 NS115401
NINDS NIH HHS - United States
R01 NS098088
NINDS NIH HHS - United States
U19 NS107613
NINDS NIH HHS - United States
R21 EY030016
NEI NIH HHS - United States
U19 NS123719
NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
U01 MH117023
NIMH NIH HHS - United States
U01 NS099709
NINDS NIH HHS - United States
U01 NS099717
NINDS NIH HHS - United States
UF1 NS107680
NINDS NIH HHS - United States
R01 GM124038
NIGMS NIH HHS - United States
R01 NS091335
NINDS NIH HHS - United States
R01 NS117756
NINDS NIH HHS - United States
U19 NS104649
NINDS NIH HHS - United States
UF1 NS108213
NINDS NIH HHS - United States
U01 NS113273
NINDS NIH HHS - United States
DP2 MH129956
NIMH NIH HHS - United States
R44 MH117430
NIMH NIH HHS - United States
U19 NS123717
NINDS NIH HHS - United States
R01 NS094681
NINDS NIH HHS - United States
U01 NS094358
NINDS NIH HHS - United States
UF1 NS108177
NINDS NIH HHS - United States
U24 EB028941
NIBIB NIH HHS - United States
RF1 NS121095
NINDS NIH HHS - United States
U01 NS118300
NINDS NIH HHS - United States
F31 NS118949
NINDS NIH HHS - United States
U01 NS094296
NINDS NIH HHS - United States
R01 NS091230
NINDS NIH HHS - United States
K25 HL145092
NHLBI NIH HHS - United States
R01 NS120832
NINDS NIH HHS - United States
R01 NS121219
NINDS NIH HHS - United States
R01 EY031469
NEI NIH HHS - United States
U19 NS107464
NINDS NIH HHS - United States
F31 NS115421
NINDS NIH HHS - United States
R01 EB029747
NIBIB NIH HHS - United States
U01 CA236554
NCI NIH HHS - United States
R01 NS102213
NINDS NIH HHS - United States
RF1 NS110501
NINDS NIH HHS - United States
RF1 NS113251
NINDS NIH HHS - United States
R01 DA050159
NIDA NIH HHS - United States
U01 NS120820
NINDS NIH HHS - United States
R01 MH111424
NIMH NIH HHS - United States
U19 NS112959
NINDS NIH HHS - United States
U01 EB029823
NIBIB NIH HHS - United States
R01 NS102586
NINDS NIH HHS - United States
R01 MH111359
NIMH NIH HHS - United States
PubMed
35493335
PubMed Central
PMC9047450
DOI
10.1117/1.nph.9.s1.013001
PII: 22-0308
Knihovny.cz E-zdroje
- Klíčová slova
- blood flow, fluorescence, label free, molecular sensors, multimodal, optical imaging, optogenetics,
- Publikační typ
- časopisecké články MeSH
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Boston University Department of Biomedical Engineering Boston Massachusetts United States
Brown University Department of Neuroscience Providence Rhode Island United States
Carnegie Mellon University Department of Biological Sciences Pittsburgh Pennsylvania United States
Central Michigan University Department of Neuroscience Mount Pleasant Michigan United States
Columbia University Zuckerman Mind Brain Behavior Institute New York United States
Cornell University School of Applied and Engineering Physics Ithaca New York United States
Emory University Department of Pediatrics Atlanta Georgia United States
Harvard Medical School Department of Neurobiology Boston Massachusetts United States
Harvey Mudd College Department of Engineering Claremont California United States
Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech Republic
Interdisciplinary Institute for Neuroscience University of Bordeaux and CNRS Bordeaux France
Istituto Italiano di Tecnologia Center for Biomolecular Nanotechnologies Arnesano Italy
National Institute of Optics National Research Council Rome Italy
Rockefeller University Laboratory of Neurotechnology and Biophysics New York New York United States
Sorbonne University INSERM CNRS Institut de la Vision Paris France
The Rockefeller University The Kavli Neural Systems Institute New York New York United States
University of Alberta Department of Chemistry Edmonton Alberta Canada
University of California Berkeley Department of Physics Berkeley California United States
University of California San Diego Departments of Neurosciences La Jolla California United States
University of Campinas Institute of Physics Campinas São Paulo Brazil
University of Minnesota Department of Biomedical Engineering Minneapolis Minnesota United States
University of Porto Instituto de Investigação e Inovação em Saúde Porto Portugal
University of Tokyo Department of Chemistry Tokyo Japan
Weizmann Institute of Science Department of Brain Sciences Rehovot Israel
Zobrazit více v PubMed
Insel T. R., Landis S. C., Collins F. S., “Research priorities. The NIH BRAIN initiative,” Science 340(6133), 687–688 (2013).SCIEAS10.1126/science.1239276 PubMed DOI PMC
Devor A., et al. , “The challenge of connecting the dots in the B.R.A.I.N,” Neuron 80(2), 270–274 (2013).NERNET10.1016/j.neuron.2013.09.008 PubMed DOI PMC
Grillner S., et al. , “Worldwide initiatives to advance brain research,” Nat. Neurosci. 19(9), 1118–1122 (2016).NANEFN10.1038/nn.4371 PubMed DOI PMC
Rodriguez E. A., et al. , “The growing and glowing toolbox of fluorescent and photoactive proteins,” Trends Biochem. Sci. 42(2), 111–129 (2017).TBSCDB10.1016/j.tibs.2016.09.010 PubMed DOI PMC
Chung K., et al. , “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).10.1038/nature12107 PubMed DOI PMC
Chen B. C., et al. , “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).SCIEAS10.1126/science.1257998 PubMed DOI PMC
Hillman E. M. C., et al. , “Light-sheet microscopy in neuroscience,” Annu. Rev. Neurosci. 42, 295–313 (2019).ARNSD510.1146/annurev-neuro-070918-050357 PubMed DOI PMC
Hell S. W., “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).10.1038/nmeth.1291 PubMed DOI
Huang B., Bates M., Zhuang X. W., “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78, 993–1016 (2009).ARBOAW10.1146/annurev.biochem.77.061906.092014 PubMed DOI PMC
Tillberg P. W., et al. , “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34(9), 987–992 (2016).NABIF910.1038/nbt.3625 PubMed DOI PMC
Costantini I., et al. , “Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains,” Sci. Rep. 11, 8038 (2021).SRCEC310.1038/s41598-021-86092-7 PubMed DOI PMC
Mascaro A. L. A., et al. , “Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging,” Biomed. Opt. Express 6(11), 4483–4492 (2015).BOEICL10.1364/BOE.6.004483 PubMed DOI PMC
Min E., et al. , “Serial optical coherence microscopy for label-free volumetric histopathology,” Sci. Rep. 10, 6711 (2020).SRCEC310.1038/s41598-020-63460-3 PubMed DOI PMC
Schain A. J., Hill R. A., Grutzendler J., “Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy,” Nat. Med. 20(4), 443–449 (2014).10.1038/nm.3495 PubMed DOI PMC
Wang H., Zhu J. F., Akkin T., “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).NEIMEF10.1016/j.neuroimage.2013.09.063 PubMed DOI PMC
Leahy C., Radhakrishnan H., Srinivasan V. J., “Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast,” Biomed. Opt. Express 4(10), 1978–1990 (2013).BOEICL10.1364/BOE.4.001978 PubMed DOI PMC
Tsien R. Y., “The green fluorescent protein,” Annu. Rev. Biochem. 67, 509–544 (1998).ARBOAW10.1146/annurev.biochem.67.1.509 PubMed DOI
Lambert G. G., et al. , “Aequorea’s secrets revealed: new fluorescent proteins with unique properties for bioimaging and biosensing,” PLoS Biol. 18(11), e3000936 (2020).10.1371/journal.pbio.3000936 PubMed DOI PMC
Shaner N. C., et al. , “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).NABIF910.1038/nbt1037 PubMed DOI
Hoi H., et al. , “An engineered monomeric Zoanthus sp yellow fluorescent protein,” Chem. Biol. 20(10), 1296–1304 (2013).CBOLE210.1016/j.chembiol.2013.08.008 PubMed DOI
Shen Y., Lai T., Campbell R. E., “Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications,” Neurophotonics 2(3), 031203 (2015).10.1117/1.NPh.2.3.031203 PubMed DOI PMC
Shcherbakova D. M., et al. , “Near-infrared fluorescent proteins: multiplexing and optogenetics across scales,” Trends Biotechnol. 36(12), 1230–1243 (2018).TRBIDM10.1016/j.tibtech.2018.06.011 PubMed DOI PMC
Bindels D. S., et al. , “mScarlet: a bright monomeric red fluorescent protein for cellular imaging,” Nat. Methods 14(1), 53–56 (2017).10.1038/nmeth.4074 PubMed DOI
Eason M. G., Damry A. M., Chica R. A., “Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores,” Curr. Opin. Struct. Biol. 45, 91–99 (2017).COSBEF10.1016/j.sbi.2016.12.001 PubMed DOI
Grimm J. B., et al. , “A general method to improve fluorophores for live-cell and single-molecule microscopy,” Nat. Methods 12(3), 244–250 (2015).10.1038/nmeth.3256 PubMed DOI PMC
Dou J., et al. , “De novo design of a fluorescence-activating beta-barrel,” Nature 561(7724), 485–491 (2018).10.1038/s41586-018-0509-0 PubMed DOI PMC
Yeh H. W., et al. , “Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging,” Nat. Methods 14(10), 971–974 (2017).10.1038/nmeth.4400 PubMed DOI PMC
Iwano S., et al. , “Single-cell bioluminescence imaging of deep tissue in freely moving animals,” Science 359(6378), 935–939 (2018).SCIEAS10.1126/science.aaq1067 PubMed DOI
Helmstaedter M., et al. , “Reconstruction of an average cortical column in silico,” Brain Res. Rev. 55(2), 193–203 (2007).BRERD210.1016/j.brainresrev.2007.07.011 PubMed DOI
Erturk A., et al. , “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).10.1038/nprot.2012.119 PubMed DOI
Costantini I., et al. , “In-vivo and ex-vivo optical clearing methods for biological tissues: review,” Biomed. Opt. Express 10(10), 5251–5267 (2019).BOEICL10.1364/BOE.10.005251 PubMed DOI PMC
Ku T., et al. , “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34(9), 973–981 (2016).NABIF910.1038/nbt.3641 PubMed DOI PMC
Park Y. G., et al. , “Protection of tissue physicochemical properties using polyfunctional crosslinkers,” Nat. Biotechnol. 37(1), 73–83 (2019).NABIF910.1038/nbt.4281 PubMed DOI PMC
Murray E., et al. , “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163(6), 1500–1514 (2015).CELLB510.1016/j.cell.2015.11.025 PubMed DOI PMC
Choquet D., Sainlos M., Sibarita J. B., “Advanced imaging and labelling methods to decipher brain cell organization and function,” Nat. Rev. Neurosci. 22(4), 237–255 (2021).NRNAAN10.1038/s41583-021-00441-z PubMed DOI
Pfeiffer T., et al. , “Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo,” Elife 7, e34700 (2018).10.7554/eLife.34700 PubMed DOI PMC
Inavalli V., et al. , “A super-resolution platform for correlative live single-molecule imaging and STED microscopy,” Nat. Methods 16(12), 1263–1268 (2019).10.1038/s41592-019-0611-8 PubMed DOI
Tonnesen J., Inavalli V., Nagerl U. V., “Super-resolution imaging of the extracellular space in living brain tissue,” Cell 172(5), 1108–1121.e15 (2018).CELLB510.1016/j.cell.2018.02.007 PubMed DOI
Hell S. W., “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).SCIEAS10.1126/science.1137395 PubMed DOI
Furstenberg A., Heilemann M., “Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores,” Phys. Chem. Chem. Phys. 15(36), 14919–14930 (2013).PPCPFQ10.1039/c3cp52289j PubMed DOI
Xu K., Zhong G., Zhuang X., “Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons,” Science 339(6118), 452–456 (2013).SCIEAS10.1126/science.1232251 PubMed DOI PMC
Tang A. H., et al. , “A trans-synaptic nanocolumn aligns neurotransmitter release to receptors,” Nature 536(7615), 210–214 (2016).10.1038/nature19058 PubMed DOI PMC
Hrabetova S., et al. , “Unveiling the extracellular space of the brain: from super-resolved microstructure to in vivo function,” J. Neurosci. 38(44), 9355–9363 (2018).JNRSDS10.1523/JNEUROSCI.1664-18.2018 PubMed DOI PMC
Chen F., Tillberg P. W., Boyden E. S., “Expansion microscopy,” Science 347(6221), 543–548 (2015).SCIEAS10.1126/science.1260088 PubMed DOI PMC
Klimas A., Zhao Y., “Expansion microscopy: toward nanoscale imaging of a diverse range of biomolecules,” ACS Nano 14(7), 7689–7695 (2020).ANCAC310.1021/acsnano.0c04374 PubMed DOI PMC
Wassie A. T., Zhao Y., Boyden E. S., “Expansion microscopy: principles and uses in biological research,” Nat. Methods 16(1), 33–41 (2019).10.1038/s41592-018-0219-4 PubMed DOI PMC
Gallagher B. R., Zhao Y., “Expansion microscopy: a powerful nanoscale imaging tool for neuroscientists,” Neurobiol. Dis. 154, 105362 (2021).NUDIEM10.1016/j.nbd.2021.105362 PubMed DOI PMC
Zhao Y. X., et al. , “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 35(8), 757–764 (2017).NABIF910.1038/nbt.3892 PubMed DOI PMC
Bucur O., et al. , “Nanoscale imaging of clinical specimens using conventional and rapid-expansion pathology,” Nat. Protoc. 15(5), 1649–1672 (2020).10.1038/s41596-020-0300-1 PubMed DOI PMC
Chen F., et al. , “Nanoscale imaging of RNA with expansion microscopy,” Nat. Methods 13(8), 679–684 (2016).10.1038/nmeth.3899 PubMed DOI PMC
Chozinski T. J., et al. , “Expansion microscopy with conventional antibodies and fluorescent proteins,” Nat. Methods 13(6), 485–488 (2016).10.1038/nmeth.3833 PubMed DOI PMC
Truckenbrodt S., et al. , “X10 expansion microscopy enables 25-nm resolution on conventional microscopes,” Embo Rep. 19(9), e45836 (2018).10.15252/embr.201845836 PubMed DOI PMC
Chang J. B., et al. , “Iterative expansion microscopy,” Nat. Methods 14(6), 593–599 (2017).10.1038/nmeth.4261 PubMed DOI PMC
Jiang N., et al. , “Superresolution imaging of Drosophila tissues using expansion microscopy,” Mol. Biol. Cell 29(12), 1413–1421 (2018).MBCEEV10.1091/mbc.E17-10-0583 PubMed DOI PMC
Mosca T. J., et al. , “Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons,” Elife 6, e27347 (2017).10.7554/eLife.27347 PubMed DOI PMC
Yu C. C., et al. , “Expansion microscopy of C. elegans,” Elife 9, e46249 (2020).10.7554/eLife.46249 PubMed DOI PMC
Wang I. E., et al. , “Hedgehog signaling regulates gene expression in planarian glia,” Elife 5, e16996 (2016).10.7554/eLife.16996 PubMed DOI PMC
