Neurophotonic tools for microscopic measurements and manipulation: status report

. 2022 Jan ; 9 (Suppl 1) : 013001. [epub] 20220427

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35493335

Grantová podpora
U01 NS103488 NINDS NIH HHS - United States
R01 NS108472 NINDS NIH HHS - United States
R01 NS108034 NINDS NIH HHS - United States
R01 NS121919 NINDS NIH HHS - United States
R01 NS109885 NINDS NIH HHS - United States
R01 NS115401 NINDS NIH HHS - United States
R01 NS098088 NINDS NIH HHS - United States
U19 NS107613 NINDS NIH HHS - United States
R21 EY030016 NEI NIH HHS - United States
U19 NS123719 NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
U01 MH117023 NIMH NIH HHS - United States
U01 NS099709 NINDS NIH HHS - United States
U01 NS099717 NINDS NIH HHS - United States
UF1 NS107680 NINDS NIH HHS - United States
R01 GM124038 NIGMS NIH HHS - United States
R01 NS091335 NINDS NIH HHS - United States
R01 NS117756 NINDS NIH HHS - United States
U19 NS104649 NINDS NIH HHS - United States
UF1 NS108213 NINDS NIH HHS - United States
U01 NS113273 NINDS NIH HHS - United States
DP2 MH129956 NIMH NIH HHS - United States
R44 MH117430 NIMH NIH HHS - United States
U19 NS123717 NINDS NIH HHS - United States
R01 NS094681 NINDS NIH HHS - United States
U01 NS094358 NINDS NIH HHS - United States
UF1 NS108177 NINDS NIH HHS - United States
U24 EB028941 NIBIB NIH HHS - United States
RF1 NS121095 NINDS NIH HHS - United States
U01 NS118300 NINDS NIH HHS - United States
F31 NS118949 NINDS NIH HHS - United States
U01 NS094296 NINDS NIH HHS - United States
R01 NS091230 NINDS NIH HHS - United States
K25 HL145092 NHLBI NIH HHS - United States
R01 NS120832 NINDS NIH HHS - United States
R01 NS121219 NINDS NIH HHS - United States
R01 EY031469 NEI NIH HHS - United States
U19 NS107464 NINDS NIH HHS - United States
F31 NS115421 NINDS NIH HHS - United States
R01 EB029747 NIBIB NIH HHS - United States
U01 CA236554 NCI NIH HHS - United States
R01 NS102213 NINDS NIH HHS - United States
RF1 NS110501 NINDS NIH HHS - United States
RF1 NS113251 NINDS NIH HHS - United States
R01 DA050159 NIDA NIH HHS - United States
U01 NS120820 NINDS NIH HHS - United States
R01 MH111424 NIMH NIH HHS - United States
U19 NS112959 NINDS NIH HHS - United States
U01 EB029823 NIBIB NIH HHS - United States
R01 NS102586 NINDS NIH HHS - United States
R01 MH111359 NIMH NIH HHS - United States

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

Boston University Department of Biomedical Engineering Boston Massachusetts United States

Boston University Departments of Electrical Engineering and Biomedical Engineering Boston Massachusetts United States

Brown University Department of Neuroscience Providence Rhode Island United States

California Institute of Technology Andrew and Peggy Cherng Department of Medical Engineering Department of Electrical Engineering Pasadena California United States

California Institute of Technology Departments of Electrical Engineering Bioengineering and Medical Engineering Pasadena California United States

Carnegie Mellon University Department of Biological Sciences Pittsburgh Pennsylvania United States

Center for Neuroengineering and Therapeutics Departments of Neurology Bioengineering Physical Medicine and Rehabilitation Philadelphia Pennsylvania United States

Central Michigan University Department of Neuroscience Mount Pleasant Michigan United States

Columbia University Zuckerman Mind Brain Behavior Institute New York United States

Cornell University School of Applied and Engineering Physics Ithaca New York United States

Emory University Department of Pediatrics Atlanta Georgia United States

Georgia Institute of Technology and Emory University Wallace H Coulter Department of Biomedical Engineering Atlanta Georgia United States