Freifeld L., et al. , “Expansion microscopy of zebrafish for neuroscience and developmental biology studies,” Proc. Natl. Acad. Sci. U. S. A. 114(50), E10799–E10808 (2017).10.1073/pnas.1706281114 PubMed DOI PMC
Gao R. X., et al. , “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), 245 (2019).SCIEAS10.1126/science.aau8302 PubMed DOI PMC
Crittenden J. R., Graybiel A. M., “Disease-associated changes in the striosome and matrix compartments of the dorsal striatum,” HBK Behav. Neurosci. 24, 783–802 (2016).10.1016/B978-0-12-802206-1.00039-8 DOI
Corner A. L., et al. , “Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction,” PLoS Biol. 18(1), e3000604 (2020).10.1371/journal.pbio.3000604 PubMed DOI PMC
Ortega J. A., et al. , “Nucleocytoplasmic proteomic analysis uncovers eRF1 and nonsense-mediated decay as modifiers of ALS/FTD C9orf72 toxicity,” Neuron 106(1), 90–107.e13 (2020).NERNET10.1016/j.neuron.2020.01.020 PubMed DOI PMC
Crittenden J. R., et al. , “Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons,” Proc. Natl. Acad. Sci. U. S. A. 113(40), 11318–11323 (2016).10.1073/pnas.1613337113 PubMed DOI PMC
Pesce L., et al. , “Exploring the human cerebral cortex using confocal microscopy,” Prog. Biophys. Mol. Biol. 168, 3–9 (2022).10.1016/j.pbiomolbio.2021.09.001 PubMed DOI PMC
Marchetti M., et al. , “Custom multiphoton/raman microscopy setup for imaging and characterization of biological samples,” Methods Protoc. 2(2), 51 (2019).10.3390/mps2020051 PubMed DOI PMC
Cicchi R., et al. , “From molecular structure to tissue architecture: collagen organization probed by SHG microscopy,” J. Biophotonics 6(2), 129–142 (2013).10.1002/jbio.201200092 PubMed DOI
Cox G., “Biological applications of second harmonic imaging,” Biophys. Rev. 3(3), 131–141 (2011).10.1007/s12551-011-0052-9 PubMed DOI PMC
Weigelin B., Bakker G. J., Friedl P., “Third harmonic generation microscopy of cells and tissue organization,” J.Cell Sci. 129(2), 245–255 (2016).10.1242/jcs.152272 PubMed DOI
Axer M., et al. , “High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging,” Front. Neuroinf. 5, 34 (2011).10.3389/fninf.2011.00034 PubMed DOI PMC
Stacho M., et al. , “A cortex-like canonical circuit in the avian forebrain,” Science 369(6511), eabc5534 (2020).SCIEAS10.1126/science.abc5534 PubMed DOI
Shaik T. A.-O., et al. , “Monitoring changes in biochemical and biomechanical properties of collagenous tissues using label-free and nondestructive optical imaging techniques,” Anal. Chem. 93(8), 3813–3821 (2021).ANCHAM10.1021/acs.analchem.0c04306 PubMed DOI
Wei M., et al. , “Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 116(14), 6608 (2019).10.1073/pnas.1813044116 PubMed DOI PMC
Silvestri L., et al. , “Universal autofocus for quantitative volumetric microscopy of whole mouse brains,” Nat. Methods 18(8), 953–958 (2021).10.1038/s41592-021-01208-1 PubMed DOI
Costantini I., et al. , “Large-scale, cell-resolution volumetric mapping allows layer-specific investigation of human brain cytoarchitecture,” Biomed. Opt. Express 12(6), 3684–3699 (2021).BOEICL10.1364/BOE.415555 PubMed DOI PMC
Huang D., et al. , “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).SCIEAS10.1126/science.1957169 PubMed DOI PMC
Kut C., et al. , “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).STMCBQ10.1126/scitranslmed.3010611 PubMed DOI PMC
Srinivasan V. J., et al. , “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).OPEXFF10.1364/OE.20.002220 PubMed DOI PMC
Ben Arous J., et al. , “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).JBOPFO10.1117/1.3650770 PubMed DOI
Marchand P. J., et al. , “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8(7), 3343–3359 (2017).BOEICL10.1364/BOE.8.003343 PubMed DOI PMC
Srinivasan V. J., et al. , “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLOS ONE 8(8), e71478 (2013).POLNCL10.1371/journal.pone.0071478 PubMed DOI PMC
Li F., et al. , “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1(2), 025002 (2014).10.1117/1.NPh.1.2.025002 PubMed DOI PMC
Bolmont T., et al. , “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32(42), 14548–14556 (2012).JNRSDS10.1523/JNEUROSCI.0925-12.2012 PubMed DOI PMC
Zhu J., et al. , “1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain,” Light Sci. Appl. 10(1), 145 (2021).10.1038/s41377-021-00586-7 PubMed DOI PMC
Assayag O., et al. , “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” NeuroImage: Clin. 2, 549–557 (2013).10.1016/j.nicl.2013.04.005 PubMed DOI PMC
Bizheva K., et al. , “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10(1), 011006 (2007).JBOPFO10.1117/1.1851513 PubMed DOI
Magnain C., et al. , “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).NEIMEF10.1016/j.neuroimage.2013.08.072 PubMed DOI PMC
Wang H., et al. , “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).NEIMEF10.1016/j.neuroimage.2011.07.005 PubMed DOI PMC
Wang H., et al. , “Cross-validation of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in human medulla oblongata,” Neuroimage 100, 395–404 (2014).NEIMEF10.1016/j.neuroimage.2014.06.032 PubMed DOI PMC
Lefebvre J., et al. , “Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI,” Neurophotonics 4(4), 041501 (2017).10.1117/1.NPh.4.4.041501 PubMed DOI PMC
Castonguay A., et al. , “Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain,” J. Biomed. Opt. 23(1), 016008 (2018).JBOPFO10.1117/1.JBO.23.1.016008 PubMed DOI
Liu C. J., et al. , “Visualizing and mapping the cerebellum with serial optical coherence scanner,” Neurophotonics 4(1), 011006 (2017).10.1117/1.NPh.4.1.011006 PubMed DOI PMC
Li T. Q., Liu C. J., Akkin T., “Contrast-enhanced serial optical coherence scanner with deep learning network reveals vasculature and white matter organization of mouse brain,” Neurophotonics 6(3), 035004 (2019).10.1117/1.NPh.6.3.035004 PubMed DOI PMC
Liu C. J., et al. , “Polarization-sensitive optical coherence tomography reveals gray matter and white matter atrophy in SCA1 mouse models,” Neurobiol. Dis. 116, 69–77 (2018).NUDIEM10.1016/j.nbd.2018.05.003 PubMed DOI
Inoue M., “Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo,” Neurosci. Res. 169, 2–8 (2021).10.1016/j.neures.2020.05.013 PubMed DOI
Barson D., et al. , “Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits,” Nat. Methods 17(1), 107–113 (2020).10.1038/s41592-019-0625-2 PubMed DOI PMC
Lohr C., et al. , “Using genetically encoded calcium indicators to study astrocyte physiology: a field guide,” Front. Cell Neurosci. 15, 690147 (2021).10.3389/fncel.2021.690147 PubMed DOI PMC
Cohen L. B., Salzberg B. M., Grinvald A., “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1, 171–182 (1978).ARNSD510.1146/annurev.ne.01.030178.001131 PubMed DOI
Abdelfattah A. S., et al. , “Bright and photostable chemigenetic indicators for extended in vivo voltage imaging,” Science 365(6454), 699–704 (2019).SCIEAS10.1126/science.aav6416 PubMed DOI
Piatkevich K. D., et al. , “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).10.1038/s41586-019-1641-1 PubMed DOI PMC
Villette V., et al. , “Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice,” Cell 179(7), 1590–1608.e23 (2019).CELLB510.1016/j.cell.2019.11.004 PubMed DOI PMC
Kannan M., et al. , “Fast, in vivo voltage imaging using a red fluorescent indicator,” Nat. Methods 15(12), 1108–1116 (2018).10.1038/s41592-018-0188-7 PubMed DOI PMC
Kulkarni R. U., et al. , “In vivo two-photon voltage imaging with sulfonated rhodamine dyes,” ACS Cent. Sci. 4(10), 1371–1378 (2018).10.1021/acscentsci.8b00422 PubMed DOI PMC
Pal A., Tian L., “Imaging voltage and brain chemistry with genetically encoded sensors and modulators,” Curr. Opin. Chem. Biol. 57, 166–176 (2020).COCBF410.1016/j.cbpa.2020.07.006 PubMed DOI
Kulkarni R. U., Miller E. W., “Voltage imaging: pitfalls and potential,” Biochemistry 56(39), 5171–5177 (2017).10.1021/acs.biochem.7b00490 PubMed DOI PMC
Andreoni A., Davis C. M. O., Tian L., “Measuring brain chemistry using genetically encoded fluorescent sensors,” Curr. Opin. Biomed. Eng. 12, 59–67 (2019).10.1016/j.cobme.2019.09.008 DOI
Lee S. J., et al. , “Cell-type-specific asynchronous modulation of PKA by dopamine in learning,” Nature 590(7846), 451–456 (2021).10.1038/s41586-020-03050-5 PubMed DOI PMC
Oe Y., et al. , “Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance,” Nat. Commun. 11, 471 (2020).NCAOBW10.1038/s41467-020-14378-x PubMed DOI PMC
Augustine V., et al. , “Temporally and spatially distinct thirst satiation signals,” Neuron 103(2), 242–249.e4 (2019).NERNET10.1016/j.neuron.2019.04.039 PubMed DOI PMC
Mohebi A., et al. , “Dissociable dopamine dynamics for learning and motivation,” Nature 570(7759), 65–70 (2019).10.1038/s41586-019-1235-y PubMed DOI PMC
de Jong J. W., et al. , “A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system,” Neuron 101(1), 133–151.e7 (2019).NERNET10.1016/j.neuron.2018.11.005 PubMed DOI PMC
Robinson J. E., et al. , “Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1,” Elife 8, e48983 (2019).10.7554/eLife.48983 PubMed DOI PMC
Dong H., et al. , “Dorsal striatum dopamine levels fluctuate across the sleep-wake cycle and respond to salient stimuli in mice,” Front. Neurosci. 13, 242 (2019).10.3389/fnins.2019.00242 PubMed DOI PMC
Dai B., et al. , “Dopamine release in nucleus accumbens core during social behaviors in mice,” 10.1101/2021.06.22.449478 (2021). PubMed DOI PMC
Gallo E. F., et al. , “Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning,” Mol. Physchiatry (2021).10.1038/s41380-021-01364-y PubMed DOI PMC
Kjaerby C., et al. , “Dynamic fluctuations of the locus coeruleus-norepinephrine system underlie sleep state transitions,” 10.1101/2020.09.01.274977 (2020). DOI
Sturgill J., et al. , “Basal forebrain-derived acetylcholine encodes valence-free reinforcement prediction error,” 10.1101/2020.02.17.953141 (2020). DOI
Lohani S., et al. , “Dual color mesoscopic imaging reveals spatiotemporally heterogeneous coordination of cholinergic and neocortical activity,” 10.1101/2020.12.09.418632 (2020). PubMed DOI PMC
Iadecola C., “The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease,” Neuron 96(1), 17–42 (2017).NERNET10.1016/j.neuron.2017.07.030 PubMed DOI PMC
Eroglu C., Barres B. A., “Regulation of synaptic connectivity by glia,” Nature 468(7321), 223–231 (2010).10.1038/nature09612 PubMed DOI PMC
Koveal D., Diaz-Garcia C. M., Yellen G., “Fluorescent biosensors for neuronal metabolism and the challenges of quantitation,” Curr. Opin. Neurobiol. 63, 111–121 (2020).COPUEN10.1016/j.conb.2020.02.011 PubMed DOI PMC
Barros L. F., et al. , “Current technical approaches to brain energy metabolism,” Glia 66(6), 1138–1159 (2018).GLIAEJ10.1002/glia.23248 PubMed DOI PMC
Yu X., Nagai J., Khakh B. S., “Improved tools to study astrocytes,” Nat. Rev. Neurosci. 21(3), 121–138 (2020).NRNAAN10.1038/s41583-020-0264-8 PubMed DOI
Wilson D. F., et al. , “Measuring oxygen in living tissue: intravascular, interstitial, and “tissue” oxygen measurements,” Adv. Exp. Med. Biol. 701, 53–59 (2011).AEMBAP10.1007/978-1-4419-7756-4_8 PubMed DOI
Finikova O. S., et al. , “Oxygen microscopy by two-photon-excited phosphorescence,” Chemphyschem 9(12), 1673–1679 (2008).CPCHFT10.1002/cphc.200800296 PubMed DOI PMC
Esipova T. V., et al. , “Oxyphor 2P: a high-performance probe for deep-tissue longitudinal oxygen imaging,” Cell Metab. 29(3), 736–744.e7 (2019).10.1016/j.cmet.2018.12.022 PubMed DOI PMC
Tung J. K., et al. , “Bioluminescence imaging in live cells and animals,” Neurophotonics 3(2), 025001 (2016).10.1117/1.NPh.3.2.025001 PubMed DOI PMC
Park S. Y., et al. , “Novel luciferase-opsin combinations for improved luminopsins,” J. Neurosci. Res. 98(3), 410–421 (2020).JNREDK10.1002/jnr.24152 PubMed DOI PMC
Crespo E. L., et al. , “Bioluminescent optogenetics 2.0: harnessing bioluminescence to activate photosensory proteins in vitro and in vivo,” J. Vis. Exp. 174, e62850 (2021).10.3791/62850 PubMed DOI
Medendorp W. E., et al. , “Selective postnatal excitation of neocortical pyramidal neurons results in distinctive behavioral and circuit deficits in adulthood,” Iscience 24(3), 102157 (2021).10.1016/j.isci.2021.102157 PubMed DOI PMC
Deisseroth K., “Optogenetics: 10 years of microbial opsins in neuroscience,” Nat. Neurosci. 18(9), 1213–1225 (2015).NANEFN10.1038/nn.4091 PubMed DOI PMC
Boyden E. S., et al. , “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).NANEFN10.1038/nn1525 PubMed DOI
Berridge M. J., Bootman M. D., Roderick H. L., “Calcium signalling: dynamics, homeostasis and remodelling,” Nat. Rev. Mol. Cell. Biol. 4(7), 517–529 (2003).NRMCBP10.1038/nrm1155 PubMed DOI
Larkum M. E., et al. , “Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons,” J. Physiol. 549(2), 471–488 (2003).JPHYA710.1113/jphysiol.2002.037614 PubMed DOI PMC
Ross W. N., et al. , “Synaptically activated ca2+ release from internal stores in CNS neurons,” Cell Mol. Neurobiol. 25(2), 283–295 (2005).10.1007/s10571-005-3060-0 PubMed DOI
Miller R. J., “Multiple calcium channels and neuronal function,” Science 235(4784), 46–52 (1987).SCIEAS10.1126/science.2432656 PubMed DOI
Bezanilla F., “Voltage-gated ion channels,” IEEE Trans. Nanobiosci. 4(1), 34–48 (2005).10.1109/TNB.2004.842463 PubMed DOI
Felix R., “Molecular regulation of voltage-gated Ca2+ channels,” J. Recept. Signal Transduct. Res. 25(2), 57–71 (2005).10.1081/RRS-200068102 PubMed DOI
Grynkiewicz G., Poenie M., Tsien R. Y., “A new generation of Ca-2+ indicators with greatly improved fluorescence properties,” J. Biol. Chem. 260(6), 3440–3450 (1985).JBCHA310.1016/S0021-9258(19)83641-4 PubMed DOI
Tsien R. Y., “A non-disruptive technique for loading calcium buffers and indicators into cells,” Nature 290(5806), 527–528 (1981).10.1038/290527a0 PubMed DOI
Levram V., Grinvald A., “Activity-dependent calcium transients in central-nervous-system myelinated axons revealed by the calcium indicator fura-2,” Biophys. J. 52(4), 571–576 (1987).BIOJAU10.1016/S0006-3495(87)83246-0 PubMed DOI PMC
Yuste R., Katz L. C., “Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters,” Neuron 6(3), 333–344 (1991).NERNET10.1016/0896-6273(91)90243-S PubMed DOI
Garaschuk O., Milos R. I., Konnerth A., “Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo,” Nat. Protoc. 1(1), 380–386 (2006).10.1038/nprot.2006.58 PubMed DOI
Garaschuk O., et al. , “Optical monitoring of brain function in vivo: from neurons to networks,” Pflugers Arch. 453(3), 385–396 (2006).10.1007/s00424-006-0150-x PubMed DOI
Kerr J. N., et al. , “Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex,” J. Neurosci. 27(48), 13316–13328 (2007).JNRSDS10.1523/JNEUROSCI.2210-07.2007 PubMed DOI PMC
Kerr J. N., Greenberg D., Helmchen F., “Imaging input and output of neocortical networks in vivo,” Proc. Natl. Acad. Sci. U. S. A. 102(39), 14063–14068 (2005).10.1073/pnas.0506029102 PubMed DOI PMC
Ohki K., et al. , “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433(7026), 597–603 (2005).10.1038/nature03274 PubMed DOI
Sato T. R., et al. , “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).10.1371/journal.pbio.0050189 PubMed DOI PMC
Sullivan M. R., et al. , “In vivo calcium imaging of circuit activity in cerebellar cortex,” J. Neurophysiol. 94(2), 1636–1644 (2005).JONEA410.1152/jn.01013.2004 PubMed DOI
Wilson J. M., et al. , “Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse,” J. Neurophysiol. 97(4), 3118–3125 (2007).JONEA410.1152/jn.01207.2006 PubMed DOI
Chaigneau E., et al. , “Two-photon imaging of capillary blood flow in olfactory bulb glomeruli,” Proc. Natl. Acad. Sci. U. S. A. 100(22), 13081–13086 (2003).10.1073/pnas.2133652100 PubMed DOI PMC
Chaigneau E., et al. , “The relationship between blood flow and neuronal activity in the rodent olfactory bulb,” J. Neurosci. 27(24), 6452–6460 (2007).JNRSDS10.1523/JNEUROSCI.3141-06.2007 PubMed DOI PMC
Nimmerjahn A., et al. , “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).10.1038/nmeth706 PubMed DOI
Wang X., et al. , “Astrocytic Ca(2+) signaling evoked by sensory stimulation in vivo,” Nat. Neurosci. 9(6), 816–823 (2006).NANEFN10.1038/nn1703 PubMed DOI
Hirase H., “A multi-photon window onto neuronal-glial-vascular communication,” Trends Neurosci. 28(5), 217–219 (2005).TNSCDR10.1016/j.tins.2005.03.002 PubMed DOI
Takano T., et al. , “Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease,” Ann. N. Y. Acad. Sci. 1097, 40–50 (2007).ANYAA910.1196/annals.1379.004 PubMed DOI
Tian G. F., et al. , “An astrocytic basis of epilepsy,” Nat. Med. 11(9), 973–981 (2005).10.1038/nm1277 PubMed DOI PMC
Miyawaki A., et al. , “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).10.1038/42264 PubMed DOI
Baird G. S., Zacharias D. A., Tsien R. Y., “Circular permutation and receptor insertion within green fluorescent proteins,” Proc. Natl. Acad. Sci. U. S. A. 96(20), 11241–11246 (1999).10.1073/pnas.96.20.11241 PubMed DOI PMC
Nagai T., et al. , “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U. S. A. 98(6), 3197–3202 (2001).10.1073/pnas.051636098 PubMed DOI PMC
Nakai J., Ohkura M., Imoto K., “A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein,” Nat. Biotechnol. 19(2), 137–141 (2001).NABIF910.1038/84397 PubMed DOI
Nasu Y., et al. , “Structure- and mechanism-guided design of single fluorescent protein-based biosensors,” Nat. Chem. Biol. 17(5), 509–518 (2021).10.1038/s41589-020-00718-x PubMed DOI
Tian L., et al. , “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).10.1038/nmeth.1398 PubMed DOI PMC
Dana H., et al. , “High-performance calcium sensors for imaging activity in neuronal populations and microcompartments,” Nat. Methods 16(7), 649–657 (2019).10.1038/s41592-019-0435-6 PubMed DOI
Inoue M., et al. , “Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics,” Cell 177(5), 1346–1360.e24 (2019).CELLB510.1016/j.cell.2019.04.007 PubMed DOI
Zarowny L., et al. , “Bright and high-performance genetically encoded Ca2+ indicator based on mneongreen fluorescent protein,” ACS Sens. 5(7), 1959–1968 (2020).10.1021/acssensors.0c00279 PubMed DOI
Subach O. M., et al. , “Novel genetically encoded bright positive calcium indicator NCaMP7 based on the mNeonGreen fluorescent protein,” Int. J. Mol. Sci. 21(5), 1644 (2020).10.3390/ijms21051644 PubMed DOI PMC
Zhao Y. X., et al. , “An expanded palette of genetically encoded Ca2+ indicators,” Science 333(6051), 1888–1891 (2011).SCIEAS10.1126/science.1208592 PubMed DOI PMC
Dana H., et al. , “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).10.7554/eLife.12727 PubMed DOI PMC
Shen Y., et al. , “A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578,” BMC Biol. 16(1), 9 (2018).10.1186/s12915-018-0480-0 PubMed DOI PMC
Qian Y., et al. , “Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging,” PLoS Biol. 18(11), e3000965 (2020).10.1371/journal.pbio.3000965 PubMed DOI PMC
Qian Y., et al. , “A genetically encoded near-infrared fluorescent calcium ion indicator,” Nat. Methods 16(2), 171–174 (2019).10.1038/s41592-018-0294-6 PubMed DOI PMC
Davila H. V., et al. , “A large change in axon fluorescence that provides a promising method for measuring membrane potential,” Nat. New Biol. 241(109), 159–160 (1973).10.1038/newbio241159a0 PubMed DOI
Peterka D. S., Takahashi H., Yuste R., “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).NERNET10.1016/j.neuron.2010.12.010 PubMed DOI PMC
Grinvald A., Hildesheim R., “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Rev. Neurosci. 5(11), 874–885 (2004).NRNAAN10.1038/nrn1536 PubMed DOI
de Silva A. P., et al. , “New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state,” Angew. Chem. Int. Ed. Engl. 34(16), 1728–1731 (1995).ACIEAY10.1002/anie.199517281 DOI
Li L.-S., “Fluorescence probes for membrane potentials based on mesoscopic electron transfer,” Nano Lett. 7(10), 2981–2986 (2007).NALEFD10.1021/nl071163p PubMed DOI
Miller E. W., et al. , “Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires,” Proc. Natl. Acad. Sci. U. S. A. 109(6), 2114–2119 (2012).10.1073/pnas.1120694109 PubMed DOI PMC
Walker A. S., et al. , “Optical spike detection and connectivity analysis with a far-red voltage-sensitive fluorophore reveals changes to network connectivity in development and disease,” Front. Neurosci. 15, 643859 (2021).10.3389/fnins.2021.643859 PubMed DOI PMC
Liu P., Miller E. W., “Electrophysiology, unplugged: imaging membrane potential with fluorescent indicators,” Acc. Chem. Res. 53(1), 11–19 (2020).ACHRE410.1021/acs.accounts.9b00514 PubMed DOI PMC
Milosevic M. M., et al. , “In vitro testing of voltage indicators: Archon1, ArcLightD, ASAP1, ASAP2s, ASAP3b, Bongwoori-Pos6, BeRST1, FlicR1, and Chi-VSFP-butterfly,” eNeuro 7(5), ENEURO.0060-20.2020 (2020).10.1523/ENEURO.0060-20.2020 PubMed DOI PMC
Kulkarni R. U., et al. , “Voltage-sensitive rhodol with enhanced two-photon brightness,” Proc. Natl. Acad. Sci. U. S. A. 114(11), 2813–2818 (2017).10.1073/pnas.1610791114 PubMed DOI PMC
Kazemipour A., et al. , “Kilohertz frame-rate two-photon tomography,” Nat. Methods 16(8), 778–786 (2019).10.1038/s41592-019-0493-9 PubMed DOI PMC
Fiala T., et al. , “Chemical targeting of voltage sensitive dyes to specific cells and molecules in the brain,” J. Am. Chem. Soc. 142(20), 9285–9301 (2020).JACSAT10.1021/jacs.0c00861 PubMed DOI PMC
Wakayama S., et al. , “Chemical labelling for visualizing native AMPA receptors in live neurons,” Nat. Commun. 8, 14850 (2017).NCAOBW10.1038/ncomms14850 PubMed DOI PMC
Cosco E. D., et al. , “Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection,” J. Am. Chem. Soc. 143(18), 6836–6846 (2021).JACSAT10.1021/jacs.0c11599 PubMed DOI PMC
Matikonda S. S., et al. , “Core remodeling leads to long wavelength fluoro-coumarins,” Chem. Sci. 11(28), 7302–7307 (2020).10.1039/D0SC02566F PubMed DOI PMC
Hinner M. J., Hübener G., Fromherz P., “Genetic targeting of individual cells with a voltage-sensitive dye through enzymatic activation of membrane binding,” Chembiochem 7(3), 495–505 (2006).CBCHFX10.1002/cbic.200500395 PubMed DOI
Ng D. N., Fromherz P., “Genetic targeting of a voltage-sensitive dye by enzymatic activation of phosphonooxymethyl-ammonium derivative,” ACS Chem. Biol. 6(5), 444–451 (2011).10.1021/cb100312d PubMed DOI
Liu P., et al. , “Fluorogenic targeting of voltage-sensitive dyes to neurons,” J. Am. Chem. Soc. 139(48), 17334–17340 (2017).JACSAT10.1021/jacs.7b07047 PubMed DOI PMC
Ortiz G., et al. , “Synthesis of sulfonated carbofluoresceins for voltage imaging,” J. Am. Chem. Soc. 141(16), 6631–6638 (2019).JACSAT10.1021/jacs.9b01261 PubMed DOI PMC
Grenier V., et al. , “Spying on neuronal membrane potential with genetically targetable voltage indicators,” J. Am. Chem. Soc. 141(3), 1349–1358 (2019).JACSAT10.1021/jacs.8b11997 PubMed DOI PMC
Sundukova M., et al. , “A chemogenetic approach for the optical monitoring of voltage in neurons,” Angew. Chem. Int. Ed. 58(8), 2341–2344 (2019).10.1002/anie.201812967 PubMed DOI PMC
Deal P. E., et al. , “Covalently tethered rhodamine voltage reporters for high speed functional imaging in brain tissue,” J. Am. Chem. Soc. 142(1), 614–622 (2020).JACSAT10.1021/jacs.9b12265 PubMed DOI PMC
Abdelfattah A. S., et al. , “A general approach to engineer positive-going eFRET voltage indicators,” Nat. Commun. 11(1), 3444 (2020).NCAOBW10.1038/s41467-020-17322-1 PubMed DOI PMC
Deo C., et al. , “The HaloTag as a general scaffold for far-red tunable chemigenetic indicators,” Nat. Chem. Biol. 17(6), 718–723 (2021).10.1038/s41589-021-00775-w PubMed DOI
Los G. V., et al. , “HaloTag: a novel protein labeling technology for cell imaging and protein analysis,” ACS Chem. Biol. 3(6), 373–382 (2008).10.1021/cb800025k PubMed DOI
Encell L. P., et al. , “Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands,” Curr. Chem. Genom. 6, 55–71 (2012).10.2174/1875397301206010055 PubMed DOI PMC
Grimm J. B., et al. , “A general method to fine-tune fluorophores for live-cell and in vivo imaging,” Nat. Methods 14(10), 987–994 (2017).10.1038/nmeth.4403 PubMed DOI PMC
Gong Y., et al. , “High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor,” Science 350(6266), 1361–1366 (2015).SCIEAS10.1126/science.aab0810 PubMed DOI PMC
Adam Y., et al. , “Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics,” Nature 569(7756), 413–417 (2019).10.1038/s41586-019-1166-7 PubMed DOI PMC
Fan L. Z., et al. , “All-optical electrophysiology reveals the role of lateral inhibition in sensory processing in cortical layer 1,” Cell 180(3), 521–535.e18 (2020).CELLB510.1016/j.cell.2020.01.001 PubMed DOI PMC
Lin M. Z., Schnitzer M. J., “Genetically encoded indicators of neuronal activity,” Nat. Neurosci. 19(9), 1142–1153 (2016).NANEFN10.1038/nn.4359 PubMed DOI PMC
Bando Y., et al. , “Genetic voltage indicators,” BMC Biol. 17(1), 71 (2019).10.1186/s12915-019-0682-0 PubMed DOI PMC
Xu Y., Zou P., Cohen A. E., “Voltage imaging with genetically encoded indicators,” Curr. Opin. Chem. Biol. 39, 1–10 (2017).COCBF410.1016/j.cbpa.2017.04.005 PubMed DOI PMC
Kannan M., Vasan G., Pieribone V. A., “Optimizing strategies for developing genetically encoded voltage indicators,” Front. Cell Neurosci. 13, 53 (2019).10.3389/fncel.2019.00053 PubMed DOI PMC
Beck C., Zhang D., Gong Y., “Enhanced genetically encoded voltage indicators advance their applications in neuroscience,” Curr. Opin. Biomed. Eng. 12, 111–117 (2019).10.1016/j.cobme.2019.10.010 PubMed DOI PMC
Knopfel T., Song C., “Optical voltage imaging in neurons: moving from technology development to practical tool,” Nat. Rev. Neurosci. 20(12), 719–727 (2019).NRNAAN10.1038/s41583-019-0231-4 PubMed DOI
Peng L. X., Xu Y. X., Zou P., “Genetically-encoded voltage indicators,” Chin. Chem. Lett. 28(10), 1925–1928 (2017).10.1016/j.cclet.2017.09.037 DOI
Ma Y., Bayguinov P. O., Jackson M. B., “Optical studies of action potential dynamics with hVOS probes,” Curr. Opin. Biomed. Eng. 12, 51–58 (2019).10.1016/j.cobme.2019.09.007 PubMed DOI PMC
Patriarchi T., et al. , “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).SCIEAS10.1126/science.aat4422 PubMed DOI PMC
Borden P. M., et al. , “A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies,” 10.1101/2020.02.07.939504 (2020). DOI
Lobas M. A., et al. , “A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP,” Nat. Commun. 10, 711 (2019).NCAOBW10.1038/s41467-019-08441-5 PubMed DOI PMC
Marvin J. S., et al. , “A genetically encoded fluorescent sensor for in vivo imaging of GABA,” Nat. Methods 16(8), 763–770 (2019).10.1038/s41592-019-0471-2 PubMed DOI
Shivange A. V., et al. , “Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors,” J. Gen. Physiol. 151(6), 738–757 (2019).JGPLAD10.1085/jgp.201812201 PubMed DOI PMC
Unger E. K., et al. , “Directed evolution of a selective and sensitive serotonin sensor via machine learning,” Cell 183(7), 1986–2002.e26 (2020).CELLB510.1016/j.cell.2020.11.040 PubMed DOI PMC
Hoffmann C., et al. , “A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells,” Nat. Methods 2(3), 171–176 (2005).10.1038/nmeth742 PubMed DOI
Jensen J. B., et al. , “Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels,” J. Gen. Physiol. 133(4), 347–359 (2009).JGPLAD10.1085/jgp.200810075 PubMed DOI PMC
Maier-Peuschel M., et al. , “A FRET-based M2 muscarinic receptor sensor to study the mechanisms of allosteric modulation,” N-S Arch. Pharmacol. 377, 15 (2008).