Harvard Medical School Department of Neurobiology Boston Massachusetts United States

Harvard Medical School Howard Hughes Medical Institute Department of Neurobiology Boston Massachusetts United States

Harvey Mudd College Department of Engineering Claremont California United States

Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech Republic

Interdisciplinary Institute for Neuroscience University of Bordeaux and CNRS Bordeaux France

Istituto Italiano di Tecnologia Center for Biomolecular Nanotechnologies Arnesano Italy

Massachusetts General Hospital Harvard Medical School Athinoula A Martinos Center for Biomedical Imaging Charlestown Massachusetts United States

National Institute of Optics National Research Council Rome Italy

New York University Grossman School of Medicine Tech4Health and Neuroscience Institutes New York New York United States

New York University Langone Health Departments of Ophthalmology and Radiology New York New York United States

Rockefeller University Laboratory of Neurotechnology and Biophysics New York New York United States

Salk Institute for Biological Studies Waitt Advanced Biophotonics Center La Jolla California United States

Sorbonne University INSERM CNRS Institut de la Vision Paris France

The Hebrew University of Jerusalem Institute for Medical Research Israel Canada Department of Medical Neurobiology Faculty of Medicine Jerusalem Israel

The Rockefeller University The Kavli Neural Systems Institute New York New York United States

University College London Department of Neuroscience Physiology and Pharmacology London United Kingdom

University of Alberta Department of Chemistry Edmonton Alberta Canada

University of California Berkeley Department of Physics Berkeley California United States

University of California Berkeley Departments of Chemistry and Molecular and Cell Biology and Helen Wills Neuroscience Institute Berkeley California United States

University of California Davis Department of Biochemistry and Molecular Medicine Davis California United States

University of California San Diego Department of Electrical and Computer Engineering La Jolla California United States

University of California San Diego Departments of Neurosciences La Jolla California United States

University of California Santa Barbara Department of Electrical and Computer Engineering Santa Barbara California United States

University of Campinas Institute of Physics Campinas São Paulo Brazil

University of Florence European Laboratory for Non Linear Spectroscopy Department of Biology Florence Italy

University of Florence European Laboratory for Non Linear Spectroscopy Department of Physics Florence Italy

University of Minnesota Department of Biomedical Engineering Minneapolis Minnesota United States

University of Pennsylvania Perelman School of Medicine Department of Biochemistry and Biophysics Philadelphia Pennsylvania United States

University of Pennsylvania School of Arts and Sciences Department of Chemistry Philadelphia Pennsylvania United States

University of Porto Instituto de Investigação e Inovação em Saúde Porto Portugal

University of Tokyo Department of Chemistry Tokyo Japan

Weizmann Institute of Science Department of Brain Sciences Rehovot Israel

Yale School of Medicine Department of Radiology and Biomedical Imaging New Haven Connecticut United States

Zobrazit více v PubMed

Insel T. R., Landis S. C., Collins F. S., “Research priorities. The NIH BRAIN initiative,” Science 340(6133), 687–688 (2013).SCIEAS10.1126/science.1239276 PubMed DOI PMC

Devor A., et al. , “The challenge of connecting the dots in the B.R.A.I.N,” Neuron 80(2), 270–274 (2013).NERNET10.1016/j.neuron.2013.09.008 PubMed DOI PMC

Grillner S., et al. , “Worldwide initiatives to advance brain research,” Nat. Neurosci. 19(9), 1118–1122 (2016).NANEFN10.1038/nn.4371 PubMed DOI PMC

Rodriguez E. A., et al. , “The growing and glowing toolbox of fluorescent and photoactive proteins,” Trends Biochem. Sci. 42(2), 111–129 (2017).TBSCDB10.1016/j.tibs.2016.09.010 PubMed DOI PMC

Chung K., et al. , “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332–337 (2013).10.1038/nature12107 PubMed DOI PMC

Chen B. C., et al. , “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).SCIEAS10.1126/science.1257998 PubMed DOI PMC