Vilardaga J. P., et al. , “Measurement of the millisecond activation switch of G protein-coupled receptors in living cells,” Nat. Biotechnol. 21(7), 807–812 (2003).NABIF910.1038/nbt838 PubMed DOI
Latorraca N. R., Venkatakrishnan A. J., Dror R. O., “GPCR dynamics: structures in motion,” Chem. Rev. 117(1), 139–155 (2017).CHREAY10.1021/acs.chemrev.6b00177 PubMed DOI
Dong A., et al. , “A fluorescent sensor for spatiotemporally resolved endocannabinoid dynamics in vitro and in vivo,” Nat. Biotechnol. (2021).10.1038/s41587-021-01074-4 PubMed DOI PMC
Sun F., et al. , “A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice,” Cell 174(2), 481–496.e19 (2018).CELLB510.1016/j.cell.2018.06.042 PubMed DOI PMC
Sun F. M., et al. , “Next-generation GRAB sensors for monitoring dopaminergic activity in vivo,” Nat. Methods 17(11), 1156–1166 (2020).10.1038/s41592-020-00981-9 PubMed DOI PMC
Feng J., et al. , “A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine,” Neuron 102(4), 745–761.e8 (2019).NERNET10.1016/j.neuron.2019.02.037 PubMed DOI PMC
Wan J. X., et al. , “A genetically encoded sensor for measuring serotonin dynamics,” Nat. Neurosci. 24(5), 746–752 (2021).NANEFN10.1038/s41593-021-00823-7 PubMed DOI PMC
Wu Z., et al. , “A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release,” 10.1101/2020.05.04.075564 (2020). DOI
Deuschle K., et al. , “Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering,” Protein Sci. 14(9), 2304–2314 (2005).PRCIEI10.1110/ps.051508105 PubMed DOI PMC
Takanaga H., Chaudhuri B., Frommer W. B., “GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor,” BBA-Biomembr. 1778(4), 1091–1099 (2008).10.1016/j.bbamem.2007.11.015 PubMed DOI PMC
Diaz-Garcia C. M., et al. , “Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor,” J. Neurosci. Res. 97(8), 946–960 (2019).JNREDK10.1002/jnr.24433 PubMed DOI PMC
Keller J. P., et al. , “In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor,” Cell Rep. 35(12), 109284 (2021).10.1016/j.celrep.2021.109284 PubMed DOI
Berg J., Hung Y. P., Yellen G., “A genetically encoded fluorescent reporter of ATP:ADP ratio,” Nat. Methods 6(2), 161–166 (2009).10.1038/nmeth.1288 PubMed DOI PMC
Imamura H., et al. , “Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators,” Proc. Natl. Acad. Sci. U. S. A. 106(37), 15651–15656 (2009).10.1073/pnas.0904764106 PubMed DOI PMC
Tantama M., et al. , “Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio,” Nat. Commun. 4, 2550 (2013).NCAOBW10.1038/ncomms3550 PubMed DOI PMC
Hung Y. P., et al. , “Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor,” Cell Metab. 14(4), 545–554 (2011).10.1016/j.cmet.2011.08.012 PubMed DOI PMC
Zhao Y., et al. , “SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents,” Cell Metab. 21(5), 777–789 (2015).10.1016/j.cmet.2015.04.009 PubMed DOI PMC
Tao R., et al. , “Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism,” Nat. Methods 14(7), 720–728 (2017).10.1038/nmeth.4306 PubMed DOI PMC
Sallin O., et al. , “Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides,” Elife 7, e32638 (2018).10.7554/eLife.32638 PubMed DOI PMC
San Martin A., et al. , “Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate,” PLOS ONE 9(1), e85780 (2014).POLNCL10.1371/journal.pone.0085780 PubMed DOI PMC
San Martin A., et al. , “A genetically encoded FRET lactate sensor and its use to detect the warburg effect in single cancer cells,” PLOS ONE 8(2), e57712 (2013).POLNCL10.1371/journal.pone.0057712 PubMed DOI PMC
Mächler P., et al. , “In vivo evidence for a lactate gradient from astrocytes to neurons,” Cell Metab. 23(1), 94–102 (2016).10.1016/j.cmet.2015.10.010 PubMed DOI
Diaz-Garcia C. M., et al. , “Neuronal stimulation triggers neuronal glycolysis and not lactate uptake,” Cell Metab. 26(2), 361–374 (2017).10.1016/j.cmet.2017.06.021 PubMed DOI PMC
Yellen G., Mongeon R., “Quantitative two-photon imaging of fluorescent biosensors,” Curr. Opin. Chem. Biol. 27, 24–30 (2015).COCBF410.1016/j.cbpa.2015.05.024 PubMed DOI PMC
Allen N. J., Lyons D. A., “Glia as architects of central nervous system formation and function,” Science 362(6411), 181–185 (2018).SCIEAS10.1126/science.aat0473 PubMed DOI PMC
Chung W. S., Allen N. J., Eroglu C., “Astrocytes control synapse formation, function, and elimination,” Cold Spring Harb. Perspect. Biol. 7(9), a020370 (2015).10.1101/cshperspect.a020370 PubMed DOI PMC
Ziemens D., et al. , “Heterogeneity of activity-induced sodium transients between astrocytes of the mouse hippocampus and neocortex: mechanisms and consequences,” J. Neurosci. 39(14), 2620–2634 (2019).JNRSDS10.1523/JNEUROSCI.2029-18.2019 PubMed DOI PMC
Shen Y., et al. , “Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration,” Commun. Biol. 2, 18 (2019).10.1038/s42003-018-0269-2 PubMed DOI PMC
Octeau J. C., et al. , “An optical neuron-astrocyte proximity assay at synaptic distance scales,” Neuron 98(1), 49–66.e9 (2018).NERNET10.1016/j.neuron.2018.03.003 PubMed DOI PMC
Bernardinelli Y., et al. , “Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability,” Curr. Biol. 24(15), 1679–1688 (2014).CUBLE210.1016/j.cub.2014.06.025 PubMed DOI
Murphy-Royal C., et al. , “Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission,” Nat. Neurosci. 18(2), 219–226 (2015).NANEFN10.1038/nn.3901 PubMed DOI
Araque A., et al. , “Gliotransmitters travel in time and space,” Neuron 81(4), 728–739 (2014).NERNET10.1016/j.neuron.2014.02.007 PubMed DOI PMC
Nagai J., et al. , “Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with ibetaARK,” Neuron 109(14), 2256–2274.e9 (2021).NERNET10.1016/j.neuron.2021.05.023 PubMed DOI PMC
Pestana F., et al. , “No longer underappreciated: the emerging concept of astrocyte heterogeneity in neuroscience,” Brain Sci 10(3), 168 (2020).10.3390/brainsci10030168 PubMed DOI PMC
Ben Haim L., Rowitch D. H., “Functional diversity of astrocytes in neural circuit regulation,” Nat. Rev. Neurosci. 18(1), 31–41 (2017).NRNAAN10.1038/nrn.2016.159 PubMed DOI
Batiuk M. Y., et al. , “Identification of region-specific astrocyte subtypes at single cell resolution,” Nat. Commun. 11, 1220 (2020).NCAOBW10.1038/s41467-019-14198-8 PubMed DOI PMC
Luo L., Callaway E. M., Svoboda K., “Genetic dissection of neural circuits: a decade of progress,” Neuron 98(2), 256–281 (2018).NERNET10.1016/j.neuron.2018.03.040 PubMed DOI PMC
Yu X., et al. , “Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior,” Neuron 99(6), 1170–1187.e9 (2018).NERNET10.1016/j.neuron.2018.08.015 PubMed DOI PMC
Mederos S., et al. , “Melanopsin for precise optogenetic activation of astrocyte-neuron networks,” Glia 67(5), 915–934 (2019).GLIAEJ10.1002/glia.23580 PubMed DOI
Octeau J. C., et al. , “Transient, consequential increases in extracellular potassium ions accompany Channelrhodopsin2 excitation,” Cell Rep. 27(8), 2249–2261.e7 (2019).10.1016/j.celrep.2019.04.078 PubMed DOI PMC
Depaoli M. R., et al. , “Live cell imaging of signaling and metabolic activities,” Pharmacol. Ther. 202, 98–119 (2019).10.1016/j.pharmthera.2019.06.003 PubMed DOI
Bi X., Beck C., Gong Y., “Genetically encoded fluorescent indicators for imaging brain chemistry,” Biosensors (Basel) 11(4), 116 (2021).10.3390/bios11040116 PubMed DOI PMC
Slezak M., et al. , “Distinct mechanisms for visual and motor-related astrocyte responses in mouse visual cortex,” Curr. Biol. 29(18), 3120–3127.e5 (2019).CUBLE210.1016/j.cub.2019.07.078 PubMed DOI PMC
Steinmetz N. A., et al. , “Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings,” Science 372(6539), eabf4588 (2021).SCIEAS10.1126/science.abf4588 PubMed DOI PMC
Vanderkooi J. M., et al. , “An optical method for measurement of dioxygen concentration based on quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).JBCHA310.1016/S0021-9258(18)45596-2 PubMed DOI
Rumsey W. L., Vanderkooi J. M., Wilson D. F., “Imaging of phosphorescence: a novel method for measuring the distribution of oxygen in perfused tissue,” Science 241, 1649–1651 (1988).SCIEAS10.1126/science.3420417 PubMed DOI
Vinogradov S. A., Wilson D. F., “Porphyrin-dendrimers as biological oxygen sensors,” in Designing Dendrimers, Capagna S., Ceroni P., Eds., Wiley, New York: (2012).
Lebedev A. Y., et al. , “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).AAMICK10.1021/am9001698 PubMed DOI PMC
Esipova T. V., et al. , “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem. 83(22), 8756–8765 (2011).ANCHAM10.1021/ac2022234 PubMed DOI PMC
Sakadzic S., et al. , “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).10.1038/nmeth.1490 PubMed DOI PMC
Lecoq J., et al. , “Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels,” Nat. Med. 17(7), 893–898 (2011).10.1038/nm.2394 PubMed DOI PMC
Devor A., et al. , “"Overshoot” of O(2) is required to maintain baseline tissue oxygenation at locations distal to blood vessels,” J. Neurosci. 31(38), 13676–13681 (2011).JNRSDS10.1523/JNEUROSCI.1968-11.2011 PubMed DOI PMC
Kazmi S. M. S., et al. , “Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion,” Biomed. Opt. Express 4(7), 1061–1073 (2013).BOEICL10.1364/BOE.4.001061 PubMed DOI PMC
Sakadzic S., et al. , “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).NCAOBW10.1038/ncomms6734 PubMed DOI PMC
Parpaleix A., Goulam Houssen Y., Charpak S., “Imaging local neuronal activity by monitoring PO(2) transients in capillaries,” Nat. Med. 19(2), 241–246 (2013).10.1038/nm.3059 PubMed DOI
Lyons D. G., et al. , “Mapping oxygen concentration in the awake mouse brain,” Elife 5, e12024 (2016).10.7554/eLife.12024 PubMed DOI PMC
Brinas R. P., et al. , “Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna,” J. Am. Chem. Soc. 127(33), 11851–11862 (2005).JACSAT10.1021/ja052947c PubMed DOI PMC
Roussakis E., et al. , “Two-photon antenna-core oxygen probe with enhanced performance,” Anal. Chem. 86, 5937−5945 (2014).ANCHAM10.1021/ac501028m PubMed DOI PMC
Esipova T. V., et al. , “Two-photon absorbing phosphorescent metalloporphyrins: effects of PubMed DOI PMC
Esipova T. V., et al. , “Stabilizing g-states in centrosymmetric tetrapyrroles: two-photon-absorbing porphyrins with bright phosphorescence,” J. Phys. Chem. A 121(33), 6243–6255 (2017).JPCAFH10.1021/acs.jpca.7b04333 PubMed DOI
Cao X., et al. , “Quantification of oxygen depletion during FLASH irradiation in vitro and in vivo,” Int. J. Radiat. Oncol. Biol. Phys. (RED J.) 111(1), 240–248 (2021).10.1016/j.ijrobp.2021.03.056 PubMed DOI PMC
Berglund K., et al. , “Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons,” PLOS ONE 8(3), e59759 (2013).POLNCL10.1371/journal.pone.0059759 PubMed DOI PMC
Berglund K., et al. , “Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation,” Proc. Natl. Acad. Sci. U. S. A. 113(3), E358–E367 (2016).10.1073/pnas.1510899113 PubMed DOI PMC
Naim N., et al. , “Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis,” J. Biol. Chem. 294(4), 1095–1103 (2019).JBCHA310.1074/jbc.AC118.004905 PubMed DOI PMC
Li T., et al. , “A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice,” Nat. Commun. 12, 615 (2021).NCAOBW10.1038/s41467-021-20913-1 PubMed DOI PMC
Zenchak J. R., et al. , “Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson’s disease mouse model,” J. Neurosci. Res. 98(3), 458–468 (2020).JNREDK10.1002/jnr.24237 PubMed DOI PMC
Tung J. K., et al. , “Chemically activated luminopsins allow optogenetic inhibition of distributed nodes in an epileptic network for non-invasive and multi-site suppression of seizure activity,” Neurobiol. Dis. 109, 1–10 (2018).NUDIEM10.1016/j.nbd.2017.09.007 PubMed DOI PMC
Yu S. P., et al. , “Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke,” J. Neurosci. 39(33), 6571–6594 (2019).JNRSDS10.1523/JNEUROSCI.2010-18.2019 PubMed DOI PMC
Song D., et al. , “Manipulation of hippocampal CA3 firing via luminopsins modulates spatial and episodic short-term memory, especially working memory, but not long-term memory,” Neurobiol. Learn. Mem. 155, 435–445 (2018).10.1016/j.nlm.2018.09.009 PubMed DOI
Jaiswal P. B., et al. , “Motoneuron activity is required for enhancements in functional recovery after peripheral nerve injury in exercised female mice,” J. Neurosci. Res. 98(3), 448–457 (2020).JNREDK10.1002/jnr.24109 PubMed DOI PMC
Love A. C., Prescher J. A., “Seeing (and using) the light: recent developments in bioluminescence technology,” Cell Chem. Biol. 27(8), 904–920 (2020).10.1016/j.chembiol.2020.07.022 PubMed DOI PMC
Celinskis D., et al. , “Miniaturized devices for bioluminescence imaging in freely behaving animals,” IEEE Eng. Med. Biol. Soc. 2020, 4385–4389 (2020).10.1109/EMBC44109.2020.9175375 PubMed DOI
Nagel G., et al. , “Channelrhodopsin-1: a light-gated proton channel in green algae,” Science 296(5577), 2395–2398 (2002).SCIEAS10.1126/science.1072068 PubMed DOI
Nagel G., et al. , “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A. 100(24), 13940–13945 (2003).10.1073/pnas.1936192100 PubMed DOI PMC
Li X., et al. , “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17816–17821 (2005).10.1073/pnas.0509030102 PubMed DOI PMC
Bi A. D., et al. , “Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration,” Neuron 50(1), 23–33 (2006).NERNET10.1016/j.neuron.2006.02.026 PubMed DOI PMC
Yizhar O., et al. , “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).NERNET10.1016/j.neuron.2011.06.004 PubMed DOI
Deisseroth K., Hegemann P., “The form and function of channelrhodopsin,” Science 357(6356), eaan5544 (2017).SCIEAS10.1126/science.aan5544 PubMed DOI PMC
Levitz J., et al. , “Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors,” Proc. Natl. Acad. Sci. U. S. A. 114(17), E3546–E3554 (2017).10.1073/pnas.1619652114 PubMed DOI PMC
Levitz J., et al. , “Optical control of metabotropic glutamate receptors,” Nat. Neurosci. 16(4), 507–516 (2013).NANEFN10.1038/nn.3346 PubMed DOI PMC
Kramer R. H., Mourot A., Adesnik H., “Optogenetic pharmacology for control of native neuronal signaling proteins,” Nat. Neurosci. 16(7), 816–823 (2013).NANEFN10.1038/nn.3424 PubMed DOI PMC
Lin J. Y., et al. , “Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI),” Neuron 79(2), 241–253 (2013).NERNET10.1016/j.neuron.2013.05.022 PubMed DOI PMC
Rost B. R., et al. , “Optogenetic tools for subcellular applications in neuroscience,” Neuron 96(3), 572–603 (2017).NERNET10.1016/j.neuron.2017.09.047 PubMed DOI
Petreanu L., et al. , “Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections,” Nat. Neurosci. 10(5), 663–668 (2007).NANEFN10.1038/nn1891 PubMed DOI
Lin D., et al. , “Functional identification of an aggression locus in the mouse hypothalamus,” Nature 470(7333), 221–226 (2011).10.1038/nature09736 PubMed DOI PMC
Paz J. T., et al. , “Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury,” Nat. Neurosci. 16(1), 64–70 (2013).NANEFN10.1038/nn.3269 PubMed DOI PMC
Sahel J. A., et al. , “Partial recovery of visual function in a blind patient after optogenetic therapy,” Nat. Med. 27(7), 1223–1229 (2021).10.1038/s41591-021-01351-4 PubMed DOI
Adamantidis A. R., et al. , “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature 450(7168), 420–424 (2007).10.1038/nature06310 PubMed DOI PMC
Jazayeri M., Afraz A., “Navigating the neural space in search of the neural code,” Neuron 93(5), 1003–1014 (2017).NERNET10.1016/j.neuron.2017.02.019 PubMed DOI
Rickgauer J. P., Tank D. W., “Two-photon excitation of channelrhodopsin-2 at saturation,” Proc. Natl. Acad. Sci. U. S. Am 106(35), 15025–15030 (2009).10.1073/pnas.0907084106 PubMed DOI PMC
Prakash R., et al. , “Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation,” Nat. Methods 9(12), 1171–1179 (2012).10.1038/nmeth.2215 PubMed DOI PMC
Packer A. M., et al. , “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).10.1038/nmeth.2249 PubMed DOI PMC
Papagiakoumou E., Ronzitti E., Emiliani V., “Scanless two-photon excitation with temporal focusing,” Nat. Methods 17(6), 571–581 (2020).10.1038/s41592-020-0795-y PubMed DOI
Yang W. J., et al. , “Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions,” Elife 7, e32671 (2018).10.7554/eLife.32671 PubMed DOI PMC
Robinson N. T. M., et al. , “Targeted activation of hippocampal place cells drives memory-guided spatial behavior,” Cell 183(6), 1586–1599.e10 (2020).CELLB510.1016/j.cell.2020.09.061 PubMed DOI PMC
Marshel J. H., et al. , “Cortical layer-specific critical dynamics triggering perception,” Science 365(6453), eaaw5202 (2019).SCIEAS10.1126/science.aaw5202 PubMed DOI PMC
Carrillo-Reid L., et al. , “Controlling visually guided behavior by holographic recalling of cortical ensembles,” Cell 178(2), 447–457.e5 (2019).CELLB510.1016/j.cell.2019.05.045 PubMed DOI PMC
Chettih S. N., Harvey C. D., “Single-neuron perturbations reveal feature-specific competition in V1,” Nature 567(7748), 334–340 (2019).10.1038/s41586-019-0997-6 PubMed DOI PMC
Ernst O. P., et al. , “Microbial and animal rhodopsins: structures, functions, and molecular mechanisms,” Chem. Rev. 114(1), 126–163 (2014).CHREAY10.1021/cr4003769 PubMed DOI PMC
Yutin N., Koonin E. V., “Proteorhodopsin genes in giant viruses,” Biol. Direct. 7, 34 (2012).10.1186/1745-6150-7-34 PubMed DOI PMC
Rozenberg A., et al. , “Microbial rhodopsins: the last two decades,” Annu. Rev. Microbiol. 75, 427–447 (2021).ARMIAZ10.1146/annurev-micro-031721-020452 PubMed DOI
Nagel G., et al. , “Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid Behavioral responses,” Curr. Biol. 15(24), 2279–2284 (2005).CUBLE210.1016/j.cub.2005.11.032 PubMed DOI
Vierock J., et al. , “Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson,” Sci. Rep. 7, 9928 (2017).SRCEC310.1038/s41598-017-09600-8 PubMed DOI PMC
Govorunova E. G., et al. , “Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics,” Science 349(6248), 647–650 (2015).SCIEAS10.1126/science.aaa7484 PubMed DOI PMC
Govorunova E. G., et al. , “The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity,” Sci. Rep. 7, 43358 (2017).SRCEC310.1038/srep43358 PubMed DOI PMC
Mahn M., et al. , “High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins,” Nat. Commun. 9, 4125 (2018).NCAOBW10.1038/s41467-018-06511-8 PubMed DOI PMC
Messier J. E., et al. , “Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon,” Elife 7, e38506 (2018).10.7554/eLife.38506 PubMed DOI PMC
Kopton R. A., et al. , “Cardiac electrophysiological effects of light-activated chloride channels,” Front. Physiol. 9, 1806 (2018).FROPBK10.3389/fphys.2018.01806 PubMed DOI PMC
Shevchenko V., et al. , “Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach,” Sci. Adv. 3(9), e1603187 (2017).STAMCV10.1126/sciadv.1603187 PubMed DOI PMC
Mattis J., et al. , “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2012).10.1038/nmeth.1808 PubMed DOI PMC
Gradinaru V., Thompson K. R., Deisseroth K., “eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications,” Brain Cell Biol. 36(1–4), 129–139 (2008).10.1007/s11068-008-9027-6 PubMed DOI PMC
Grimm C., et al. , “Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2,” Sci. Rep. 8, 9316 (2018).SRCEC310.1038/s41598-018-27690-w PubMed DOI PMC
Gradinaru V., et al. , “Molecular and cellular approaches for diversifying and extending optogenetics,” Cell 141(1), 154–165 (2010).CELLB510.1016/j.cell.2010.02.037 PubMed DOI PMC
Cardin J. A., et al. , “Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2,” Nat. Protoc. 5(2), 247–254 (2010).10.1038/nprot.2009.228 PubMed DOI PMC
Govorunova E. G., et al. , “Cation and anion channelrhodopsins: sequence motifs and taxonomic distribution,” mBio 12(4), e0165621 (2021).10.1128/mBio.01656-21 PubMed DOI PMC
Wietek J., et al. , “Conversion of channelrhodopsin into a light-gated chloride channel,” Science 344(6182), 409–412 (2014).SCIEAS10.1126/science.1249375 PubMed DOI
Lin J. Y., et al. , “ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation,” Nat. Neurosci. 16(10), 1499–1508 (2013).NANEFN10.1038/nn.3502 PubMed DOI PMC
Wietek J., et al. , “Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior,” Sci. Rep. 7, 14957 (2017).SRCEC310.1038/s41598-017-14330-y PubMed DOI PMC
Klapoetke N. C., et al. , “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).10.1038/nmeth.2836 PubMed DOI PMC
Mager T., et al. , “High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics,” Nat. Commun. 9, 1750 (2018).NCAOBW10.1038/s41467-018-04146-3 PubMed DOI PMC
Spoida K., et al. , “Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways,” Curr. Biol. 26(9), 1206–1212 (2016).CUBLE210.1016/j.cub.2016.03.007 PubMed DOI
Eickelbeck D., et al. , “Lamprey parapinopsin (“UVLamP”): a bistable UV-sensitive optogenetic switch for ultrafast control of GPCR pathways,” Chembiochem 21(5), 612–617 (2020).CBCHFX10.1002/cbic.201900485 PubMed DOI PMC
Mahn M., et al. , “Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin,” Neuron 109(10), 1621–1635.e8 (2021).NERNET10.1016/j.neuron.2021.03.013 PubMed DOI PMC
Copits B. A., et al. , “A photoswitchable GPCR-based opsin for presynaptic inhibition,” Neuron 109(11), 1791–1809.e11 (2021).NERNET10.1016/j.neuron.2021.04.026 PubMed DOI PMC
Karapinar R., et al. , “Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks,” Nat. Commun. 12, 4488 (2021).NCAOBW10.1038/s41467-021-24718-0 PubMed DOI PMC
Tsunoda S. P., Sugiura M., Kandori H., “Molecular properties and optogenetic applications of enzymerhodopsins,” in Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond, Yawo H., et al., Eds., Springer Nature, Singapore: (2021). PubMed
Luck M., et al. , “A photochromic Histidine Kinase Rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light,” J. Biol. Chem. 287(47), 40083–40090 (2012).JBCHA310.1074/jbc.M112.401604 PubMed DOI PMC
Avelar G. M., et al. , “A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus,” Curr. Biol. 24(11), 1234–1240 (2014).CUBLE210.1016/j.cub.2014.04.009 PubMed DOI PMC
Yoshida K., et al. , “A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity,” J. Biol. Chem. 292(18), 7531–7541 (2017).JBCHA310.1074/jbc.M117.775569 PubMed DOI PMC
Sierra Y. A. B., et al. , “Potassium channel-based optogenetic silencing,” Nat. Commun. 9, 4611(2018).NCAOBW10.1038/s41467-018-07038-8 PubMed DOI PMC
Zhang S. X., et al. , “Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling,” Nature 597(7875), 245–249 (2021).10.1038/s41586-021-03845-0 PubMed DOI PMC
Ghosh K. K., et al. , “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).10.1038/nmeth.1694 PubMed DOI PMC
Aharoni D., et al. , “All the light that we can see: a new era in miniaturized microscopy,” Nat. Methods 16(1), 11–13 (2019).10.1038/s41592-018-0266-x PubMed DOI PMC
Aharoni D., Hoogland T. M., “Circuit investigations with open-source miniaturized microscopes: past, present and future,” Front. Cell Neurosci. 13, 141 (2019).10.3389/fncel.2019.00141 PubMed DOI PMC
Vladimirov N., et al. , “Light-sheet functional imaging in fictively behaving zebrafish,” Nat. Methods 11(9), 883–884 (2014).10.1038/nmeth.3040 PubMed DOI
Bouchard M. B., et al. , “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9, 113–119 (2015).NPAHBY10.1038/nphoton.2014.323 PubMed DOI PMC
Voleti V., et al. , “Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0,” Nat. Methods 16(10), 1054–1062 (2019).10.1038/s41592-019-0579-4 PubMed DOI PMC
Perkins L. N., et al. , “Extracting individual neural activity recorded through splayed optical microfibers,” Neurophotonics 5(4), 045009 (2018).10.1117/1.NPh.5.4.045009 PubMed DOI PMC
Helmchen F., Gilad A., Chen J. L., “Neocortical dynamics during whisker-based sensory discrimination in head-restrained mice,” Neuroscience 368, 57–69 (2018).10.1016/j.neuroscience.2017.09.003 PubMed DOI PMC
Gilad A., Helmchen F., “Spatiotemporal refinement of signal flow through association cortex during learning,” Nat. Commun. 11, 1744 (2020).NCAOBW10.1038/s41467-020-15534-z PubMed DOI PMC
Gilad A., et al. , “Behavioral strategy determines frontal or posterior location of short-term memory in neocortex,” Neuron 99(4), 814–828.e7 (2018).NERNET10.1016/j.neuron.2018.07.029 PubMed DOI
Gallero-Salas Y., et al. , “Sensory and behavioral components of neocortical signal flow in discrimination tasks with short-term memory,” Neuron 109(1), 135–148.e6 (2021).NERNET10.1016/j.neuron.2020.10.017 PubMed DOI
Pinto L., et al. , “Task-dependent changes in the large-scale dynamics and necessity of cortical regions,” Neuron 104(4), 810–824.e9 (2019).NERNET10.1016/j.neuron.2019.08.025 PubMed DOI PMC
Esmaeili V., et al. , “Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response,” Neuron 109(13), 2183–2201.e9 (2021).NERNET10.1016/j.neuron.2021.05.005 PubMed DOI PMC
Ma Y., et al. , “Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons,” Proc. Natl. Acad. Sci. U. S. A. 113(52), E8463–E8471 (2016).10.1073/pnas.1525369113 PubMed DOI PMC
Mitra A., et al. , “Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure,” Neuron 98(2), 297–305.e6 (2018).NERNET10.1016/j.neuron.2018.03.015 PubMed DOI PMC
Murphy M. C., et al. , “Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology,” Neuroimage 169, 352–362 (2018).NEIMEF10.1016/j.neuroimage.2017.12.070 PubMed DOI PMC
Brier L. M., et al. , “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(3), 035002 (2019).10.1117/1.NPh.6.3.035002 PubMed DOI PMC
Vanni M. P., et al. , “Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules,” J. Neurosci. 37(31), 7513–7533 (2017).JNRSDS10.1523/JNEUROSCI.3560-16.2017 PubMed DOI PMC
Ratzlaff E. H., Grinvald A., “A tandem-lens epifluorescence macroscope – hundred-fold brightness advantage for wide-field imaging,” J. Neurosci. Methods 36(2-3), 127–137 (1991).JNMEDT10.1016/0165-0270(91)90038-2 PubMed DOI
Couto J., et al. , “Chronic, cortex-wide imaging of specific cell populations during behavior,” Nat. Protoc. 16(7), 3241–3263 (2021).10.1038/s41596-021-00527-z PubMed DOI PMC
Vanni M. P., Murphy T. H., “Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex,” J. Neurosci. 34(48), 15931–15946 (2014).JNRSDS10.1523/JNEUROSCI.1818-14.2014 PubMed DOI PMC
Allen W. E., et al. , “Global representations of goal-directed behavior in distinct cell types of mouse neocortex,” Neuron 94(4), 891–907.e6 (2017).NERNET10.1016/j.neuron.2017.04.017 PubMed DOI PMC
Nelson N. A., et al. , “Imaging spinal cord activity in behaving animals,” Exp. Neurol. 320, 112974 (2019).EXNEAC10.1016/j.expneurol.2019.112974 PubMed DOI PMC
Chen S., et al. , “Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals,” Neurosci. Bull. 36(10), 1182–1190 (2020).NRPBA210.1007/s12264-020-00561-z PubMed DOI PMC
Shuman T., et al. , “Breakdown of spatial coding and interneuron synchronization in epileptic mice,” Nat. Neurosci. 23(2), 229–238 (2020).NANEFN10.1038/s41593-019-0559-0 PubMed DOI PMC
Scott B. B., et al. , “Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope,” Neuron 100(5), 1045–1058.e5 (2018).NERNET10.1016/j.neuron.2018.09.050 PubMed DOI PMC
Rynes M. L., et al. , “Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice,” Nat. Methods 18, 417–425 (2021).10.1038/s41592-021-01104-8 PubMed DOI PMC
Sekiguchi K. J., et al. , “Imaging large-scale cellular activity in spinal cord of freely behaving mice,” Nat. Commun. 7, 11450 (2016).NCAOBW10.1038/ncomms11450 PubMed DOI PMC
Shekhtmeyster P., et al. , “Trans-segmental imaging in the spinal cord of behaving mice,” bioRxiv, 2021.12.23.474042 (2021). PubMed PMC
Shekhtmeyster P., et al. , “Multiplex, translaminar imaging in the spinal cord of behaving mice,” 10.1101/2021.12.23.474039 (2021). PubMed DOI PMC
Guo C., et al. , “Miniscope-LFOV: a large field of view, single cell resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals,” 10.1101/2021.11.21.469394 (2021). PubMed DOI PMC
Hillman E. M., et al. , “High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets,” Curr. Opin. Neurobiol. 50, 190–200 (2018).COPUEN10.1016/j.conb.2018.03.007 PubMed DOI PMC
Kim K. H., et al. , “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express 15(18), 11658–11678 (2007).OPEXFF10.1364/OE.15.011658 PubMed DOI PMC
Xue Y., et al. , “Scanless volumetric imaging by selective access multifocal multiphoton microscopy,” Optica 6(1), 76–83 (2019).10.1364/OPTICA.6.000076 PubMed DOI PMC
Lu R., et al. , “Video-rate volumetric functional imaging of the brain at synaptic resolution,” Nat. Neurosci. 20(4), 620–628 (2017).NANEFN10.1038/nn.4516 PubMed DOI PMC
Dufour P., et al. , “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).APOPAI10.1364/AO.45.009246 PubMed DOI
Song A., et al. , “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).10.1038/nmeth.4226 PubMed DOI PMC
Voigt F. F., et al. , “The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue,” Nat. Methods 16(11), 1105–1108 (2019).10.1038/s41592-019-0554-0 PubMed DOI PMC
Dodt H.-U., et al. , “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).10.1038/nmeth1036 PubMed DOI
Huisken J., et al. , “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).SCIEAS10.1126/science.1100035 PubMed DOI
Tomer R., et al. , “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods 9(7), 755–763 (2012).10.1038/nmeth.2062 PubMed DOI
Vaadia R. D., et al. , “Characterization of proprioceptive system dynamics in behaving drosophila larvae using high-speed volumetric microscopy,” Curr. Biol. 29(6), 935–944.e4 (2019).CUBLE210.1016/j.cub.2019.01.060 PubMed DOI PMC
Schaffer E. S., et al. , “Flygenvectors: the spatial and temporal structure of neural activity across the fly brain,” 10.1101/2021.09.25.461804 (2021). PubMed DOI PMC
Wen C., et al. , “3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images,” Elife 10, e59187 (2021).10.7554/eLife.59187 PubMed DOI PMC
Benezra S. E., et al. , “Learning enhances behaviorally relevant representations in apical dendrites,” 10.1101/2021.11.10.468144 (2021). DOI
Xu L., et al. , “Widespread receptor-driven modulation in peripheral olfactory coding,” Science 368(6487), eaaz5390 (2020).SCIEAS10.1126/science.aaz5390 PubMed DOI PMC
Barretto R. P. J., Messerschmidt B., Schnitzer M. J., “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).10.1038/nmeth.1339 PubMed DOI PMC
Levene M. J., et al. , “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).JONEA410.1152/jn.01007.2003 PubMed DOI
Andermann M. L., et al. , “Chronic cellular imaging of entire cortical columns in awake mice using microprisms,” Neuron 80(4), 900–913 (2013).NERNET10.1016/j.neuron.2013.07.052 PubMed DOI PMC
Antonini A., et al. , “Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness,” Elife 9, e58882 (2020).10.7554/eLife.58882 PubMed DOI PMC
Attardo A., Fitzgerald J. E., Schnitzer M. J., “Impermanence of dendritic spines in live adult CA1 hippocampus,” Nature 523(7562), 592–596 (2015).10.1038/nature14467 PubMed DOI PMC
Low R. J., Gu Y., Tank D. W., “Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex,” Proc. Natl. Acad. Sci. U. S. A. 111(52), 18739–18744 (2014).10.1073/pnas.1421753111 PubMed DOI PMC
Popoff S. M., et al. , “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).PRLTAO10.1103/PhysRevLett.104.100601 PubMed DOI
Turtaev S., et al. , “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light-Sci. Appl. 7, 92 (2018).10.1038/s41377-018-0094-x PubMed DOI PMC
Vasquez-Lopez S. A., et al. , “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).10.1038/s41377-018-0111-0 PubMed DOI PMC
Ohayon S., et al. , “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9(4), 1492–1509 (2018).BOEICL10.1364/BOE.9.001492 PubMed DOI PMC
Turcotte R., et al. , “Focusing light in biological tissue through a multimode optical fiber: refractive index matching,” Opt. Lett. 44(10), 2386–2389 (2019).OPLEDP10.1364/OL.44.002386 PubMed DOI PMC
Kleinfeld D., et al. , “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U. S. A. 95(26), 15741–15746 (1998).10.1073/pnas.95.26.15741 PubMed DOI PMC
Sofroniew N. J., et al. , “A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging,” Elife 5, e14472 (2016).10.7554/eLife.14472 PubMed DOI PMC
Rumyantsev O. I., et al. , “Fundamental bounds on the fidelity of sensory cortical coding,” Nature 580(7801), 100–105 (2020).10.1038/s41586-020-2130-2 PubMed DOI
Yu C. H., et al. , “Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry,” Nat. Commun. 12, 6639 (2021).NCAOBW10.1038/s41467-021-26736-4 PubMed DOI PMC
Yang M. K., et al. , “MATRIEX imaging: multiarea two-photon real-time in vivo explorer,” Light-Sci. Appl. 8, 109 (2019).10.1038/s41377-019-0219-x PubMed DOI PMC
Lecoq J., et al. , “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).NANEFN10.1038/nn.3867 PubMed DOI PMC
Wagner M. J., et al. , “Shared cortex-cerebellum dynamics in the execution and learning of a motor task,” Cell 177(3), 669–682.e24 (2019).CELLB510.1016/j.cell.2019.02.019 PubMed DOI PMC
Nadella K. M., et al. , “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).10.1038/nmeth.4033 PubMed DOI PMC
Demas J., et al. , “High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy,” Nat. Methods 18(9), 1103–1111 (2021).10.1038/s41592-021-01239-8 PubMed DOI PMC
Ouzounov D. G., et al. , “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).10.1038/nmeth.4183 PubMed DOI PMC
Klioutchnikov A., et al. , “Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats,” Nat. Methods 17(5), 509–513 (2020).10.1038/s41592-020-0817-9 PubMed DOI
Zong W., et al. , “Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging,” Nat. Methods 18(1), 46–49 (2021).10.1038/s41592-020-01024-z PubMed DOI
Xue Y. J., et al. , “Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope,” Sci. Adv. 6(43), eabb7508 (2020).STAMCV10.1126/sciadv.abb7508 PubMed DOI PMC
Tian F., Hu J. J., Yang W. J., “GEOMScope: large field-of-view 3d lensless microscopy with low computational complexity,” Laser Photonics Rev. 15(8), 2100072 (2021).10.1002/lpor.202100072 PubMed DOI PMC
Qiao P. F., Yang W. J., Chang-Hasnain C. J., “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).AOPAC710.1364/AOP.10.000180 DOI
Stirman J. N., et al. , “Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain,” Nat. Biotechnol. 34(8), 857–862 (2016).NABIF910.1038/nbt.3594 PubMed DOI PMC
Ota K., et al. , “Fast, cell-resolution, contiguous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas,” Neuron 109(11), 1810–1824.e9 (2021).NERNET10.1016/j.neuron.2021.03.032 PubMed DOI
Cheng A., et al. , “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).10.1038/nmeth.1552 PubMed DOI PMC
Weisenburger S., et al. , “Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy,” Cell 177(4), 1050–1066.e14 (2019).CELLB510.1016/j.cell.2019.03.011 PubMed DOI PMC
Lu R. W., et al. , “Rapid mesoscale volumetric imaging of neural activity with synaptic resolution,” Nat. Methods 17(3), 291–294 (2020).10.1038/s41592-020-0760-9 PubMed DOI PMC
Clough M., et al. , “Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds,” Nat. Commun. 12, 6638 (2021).NCAOBW10.1038/s41467-021-26737-3 PubMed DOI PMC
Denk W., Strickler J. H., Webb W. W., “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).SCIEAS10.1126/science.2321027 PubMed DOI
Truong T. V., et al. , “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).10.1038/nmeth.1652 PubMed DOI
Lu R. W., et al. , “Video-rate volumetric functional imaging of the brain at synaptic resolution,” Nat. Neurosci. 20(4), 620–628 (2017).NANEFN10.1038/nn.4516 PubMed DOI PMC
Prevedel R., et al. , “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).10.1038/nmeth.4040 PubMed DOI PMC
Yang W. J., et al. , “Simultaneous multi-plane imaging of neural circuits,” Neuron 89(2), 269–284 (2016).NERNET10.1016/j.neuron.2015.12.012 PubMed DOI PMC
Zhang T., et al. , “Kilohertz two-photon brain imaging in awake mice,” Nat. Methods 16(11), 1119–1122 (2019).10.1038/s41592-019-0597-2 PubMed DOI PMC
Beaulieu D. R., et al. , “Simultaneous multiplane imaging with reverberation two-photon microscopy,” Nat. Methods 17(3), 283 (2020).10.1038/s41592-019-0728-9 PubMed DOI PMC
Wu J. L., et al. , “Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo,” Nat. Methods 17(3), 287–290 (2020).10.1038/s41592-020-0762-7 PubMed DOI PMC
Reddy G. D., et al. , “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neuroscie. 11(6), 713–720 (2008).10.1038/nn.2116 PubMed DOI PMC
Ducros M., et al. , “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(32), 13138–13143 (2013).10.1073/pnas.1307818110 PubMed DOI PMC
Oron D., Tal E., Silberberg Y., “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).OPEXFF10.1364/OPEX.13.001468 PubMed DOI
Zhu G. H., et al. , “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).OPEXFF10.1364/OPEX.13.002153 PubMed DOI
Kumar M., et al. , “Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging,” Opt. Express 26(10), 13027–13041 (2018).OPEXFF10.1364/OE.26.013027 PubMed DOI PMC
Quirin S., et al. , “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuit 8, 29 (2014).10.3389/fncir.2014.00029 PubMed DOI PMC
Prevedel R., et al. , “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).10.1038/nmeth.2964 PubMed DOI PMC
Broxton M., et al. , “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).OPEXFF10.1364/OE.21.025418 PubMed DOI PMC
Fan G. Y., et al. , “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).BIOJAU10.1016/S0006-3495(99)77396-0 PubMed DOI PMC
Salome R., et al. , “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1–2), 161–174 (2006).JNMEDT10.1016/j.jneumeth.2005.12.010 PubMed DOI
Reddy G. D., Saggau P., “Fast three-dimensional laser scanning scheme using acousto-optic deflectors,” J. Biomed. Opt. 10(6), 064038 (2005).JBOPFO10.1117/1.2141504 PubMed DOI
Shain W. J., et al. , “Extended depth-of-field microscopy with a high-speed deformable mirror,” Opt. Lett. 42(5), 995–998 (2017).OPLEDP10.1364/OL.42.000995 PubMed DOI
Dal Maschio M., et al. , “Three-dimensional in vivo scanning microscopy with inertia-free focus control,” Opt. Lett. 36(17), 3503–3505 (2011).OPLEDP10.1364/OL.36.003503 PubMed DOI
Nikolenko V., et al. , “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuit 2, 5 (2008).10.3389/neuro.04.005.2008 PubMed DOI PMC
Gobel W., Kampa B. M., Helmchen F., “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).10.1038/nmeth989 PubMed DOI
Grewe B. F., et al. , “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).BOEICL10.1364/BOE.2.002035 PubMed DOI PMC
Kong L. J., et al. , “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).10.1038/nmeth.3476 PubMed DOI PMC
Chakraborty T., et al. , “Converting lateral scanning into axial focusing to speed up 3D microscopy,” Light Sci. Appl. 9, 165 (2020).10.1038/s41377-020-00401-9 PubMed DOI PMC
Bawart M., et al. , “Modified Alvarez lens for high-speed focusing,” Opt. Express 25(24), 29847–29855 (2017).OPEXFF10.1364/OE.25.029847 PubMed DOI
Kirkby P. A., Srinivas Nadella K. M., Silver R. A., “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13720–13745 (2010).OPEXFF10.1364/OE.18.013720 PubMed DOI PMC
Lu R. W., et al. , “50 Hz volumetric functional imaging with continuously adjustable depth of focus,” Biomed. Opt. Express 9(4), 1964–1976 (2018).BOEICL10.1364/BOE.9.001964 PubMed DOI PMC
Meng G. H., et al. , “High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo,” Elife 8, e40805 (2019).10.7554/eLife.40805 PubMed DOI PMC
Bovetti S., et al. , “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).SRCEC310.1038/srep40041 PubMed DOI PMC
Anselmi F., et al. , “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U. S. A. 108(49), 19504–19509 (2011).10.1073/pnas.1109111108 PubMed DOI PMC
Moretti C., et al. , “Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses,” Biomed. Opt. Express 7(10), 3958–3967 (2016).BOEICL10.1364/BOE.7.003958 PubMed DOI PMC
Duocastella M., et al. , “Acousto-optic systems for advanced microscopy,” J. Phys.: Photonics 3, 012004 (2021).10.1088/2515-7647/abc23c DOI
Griffiths V. A., et al. , “Real-time 3D movement correction for two-photon imaging in behaving animals,” Nat. Methods 17(7), 741–748 (2020).10.1038/s41592-020-0851-7 PubMed DOI PMC
Fernandez-Alfonso T., et al. , “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).JNMEDT10.1016/j.jneumeth.2013.10.021 PubMed DOI PMC
Kaplan A., Friedman N., Davidson N., “Acousto-optic lens with very fast focus scanning,” Opt. Lett. 26(14), 1078–1080 (2001).OPLEDP10.1364/OL.26.001078 PubMed DOI
Gurnani H., Silver R. A., “Multidimensional population activity in an electrically coupled inhibitory circuit in the cerebellar cortex,” Neuron 109(10), 1739–1753.e8 (2021).NERNET10.1016/j.neuron.2021.03.027 PubMed DOI PMC
Szalay G., et al. , “Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals,” Neuron 92(4), 723–738 (2016).NERNET10.1016/j.neuron.2016.10.002 PubMed DOI PMC
Konstantinou G., et al. , “Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy,” Opt. Express 24(6), 6283–6299 (2016).OPEXFF10.1364/OE.24.006283 PubMed DOI PMC
Froudarakis E., et al. , “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).NANEFN10.1038/nn.3707 PubMed DOI PMC
Katona G., et al. , “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).10.1038/nmeth.1851 PubMed DOI
Geiller T., et al. , “Large-scale 3D two-photon imaging of molecularly identified CA1 interneuron dynamics in behaving mice,” Neuron 108(5), 968–983.e9 (2020).NERNET10.1016/j.neuron.2020.09.013 PubMed DOI PMC
Lanore F., et al. , “Cerebellar granule cell axons support high dimensional representations,” Nat. Neurosci. 24(8), 1142–1150 (2021).NANEFN10.1038/s41593-021-00873-x PubMed DOI PMC
Akemann W., et al. , “Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Opt. Express 23(22), 28191–205 (2015).OPEXFF10.1364/OE.23.028191 PubMed DOI
Mahou P., et al. , “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).10.1038/nmeth.2098 PubMed DOI
Lakowicz J. R., et al. , “Two-color two-photon excitation of fluorescence,” Photochem. Photobiol. 64(4), 632–635 (1996).PHCBAP10.1111/j.1751-1097.1996.tb03116.x PubMed DOI
Dowley M. W., Eisenthal K. B., Peticolas W. L., “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47(5), 1609–1619 (1967).JCPSA610.1063/1.1712141 DOI
Monson P. R., Mcclain W. M., “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53(1), 29–37 (1970).JCPSA610.1063/1.1673778 DOI
Frohlich D., Mahr H., “Two-photon spectroscopy in anthracene,” Phys. Rev. Lett. 16(20), 895–897 (1966).PRLTAO10.1103/PhysRevLett.16.895 DOI
Sadegh S., et al. , “Overcoming the fundamental limit of two-photon microscopywith non-degenerate excitation,” in Biophotonics Congr.: Biomed. Opt. 2020 (Transl., Microsc., OCT, OTS, BRAIN), OSA Tech. Digest, Optica Publishing Group, p. BTu1C.4 (2020).
Sadegh S., et al. , “Measurement of the relative non-degenerate two-photon absorption cross-section for fluorescence microscopy,” Opt. Express 27(6), 8335–8347 (2019).OPEXFF10.1364/OE.27.008335 PubMed DOI PMC
Sadegh S., et al. , “Efficient non-degenerate two-photon excitation for fluorescence microscopy,” Opt. Express 27(20), 28022–28035 (2019).OPEXFF10.1364/OE.27.028022 PubMed DOI PMC
Yang M. H., et al. , “Non-degenerate 2-photon excitation in scattering medium for fluorescence microscopy,” Opt. Express 24(26), 30173–30187 (2016).OPEXFF10.1364/OE.24.030173 PubMed DOI PMC
Hales J. M., et al. , “Resonant enhancement of two-photon absorption in substituted fluorene molecules,” J. Chem. Phys. 121(7), 3152–3160 (2004).JCPSA610.1063/1.1770726 PubMed DOI
Quentmeier S., Denicke S., Gericke K. H., “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19(6), 1037–1043 (2009).JOFLEN10.1007/s10895-009-0503-x PubMed DOI
Perillo E. P., et al. , “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light-Sci. Appl. 6, e17095 (2017).10.1038/lsa.2017.95 PubMed DOI PMC
Lindek S., Stelzer E. H., “Resolution improvement by nonconfocal theta microscopy,” Opt. Lett. 24(21), 1505–1507 (1999).OPLEDP10.1364/OL.24.001505 PubMed DOI
Ibanez-Lopez C., et al. , “Optical-sectioning improvement in two-color excitation scanning microscopy,” Microsc. Res. Tech. 64(2), 96–102 (2004).MRTEEO10.1002/jemt.20073 PubMed DOI
Miller D. R., et al. , “Deep tissue imaging with multiphoton fluorescence microscopy,” Curr. Opin. Biomed. Eng. 4, 32–39 (2017).10.1016/j.cobme.2017.09.004 PubMed DOI PMC
Wang C., et al. , “Reduced deep-tissue image degradation in three-dimensional multiphoton microscopy with concentric two-color two-photon fluorescence excitation,” J. Opt. Soc. Am. B 25(6), 976–982 (2008).JOBPDE10.1364/JOSAB.25.000976 DOI
Cambaliza M. O., Saloma C., “Advantages of two-color excitation fluorescence microscopy with two confocal excitation beams,” Opt. Commun. 184(1-4), 25–35 (2000).OPCOB810.1016/S0030-4018(00)00929-9 DOI
Blanca C. M., Saloma C., “Two-color excitation fluorescence microscopy through highly scattering media,” Appl. Opt. 40(16), 2722–2729 (2001).APOPAI10.1364/AO.40.002722 PubMed DOI
Kobat D., Zhu G., Xu C., “Background reduction with two-color two-beam multiphoton excitation,” in Biomed. Opt., OSA Tech. Digest (CD), Optica Publishing Group, p. BMF6 (2008).
Cheng X., et al. , “Comparing the fundamental imaging depth limit of two-photon, three-photon, and non-degenerate two-photon microscopy,” Opt. Lett. 45(10), 2934–2937 (2020).OPLEDP10.1364/OL.392724 PubMed DOI PMC
Chen T.-W., et al. , “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).10.1038/nature12354 PubMed DOI PMC
Theer P., Denk W., “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A Opt. Image Sci. Vision 23(12), 3139–3149 (2006).10.1364/JOSAA.23.003139 PubMed DOI
Wang T., et al. , “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).10.1038/s41592-018-0115-y PubMed DOI PMC
Liu H., et al. , “In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots,” Nano Lett. 19(8), 5260–5265 (2019).NALEFD10.1021/acs.nanolett.9b01708 PubMed DOI
Horton N. G., et al. , “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).NPAHBY10.1038/nphoton.2012.336 PubMed DOI PMC
Kobat D., et al. , “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).OPEXFF10.1364/OE.17.013354 PubMed DOI
Wang M., et al. , “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).BOEICL10.1364/BOE.9.003534 PubMed DOI PMC
Takasaki K., Abbasi-asl R., Waters J., “Superficial bound of the depth limit of two- photon imaging in mouse brain,” eNeuro 7(1), ENEURO.0255-19.2019 (2020).10.1523/ENEURO.0255-19.2019 PubMed DOI PMC
Wang T., et al. , “Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain,” eLife 9, e53205 (2020).10.7554/eLife.53205 PubMed DOI PMC
Chow D. M., et al. , “Deep three-photon imaging of the brain in intact adult zebrafish,” Nat. Methods 17, 605–608 (2020).10.1038/s41592-020-0819-7 PubMed DOI PMC
Hontani Y., Xia F., Xu C., “Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain,” Sci. Adv. 7, eabf3531 (2021).STAMCV10.1126/sciadv.abf3531 PubMed DOI PMC
Xu C., et al. , “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U. S. A. 93(20), 10763–10768 (1996).10.1073/pnas.93.20.10763 PubMed DOI PMC
Xu C., Webb W. W., “Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy,” Top. Fluoresc. Spectrosc. 5, 471–540 (1997).
Akbari N., et al. , “Imaging deeper than the transport mean free path with multiphoton microscopy,” Biomed. Opt. Express 13(1), 452–463 (2022).BOEICL10.1364/BOE.444696 PubMed DOI PMC
Streich L., et al. , “High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy,” Nat. Methods 18(10), 1253–1258 (2021).10.1038/s41592-021-01257-6 PubMed DOI PMC
Rodríguez C., et al. , “An adaptive optics module for deep tissue multiphoton imaging in vivo,” Nat. Methods 18(10), 1259–1264 (2021).10.1038/s41592-021-01279-0 PubMed DOI PMC
Li B., et al. , “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17, 163–166 (2020).10.1038/s41592-019-0663-9 PubMed DOI PMC
Wang M., et al. , “Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains,” Biomed. Opt. Express 10(4), 1905–1918 (2019).BOEICL10.1364/BOE.10.001905 PubMed DOI PMC
Babcock H. W., “The Possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229 (1953).PASPAU10.1086/126606 DOI
Tyson R. K., Principles of Adaptive Optics, CRC Press; (2015).
Liang J. Z., Williams D. R., Miller D. T., “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).JOAOD610.1364/JOSAA.14.002884 PubMed DOI
Porter J., et al. , Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, Wiley; (2006).
Rodriguez C., Ji N., “Adaptive optical microscopy for neurobiology,” Curr. Opin. Neurobiol. 50, 83–91 (2018).COPUEN10.1016/j.conb.2018.01.011 PubMed DOI PMC
Aviles-Espinosa R., et al. , “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express 2(11), 3135–3149 (2011).BOEICL10.1364/BOE.2.003135 PubMed DOI PMC
Wang K., et al. , “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).10.1038/nmeth.2925 PubMed DOI PMC
Debarre D., et al. , “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).OPLEDP10.1364/OL.34.002495 PubMed DOI PMC
Ji N., Milkie D. E., Betzig E., “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).10.1038/nmeth.1411 PubMed DOI
Wang C., et al. , “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11(10), 1037–1040 (2014).10.1038/nmeth.3068 PubMed DOI PMC
Papadopoulos I. N., et al. , “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2017).NPAHBY10.1038/nphoton.2016.252 DOI
Wang K., et al. , “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).NCAOBW10.1038/ncomms8276 PubMed DOI PMC
Liu R., et al. , “Direct wavefront sensing enables functional imaging of infragranular axons and spines,” Nat. Methods 16, 615–618 (2019).10.1038/s41592-019-0434-7 PubMed DOI PMC
Jia N., Sato T. R., Betzig E., “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 22–27 (2012).10.1073/pnas.1109202108 PubMed DOI PMC
Tao X. D., et al. , “Transcutical imaging with cellular and subcellular resolution,” Biomed. Opt. Express 8(3), 1277–1289 (2017).BOEICL10.1364/BOE.8.001277 PubMed DOI PMC
Park J. H., et al. , “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).10.1038/nmeth.4290 PubMed DOI PMC
Papadopoulos I. N., et al. , “Dynamic conjugate F-SHARP microscopy,” Light-Sci. Appl. 9, 110 (2020).10.1038/s41377-020-00348-x PubMed DOI PMC
Sun W. Z., et al. , “Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs,” Nat. Neurosci. 19(2), 308–315 (2016).NANEFN10.1038/nn.4196 PubMed DOI PMC
Chen I. W., Papagiakoumou E., Emiliani V., “Towards circuit optogenetics,” Curr. Opin. Neurobiol. 50, 179–189 (2018).COPUEN10.1016/j.conb.2018.03.008 PubMed DOI PMC
Emiliani V., et al. , “All-Optical interrogation of neural circuits,” J. Neurosci. 35(41), 13917–13926 (2015).JNRSDS10.1523/JNEUROSCI.2916-15.2015 PubMed DOI PMC
Adesnik H., Abdeladim L., “Probing neural codes with two-photon holographic optogenetics,” Nat. Neurosci. 24(10), 1356–1366 (2021).NANEFN10.1038/s41593-021-00902-9 PubMed DOI PMC
Packer A. M., et al. , “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2015).10.1038/nmeth.3217 PubMed DOI PMC
Shemesh O. A., et al. , “Temporally precise single-cell-resolution optogenetics,” Nat. Neurosci. 20(12), 1796–1806 (2017).NANEFN10.1038/s41593-017-0018-8 PubMed DOI PMC
Forli A., et al. , “Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo,” Cell Rep. 22(11), 3087–3098 (2018).10.1016/j.celrep.2018.02.063 PubMed DOI PMC
Mardinly A. R., et al. , “Precise multimodal optical control of neural ensemble activity,” Nat. Neurosci. 21(6), 881–893 (2018).NANEFN10.1038/s41593-018-0139-8 PubMed DOI PMC
Yang W., et al. , “Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions,” Elife 7, e32671 (2018).10.7554/eLife.32671 PubMed DOI PMC
Dal Maschio M., et al. , “Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging,” Neuron 94(4), 774–789.e5 (2017).NERNET10.1016/j.neuron.2017.04.034 PubMed DOI
Gill J. V., et al. , “Precise holographic manipulation of olfactory circuits reveals coding features determining perceptual detection,” Neuron 108(2), 382–393.e5 (2020).NERNET10.1016/j.neuron.2020.07.034 PubMed DOI PMC
Rickgauer J. P., Deisseroth K., Tank D. W., “Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields,” Nat. Neurosci. 17(12), 1816–1824 (2014).NANEFN10.1038/nn.3866 PubMed DOI PMC
Papagiakoumou E., et al. , “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).OPEXFF10.1364/OE.16.022039 PubMed DOI
Golan L., et al. , “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).10.1088/1741-2560/6/6/066004 PubMed DOI
Pégard N. C., et al. , “Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT),” Nat. Commun. 8, 1228 (2017).NCAOBW10.1038/s41467-017-01031-3 PubMed DOI PMC
Accanto N., et al. , “Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation,” Sci. Rep. 9, 7603 (2019).SRCEC310.1038/s41598-019-43933-w PubMed DOI PMC
Papagiakoumou E., et al. , “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).10.1038/nmeth.1505 PubMed DOI PMC
Paluch-Siegler S., et al. , “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).10.1117/1.NPh.2.3.031208 PubMed DOI PMC
Chen I. W., et al. , “In vivo submillisecond two-photon optogenetics with temporally focused patterned light,” J. Neurosci. 39(18), 3484–3497 (2019).JNRSDS10.1523/JNEUROSCI.1785-18.2018 PubMed DOI PMC
Aharoni T., Shoham S., “Phase-controlled, speckle-free holographic projection with applications in precision optogenetics,” Neurophotonics 5(2), 025004 (2018).10.1117/1.NPh.5.2.025004 PubMed DOI PMC
Lerman G. M., et al. , “Real-time in situ holographic optogenetics confocally unraveled sculpting microscopy,” Laser Photonics Rev. 13(9), 1900144 (2019).10.1002/lpor.201900144 DOI
Chaigneau E., et al. , “Two-photon holographic stimulation of ReaChR,” Front. Cell Neurosci. 10, 234 (2016).10.3389/fncel.2016.00234 PubMed DOI PMC
Baker C. A., et al. , “Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin,” Elife 5, e14193 (2016).10.7554/eLife.14193 PubMed DOI PMC
Forli A., et al. , “Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins,” Elife 10, e63359 (2021).10.7554/eLife.63359 PubMed DOI PMC
Bounds H. A., et al. , “Multifunctional Cre-dependent transgenic mice for high-precision all-optical interrogation of neural circuits,” 10.1101/2021.10.05.463223 (2021). DOI
Sun S., et al. , “Large-scale femtosecond holography for near simultaneous optogenetic neural modulation,” Opt. Express 27(22), 32228–32234 (2019).OPEXFF10.1364/OE.27.032228 PubMed DOI PMC
Faini G., et al. , “Ultrafast light targeting for high-throughput precise control of neuronal networks,” 10.1101/2021.06.14.448315 (2021). PubMed DOI PMC
Frumker E., Silberberg Y., “Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator,” Opti. Lett. 32(11), 1384–1386 (2007).OPLEDP10.1364/OL.32.001384 PubMed DOI
Mayblum T., et al. , “New insights and system designs for temporally focused multiphoton optogenetics,” Proc SPIE 9329, 932928 (2015).10.1117/12.2078678 DOI
Hernandez O., et al. , “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).NCAOBW10.1038/ncomms11928 PubMed DOI PMC
Sun B., et al. , “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light: Sci. Appl. 7(1), 17117 (2018).10.1038/lsa.2017.117 PubMed DOI PMC
Lerman G. M., et al. , “Precise optical probing of perceptual detection,” bioRxiv, 10.1101/456764 (2018).
Chong E., et al. , “Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception,” Science 368(6497), eaba2357 (2020).SCIEAS10.1126/science.aba2357 PubMed DOI PMC
Dalgleish H. W., et al. , “How many neurons are sufficient for perception of cortical activity?” Elife 9, e58889 (2020).10.7554/eLife.58889 PubMed DOI PMC
Newsome W. T., Britten K. H., Movshon J. A., “Neuronal correlates of a perceptual decision,” Nature 341(6237), 52–54 (1989).10.1038/341052a0 PubMed DOI
Blinder P., et al. , “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16(7), 889–897 (2013).NANEFN10.1038/nn.3426 PubMed DOI PMC
Cauli B., Hamel E., “Revisiting the role of neurons in neurovascular coupling,” Front. Neuroenerg. 2, 9 (2010).10.3389/fnene.2010.00009 PubMed DOI PMC
Uhlirova H., et al. , “Cell type specificity of neurovascular coupling in cerebral cortex,” Elife 5, e14315 (2016).10.7554/eLife.14315 PubMed DOI PMC
Uhlirova H., et al. , “The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 371(1705), 20150356 (2016).10.1098/rstb.2015.0356 PubMed DOI PMC
Boas D. A., Dunn A. K., “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).JBOPFO10.1117/1.3285504 PubMed DOI PMC
Dunn A. K., et al. , “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).10.1097/00004647-200103000-00002 PubMed DOI
Dunn A. K., et al. , “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).OPLEDP10.1364/OL.28.000028 PubMed DOI
Briers J. D., “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).PMEAE310.1088/0967-3334/22/4/201 PubMed DOI
Devor A., et al. , “Two-photon laser scanning microscopy as a tool to study cortical vasodynamics under normal and ischemic conditions,” in Imaging the Brain with Optical Methods, Roe A. W., Ed., pp. 245–261, Springer; (2009).
Devor A., et al. , “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab. 32(7), 1259–1276 (2012).10.1038/jcbfm.2011.195 PubMed DOI PMC
Devor A., et al. , “Functional imaging of cerebral oxygenation with intrinsic optical contrast and phosphorescent probes,” in Optical Imaging of Cortical Circuit Dynamics, Weber B., Helmchen F., Eds., Springer, New York: (2013).
Sakadžić S., et al. , “Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients,” Neurophotonics 3(4), 045005 (2016).10.1117/1.NPh.3.4.045005 PubMed DOI PMC
Mächler P., et al. , “Microscopic quantification of oxygen consumption across cortical layers,” 10.1101/2021.10.13.464176 (2021). DOI
Mayhew J., et al. , “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).NEIMEF10.1006/nimg.1999.0460 PubMed DOI
Boas D. A., et al. , “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).NEIMEF10.1016/j.neuroimage.2013.11.033 PubMed DOI
Grinvald A., et al. , “Imaging the neocortex functional architecture using multiple intrinsic signals: implications for hemodynamic-based functional imaging,” Cold Spring Harb. Protoc. 2016(3), pdb top089375 (2016).10.1101/pdb.top089375 PubMed DOI
Wang L. V., Yao J., “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).10.1038/nmeth.3925 PubMed DOI PMC
Yao J. J., Wang L. H. V., “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).10.1117/1.NPh.1.1.011003 PubMed DOI PMC
Wang R. K., An L., “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).OPEXFF10.1364/OE.17.008926 PubMed DOI PMC
Baran U., Wang R. K., “Review of optical coherence tomography based angiography in neuroscience,” Neurophotonics 3(1), 010902 (2016).10.1117/1.NPh.3.1.010902 PubMed DOI PMC
Srinivasan V. J., et al. , “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–29 (2012).BOEICL10.1364/BOE.3.000612 PubMed DOI PMC
Ren H., Du C., Pan Y., “Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography,” Opt. Lett. 37(8), 1388–1390 (2012).OPLEDP10.1364/OL.37.001388 PubMed DOI PMC
Rakymzhan A., et al. , “Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation,” J. Biomed. Opt. 25(9), 096005 (2020).JBOPFO10.1117/1.JBO.25.9.096005 PubMed DOI PMC
Merkle C. W., Srinivasan V. J., “Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by dynamic contrast optical coherence tomography,” Neuroimage 125, 350–362 (2016).NEIMEF10.1016/j.neuroimage.2015.10.017 PubMed DOI PMC
Srinivasan V. J., Radhakrishnan H., “Optical coherence tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation,” Neuroimage 102(Pt 2), 393–406 (2014).NEIMEF10.1016/j.neuroimage.2014.08.004 PubMed DOI PMC
Li Y., Wei W., Wang R. K., “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8, 4107 (2018).SRCEC310.1038/s41598-018-22513-4 PubMed DOI PMC
Erdener S. E., et al. , “Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells,” J. Cereb. Blood Flow Metab. 39(5), 886–900 (2019).10.1177/0271678X17743877 PubMed DOI PMC
Shin P., et al. , “High-speed optical coherence tomography angiography for the measurement of stimulus-induced retrograde vasodilation of cerebral pial arteries in awake mice,” Neurophotonics 7(3), 030502 (2020).10.1117/1.NPh.7.3.030502 PubMed DOI PMC
Chen S., et al. , “Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography,” Biomed. Opt. Express 7(9), 3377–3389 (2016).BOEICL10.1364/BOE.7.003377 PubMed DOI PMC
Chong S. P., et al. , “Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6(10), 3941–3951 (2015).BOEICL10.1364/BOE.6.003941 PubMed DOI PMC
Tang P., et al. , “Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography,” Biomed. Opt. Express 11(2), 699–710 (2020).BOEICL10.1364/BOE.381332 PubMed DOI PMC
Tang J., et al. , “Imaging localized fast optical signals of neural activation with optical coherence tomography in awake mice,” Opt. Lett. 46(7), 1744–1747 (2021).OPLEDP10.1364/OL.411897 PubMed DOI PMC
Marchand P. J., et al. , “Validation of red blood cell flux and velocity estimations based on optical coherence tomography intensity fluctuations,” Sci. Rep. 10, 19584 (2020).SRCEC310.1038/s41598-020-76774-z PubMed DOI PMC
Swartz H. M., “Measuring real levels of oxygen in vivo: opportunities and challenges,” Biochem. Soc. Trans. 30, 248–252 (2002).BCSTB510.1042/bst0300248 PubMed DOI
Arbeit J. M., et al. , “Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).IJRBE710.1080/09553000601002324 PubMed DOI
Vikram D. S., Zweier J. L., Kuppusamy P., “Methods for noninvasive imaging of tissue hypoxia,” Antioxid. Redox Signaling 9(10), 1745–1756 (2007).10.1089/ars.2007.1717 PubMed DOI
Krohn K. A., Link J. M., Mason R. P., “Molecular imaging of hypoxia,” J. Nucl. Med. 49, 129S–148S (2008).JNMEAQ10.2967/jnumed.107.045914 PubMed DOI
Finikova O. S., et al. , “Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores,” J. Phys. Chem. A 111(30), 6977–6990 (2007).JPCAFH10.1021/jp071586f PubMed DOI PMC
Finikova O. S., et al. , “Dynamic quenching of porphyrin triplet states by two-photon absorbing dyes: Towards two-photon-enhanced oxygen nanosensors,” J. Photochem. Photobiol., A: Chem. 198(1), 75–84 (2008).JPPCEJ10.1016/j.jphotochem.2008.02.020 PubMed DOI PMC
Lebedev A. Y., Troxler T., Vinogradov S. A., “Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen,” J. Porphyrins. Phthalocyanines 12(12), 1261–1269 (2008).10.1142/S1088424608000649 PubMed DOI PMC
Sinks L. E., et al. , “Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles,” J. Phys. Chem. B 114(45), 14373–14382 (2010).JPCBFK10.1021/jp100353v PubMed DOI PMC
Li B., et al. , “More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction,” Elife 8, e42299 (2019).10.7554/eLife.42299 PubMed DOI PMC
Buxton R. B., “Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism,” Front. Neuroenerg. 2, 8 (2010).10.3389/fnene.2010.00008 PubMed DOI PMC
Kasischke K. A., et al. , “Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions,” J. Cereb. Blood Flow Metab. 31(1), 68–81 (2011).10.1038/jcbfm.2010.158 PubMed DOI PMC
Krogh A., “The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue,” J. Physiol. 52(6), 409–415 (1919).JPHYA710.1113/jphysiol.1919.sp001839 PubMed DOI PMC
Wang L. H. V., Hu S., “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).SCIEAS10.1126/science.1216210 PubMed DOI PMC
Li L., et al. , “Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo,” Nat. Protoc. 16(5), 2381–2394 (2021).10.1038/s41596-020-00487-w PubMed DOI PMC
Li L., et al. , “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 1–11 (2017).10.1038/s41551-017-0071 PubMed DOI PMC
Zhang P., et al. , “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).10.1002/jbio.201700024 PubMed DOI PMC
Zhang P., et al. , “In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets,” Light: Sci. Appl. 8(1), 36 (2019).10.1038/s41377-019-0147-9 PubMed DOI PMC
Yao J., et al. , “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407 (2015).10.1038/nmeth.3336 PubMed DOI PMC
Li L., et al. , “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3(3), 035001 (2016).10.1117/1.NPh.3.3.035001 PubMed DOI PMC
Na S., et al. , “Massively parallel functional photoacoustic computed tomography of the human brain,” Nat. Biomed. Eng. (2021).10.1038/s41551-021-00735-8 PubMed DOI PMC
Gottschalk S., et al. , “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).10.1038/s41551-019-0372-9 PubMed DOI PMC
Rao B., et al. , “Photoacoustic imaging of voltage responses beyond the optical diffusion limit,” Sci. Rep. 7, 2560 (2017).SRCEC310.1038/s41598-017-02458-w PubMed DOI PMC
Chamanzar M., et al. , “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10, 92 (2019).NCAOBW10.1038/s41467-018-07856-w PubMed DOI PMC
Ruan H. W., et al. , “Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation,” Nat. Photonics 14(8), 511–516 (2020).NPAHBY10.1038/s41566-020-0630-0 DOI
Xu X. A., Liu H. L., Wang L. V., “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).NPAHBY10.1038/nphoton.2010.306 PubMed DOI PMC
Wang Y. M., et al. , “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).NCAOBW10.1038/ncomms1925 PubMed DOI PMC
Si K., Fiolka R., Cui M., “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).NPAHBY10.1038/nphoton.2012.205 PubMed DOI PMC
Jiang Y., et al. , “Optoacoustic brain stimulation at submillimeter spatial precision,” Nat. Commun. 11, 881 (2020).NCAOBW10.1038/s41467-020-14706-1 PubMed DOI PMC
Zhang Y., et al. , “Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics,” Proc. Natl. Acad. Sci. U. S. A. 116(43), 21427–21437 (2019).10.1073/pnas.1909850116 PubMed DOI PMC
Hong G., Lieber C. M., “Novel electrode technologies for neural recordings,” Nat. Rev. Neurosci. 20(6), 330–345 (2019).NRNAAN10.1038/s41583-019-0140-6 PubMed DOI PMC
Moreaux L. C., et al. , “Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity-at depth and in real time,” Neuron 108(1), 66–92 (2020).NERNET10.1016/j.neuron.2020.09.043 PubMed DOI PMC
Kuzum D., et al. , “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).NCAOBW10.1038/ncomms6259 PubMed DOI PMC
Donahue M. J., et al. , “Multimodal characterization of neural networks using highly transparent electrode arrays,” Eneuro 5(6), ENEURO.0187-18.2018 (2018).10.1523/ENEURO.0187-18.2018 PubMed DOI PMC
Qiang Y., et al. , “Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain,” Sci. Adv. 4(9), eaat0626 (2018).STAMCV10.1126/sciadv.aat0626 PubMed DOI PMC
Lake E. M. R., et al. , “Simultaneous cortex-wide fluorescence Ca(2+) imaging and whole-brain fMRI,” Nat. Methods, 17(12), 1262–1271 (2020).10.1038/s41592-020-00984-6 PubMed DOI PMC
Schulz K., et al. , “Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9(6), 597–602 (2012).10.1038/nmeth.2013 PubMed DOI
Wang M., et al. , “Brain-state dependent astrocytic Ca(2+) signals are coupled to both positive and negative BOLD-fMRI signals,” Proc. Natl. Acad. Sci. U. S. A. 115(7), E1647–E1656 (2018).10.1073/pnas.1711692115 PubMed DOI PMC
Lee J. H., et al. , “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).10.1038/nature09108 PubMed DOI PMC
Kennerley A. J., et al. , “Concurrent fMRI and optical measures for the investigation of the hemodynamic response function,” Magn. Reson. Med. 54(2), 354–365 (2005).MRMEEN10.1002/mrm.20511 PubMed DOI
Brake J., Jang M., Yang C. H., “Analyzing the relationship between decorrelation time and tissue thickness in acute rat brain slices using multispeckle diffusing wave spectroscopy,” J. Opt. Soc. Am. A 33(2), 270–275 (2016).JOAOD610.1364/JOSAA.33.000270 PubMed DOI PMC
Yaqoob Z., et al. , “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).NPAHBY10.1038/nphoton.2007.297 PubMed DOI PMC
Liu Y., et al. , “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).NCAOBW10.1038/ncomms6904 PubMed DOI PMC
Vellekoop I. M., Mosk A. P., “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).OPLEDP10.1364/OL.32.002309 PubMed DOI
Ma C., et al. , “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).NPAHBY10.1038/nphoton.2014.251 PubMed DOI PMC
Zhou E. H., et al. , “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).10.1364/OPTICA.1.000227 PubMed DOI PMC
Ruan H. W., et al. , “Focusing light inside scattering media with magnetic-particle-guided wavefront shaping,” Optica 4(11), 1337–1343 (2017).10.1364/OPTICA.4.001337 PubMed DOI PMC
Lai P. X., et al. , “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).NPAHBY10.1038/nphoton.2014.322 PubMed DOI PMC
Shen Y. C., et al. , “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).JBOPFO10.1117/1.JBO.21.8.085001 PubMed DOI PMC
Qureshi M. M., et al. , “In vivo study of optical speckle decorrelation time across depths in the mouse brain,” Biomed. Opt. Express 8(11), 4855–4864 (2017).BOEICL10.1364/BOE.8.004855 PubMed DOI PMC
Wang D. F., et al. , “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).10.1364/OPTICA.2.000728 PubMed DOI PMC
Feldkhun D., et al. , “Focusing and scanning through scattering media in microseconds,” Optica 6(1), 72–75 (2019).10.1364/OPTICA.6.000072 DOI
Tzang O., et al. , “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).NPAHBY10.1038/s41566-019-0503-6 DOI
Laforest T., et al. , “Co-integration of a smart CMOS image sensor and a spatial light modulator for real-time optical phase modulation,” Proc SPIE 9022, 90220N (2014).10.1117/12.2039867 DOI
Pisanello F., et al. , “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).NERNET10.1016/j.neuron.2014.04.041 PubMed DOI PMC
Pisanello F., et al. , “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).NANEFN10.1038/nn.4591 PubMed DOI PMC
Pisano F., et al. , “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).10.1038/s41592-019-0581-x PubMed DOI
Balena A., et al. , “Two-photon fluorescence-assisted laser ablation of non-planar metal surfaces: fabrication of optical apertures on tapered fibers for optical neural interfaces,” Opt. Express 28(15), 21368–21381 (2020).OPEXFF10.1364/OE.395187 PubMed DOI PMC
Maglie E., et al. , “Ray tracing models for estimating light collection properties of microstructured tapered optical fibers for optical neural interfaces,” Opt. Lett. 45(14), 3856–3859 (2020).OPLEDP10.1364/OL.397022 PubMed DOI
Pisano F., et al. , “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).MIENEF10.1016/j.mee.2018.03.023 PubMed DOI PMC
Lee J., Wang W. G., Sabatini B. L., “Anatomically segregated basal ganglia pathways allow parallel behavioral modulation,” Nat. Neurosci. 23(11), 1388–1398 (2020).NANEFN10.1038/s41593-020-00712-5 PubMed DOI PMC
Lee S. J., et al. , “Monitoring behaviorally induced biochemical changes using fluorescence lifetime photometry,” Front. Neurosci. 13, 766 (2019).10.3389/fnins.2019.00766 PubMed DOI PMC
Bianco M., et al. , “Comparative study of autofluorescence in flat and tapered optical fibers towards application in depth-resolved fluorescence lifetime photometry in brain tissue,” Biomed. Opt. Express 12(2), 993–1009 (2021).BOEICL10.1364/BOE.410244 PubMed DOI PMC
Spagnolo B., et al. , “Integrated tapered fibertrode for simultaneous control and readout of neural activity over small brain volumes with reduced light-induced artefacts,” 10.1101/2020.07.31.226795 (2021). DOI
Pisano F., et al. , “Plasmonics on a neural implant: engineering light-matter interactions on the nonplanar surface of tapered optical fibers,” Adv. Opt. Mater. 10(2), 2101649 (2022).10.1002/adom.202101649 DOI
Pisano F., et al. , “Single-cell micro- and nano-photonic technologies,” J. Neurosci. Methods 325, 108355 (2019).JNMEDT10.1016/j.jneumeth.2019.108355 PubMed DOI
Park D. W., et al. , “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).NCAOBW10.1038/ncomms6258 PubMed DOI PMC
Thunemann M., et al. , “Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays,” Nat. Commun. 9, 2035 (2018).NCAOBW10.1038/s41467-018-04457-5 PubMed DOI PMC
Driscoll N., et al. , “Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale,” Commun. Biol. 4(1), 136 (2021).10.1038/s42003-021-01670-9 PubMed DOI PMC
Park D.-W., et al. , “Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice,” ACS Nano 12(1), 148–157 (2018).ANCAC310.1021/acsnano.7b04321 PubMed DOI
Liu X., et al. , “A compact closed-loop optogenetics system based on artifact-free transparent graphene electrodes,” Front. Neurosci. 12, 132 (2018).10.3389/fnins.2018.00132 PubMed DOI PMC
Seo K. J., et al. , “Transparent, flexible, penetrating microelectrode arrays with capabilities of single-unit electrophysiology,” Adv. Biosyst. 3(3), 1800276 (2019).10.1002/adbi.201800276 PubMed DOI
Geim A. K., “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).SCIEAS10.1126/science.1158877 PubMed DOI
Kostarelos K., et al. , “Graphene in the design and engineering of next-generation neural interfaces,” Adv. Mater. 29(42), 1700909 (2017).ADVMEW10.1002/adma.201700909 PubMed DOI
Rastogi S. K., et al. , “Effect of graphene on nonneuronal and neuronal cell viability and stress,” Nano Lett. 17(5), 3297–3301 (2017).NALEFD10.1021/acs.nanolett.7b01215 PubMed DOI
Zhang J., et al. , “Stretchable transparent electrode array for simultaneous electrical and optical interrogation of neural circuits in vivo,” Nano Lett. 18(5), 2903–2911 (2018).NALEFD10.1021/acs.nanolett.8b00087 PubMed DOI
Lu Y. C., et al. , “Ultralow Impedance graphene microelectrodes with high optical transparency for simultaneous deep two-photon imaging in transgenic mice,” Adv. Funct. Mater. 28(31), 1800002 (2018).AFMDC610.1002/adfm.201800002 PubMed DOI PMC
Barkhof F., Haller S., Rombouts S. A. R. B., “Resting-state functional MR imaging: a new window to the brain,” Radiology 272(1), 29–49 (2014).RADLAX10.1148/radiol.14132388 PubMed DOI
He B. J., “Spontaneous and task-evoked brain activity negatively interact,” J. Neurosci. 33(11), 4672–4682 (2013).JNRSDS10.1523/JNEUROSCI.2922-12.2013 PubMed DOI PMC
Ito T., et al. , “Task-evoked activity quenches neural correlations and variability across cortical areas,” PLoS Comput. Biol. 16(8), e1007983 (2020).10.1371/journal.pcbi.1007983 PubMed DOI PMC
Albers F., et al. , “Multimodal functional neuroimaging by simultaneous BOLD fMRI and fiber-optic calcium recordings and optogenetic control,” Mol. Imaging Biol. 20(2), 171–182 (2018).10.1007/s11307-017-1130-6 PubMed DOI
Chen X. M., et al. , “Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus,” Nat. Commun. 10, 5239 (2019).NCAOBW10.1038/s41467-019-12850-x PubMed DOI PMC
Lee J. H., “Informing brain connectivity with optogenetic functional magnetic resonance imaging,” Neuroimage 62(4), 2244–2249 (2012).NEIMEF10.1016/j.neuroimage.2012.01.116 PubMed DOI
Miyamoto D., Murayama M., “The fiber-optic imaging and manipulation of neural activity during animal behavior,” Neurosci. Res. 103, 1–9 (2016).10.1016/j.neures.2015.09.004 PubMed DOI
Palmer H. S., “Optogenetic fMRI sheds light on the neural basis of the BOLD signal,” J. Neurophysiol. 104(4), 1838–1840 (2010).JONEA410.1152/jn.00535.2010 PubMed DOI
Schlegel F., et al. , “Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice,” Nat. Protoc. 13(5), 840–855 (2018).10.1038/nprot.2018.003 PubMed DOI
Schwalm M., et al. , “Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves,” Elife 6, e27602 (2017).10.7554/eLife.27602 PubMed DOI PMC
Pegard N. C., et al. , “Compressive light-field microscopy for 3D neural activity recording,” Optica 3(5), 517–524 (2016).10.1364/OPTICA.3.000517 DOI
Nobauer T., et al. , “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).10.1038/nmeth.4341 PubMed DOI
Truong T. V., et al. , “High-contrast, synchronous volumetric imaging with selective volume illumination microscopy,” Commun. Biol. 3, 74 (2020).10.1038/s42003-020-0787-6 PubMed DOI PMC
Zhang Z. K., et al. , “Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy,” Nat. Biotechnol. 39(1), 74–83 (2021).NABIF910.1038/s41587-020-0628-7 PubMed DOI
Quicke P., et al. , “Subcellular resolution three-dimensional light-field imaging with genetically encoded voltage indicators,” Neurophotonics 7(3), 035006 (2020).10.1117/1.NPh.7.3.035006 PubMed DOI PMC
Cong L., et al. , “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” Elife 6, e28158 (2017).10.7554/eLife.28158 PubMed DOI PMC
Skocek O., et al. , “High-speed volumetric imaging of neuronal activity in freely moving rodents,” Nat. Methods 15(6), 429–432 (2018).10.1038/s41592-018-0008-0 PubMed DOI PMC
Turcottea R., et al. , “Dynamic super-resolution structured illumination imaging in the living brain,” Proc. Natl. Acad. Sci. U. S. A. 116(19), 9586–9591 (2019).10.1073/pnas.1819965116 PubMed DOI PMC
Yanny K., et al. , “Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy,” Light-Sci. Appl. 9(1), 171 (2020).10.1038/s41377-020-00403-7 PubMed DOI PMC
Adams J. K., et al. , “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).STAMCV10.1126/sciadv.1701548 PubMed DOI PMC
Hong S., et al. , “Structured illumination microscopy for the investigation of synaptic structure and function,” Synapse Dev. 1538, 155–167 (2017).10.1007/978-1-4939-6688-2_12 PubMed DOI PMC
Winter P. W., et al. , “Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples,” Optica 1(3), 181–191 (2014).10.1364/OPTICA.1.000181 PubMed DOI PMC
Tahir W., et al. , “Anatomical modeling of brain vasculature in two-photon microscopy by generalizable deep learning,” BME Front. 2021, 1 (2021).10.34133/2021/8620932 PubMed DOI PMC
Stefan S., Lee J., “Deep learning toolbox for automated enhancement, segmentation, and graphing of cortical optical coherence tomography microangiograms,” Biomed. Opt. Express 11(12), 7325–7342 (2020).BOEICL10.1364/BOE.405763 PubMed DOI PMC
Soltanian-Zadeh S., et al. , “Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning,” Proc. Natl. Acad. Sci. U. S. A. 116(17), 8554–8563 (2019).10.1073/pnas.1812995116 PubMed DOI PMC
Lecoq J., et al. , “Removing independent noise in systems neuroscience data using DeepInterpolation,” Nat. Methods 18(11), 1401–1408 (2021).10.1038/s41592-021-01285-2 PubMed DOI PMC
Bao Y. J., et al. , “Segmentation of neurons from fluorescence calcium recordings beyond real time,” Nat. Mach. Intell. 3(7), 590–600 (2021).10.1038/s42256-021-00342-x PubMed DOI PMC
Rupprecht P., et al. , “A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging,” Nat. Neurosci. 24(9), 1324–1337 (2021).NANEFN10.1038/s41593-021-00895-5 PubMed DOI PMC
Giovannucci A., et al. , “CaImAn an open source tool for scalable calcium imaging data analysis,” Elife 8, e38173 (2019).10.7554/eLife.38173 PubMed DOI PMC
Wang Z. Q., et al. , “Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning,” Nat. Methods 18(5), 551 (2021).10.1038/s41592-021-01058-x PubMed DOI PMC
Wagner N., et al. , “Deep learning-enhanced light-field imaging with continuous validation,” Nat. Methods 18(5), 557–563 (2021).10.1038/s41592-021-01136-0 PubMed DOI
Jin L. H., et al. , “Deep learning enables structured illumination microscopy with low light levels and enhanced speed,” Nat. Commun. 11, 1934 (2020).NCAOBW10.1038/s41467-020-15784-x PubMed DOI PMC
Pavone F. S., Shoham S., Handbook of Neurophotonics, CRC Press, Boca Raton: (2020).
Richards L. M., et al. , “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).10.1117/1.NPh.1.1.015006 PubMed DOI PMC
Sato K., et al. , “Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations,” Neurophotonics 4(3), 031205 (2017).10.1117/1.NPh.4.3.031205 PubMed DOI PMC
Rayshubskiy A., et al. , “Direct, intraoperative observation of similar to 0.1 Hz hemodynamic oscillations in awake human cortex: Implications for fMRI,” Neuroimage 87, 323–331 (2014).NEIMEF10.1016/j.neuroimage.2013.10.044 PubMed DOI PMC
Kleinlogel S., et al. , “Emerging approaches for restoration of hearing and vision,” Physiol. Rev. 100(4), 1467–1525 (2020).PHREA710.1152/physrev.00035.2019 PubMed DOI
Gagnon L., et al. , “Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35(8), 3663–3675 (2015).JNRSDS10.1523/JNEUROSCI.3555-14.2015 PubMed DOI PMC
Kozberg M. G., et al. , “Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain,” Proc. Natl. Acad. Sci. U. S. A. 110(11), 4380–4385 (2013).10.1073/pnas.1212785110 PubMed DOI PMC
Adams A., et al. , “International brain initiative: an innovative framework for coordinated global brain research efforts,” Neuron 105(2), 212–216 (2020).NERNET10.1016/j.neuron.2020.01.002 PubMed DOI