Hillman E. M. C., et al. , “Light-sheet microscopy in neuroscience,” Annu. Rev. Neurosci. 42, 295–313 (2019).ARNSD510.1146/annurev-neuro-070918-050357 PubMed DOI PMC

Hell S. W., “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).10.1038/nmeth.1291 PubMed DOI

Huang B., Bates M., Zhuang X. W., “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78, 993–1016 (2009).ARBOAW10.1146/annurev.biochem.77.061906.092014 PubMed DOI PMC

Tillberg P. W., et al. , “Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies,” Nat. Biotechnol. 34(9), 987–992 (2016).NABIF910.1038/nbt.3625 PubMed DOI PMC

Costantini I., et al. , “Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains,” Sci. Rep. 11, 8038 (2021).SRCEC310.1038/s41598-021-86092-7 PubMed DOI PMC

Mascaro A. L. A., et al. , “Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging,” Biomed. Opt. Express 6(11), 4483–4492 (2015).BOEICL10.1364/BOE.6.004483 PubMed DOI PMC

Min E., et al. , “Serial optical coherence microscopy for label-free volumetric histopathology,” Sci. Rep. 10, 6711 (2020).SRCEC310.1038/s41598-020-63460-3 PubMed DOI PMC

Schain A. J., Hill R. A., Grutzendler J., “Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy,” Nat. Med. 20(4), 443–449 (2014).10.1038/nm.3495 PubMed DOI PMC

Wang H., Zhu J. F., Akkin T., “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).NEIMEF10.1016/j.neuroimage.2013.09.063 PubMed DOI PMC

Leahy C., Radhakrishnan H., Srinivasan V. J., “Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast,” Biomed. Opt. Express 4(10), 1978–1990 (2013).BOEICL10.1364/BOE.4.001978 PubMed DOI PMC

Tsien R. Y., “The green fluorescent protein,” Annu. Rev. Biochem. 67, 509–544 (1998).ARBOAW10.1146/annurev.biochem.67.1.509 PubMed DOI

Lambert G. G., et al. , “Aequorea’s secrets revealed: new fluorescent proteins with unique properties for bioimaging and biosensing,” PLoS Biol. 18(11), e3000936 (2020).10.1371/journal.pbio.3000936 PubMed DOI PMC

Shaner N. C., et al. , “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22(12), 1567–1572 (2004).NABIF910.1038/nbt1037 PubMed DOI

Hoi H., et al. , “An engineered monomeric Zoanthus sp yellow fluorescent protein,” Chem. Biol. 20(10), 1296–1304 (2013).CBOLE210.1016/j.chembiol.2013.08.008 PubMed DOI

Shen Y., Lai T., Campbell R. E., “Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications,” Neurophotonics 2(3), 031203 (2015).10.1117/1.NPh.2.3.031203 PubMed DOI PMC

Shcherbakova D. M., et al. , “Near-infrared fluorescent proteins: multiplexing and optogenetics across scales,” Trends Biotechnol. 36(12), 1230–1243 (2018).TRBIDM10.1016/j.tibtech.2018.06.011 PubMed DOI PMC

Bindels D. S., et al. , “mScarlet: a bright monomeric red fluorescent protein for cellular imaging,” Nat. Methods 14(1), 53–56 (2017).10.1038/nmeth.4074 PubMed DOI

Eason M. G., Damry A. M., Chica R. A., “Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores,” Curr. Opin. Struct. Biol. 45, 91–99 (2017).COSBEF10.1016/j.sbi.2016.12.001 PubMed DOI

Grimm J. B., et al. , “A general method to improve fluorophores for live-cell and single-molecule microscopy,” Nat. Methods 12(3), 244–250 (2015).10.1038/nmeth.3256 PubMed DOI PMC

Dou J., et al. , “De novo design of a fluorescence-activating beta-barrel,” Nature 561(7724), 485–491 (2018).10.1038/s41586-018-0509-0 PubMed DOI PMC

Yeh H. W., et al. , “Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging,” Nat. Methods 14(10), 971–974 (2017).10.1038/nmeth.4400 PubMed DOI PMC

Iwano S., et al. , “Single-cell bioluminescence imaging of deep tissue in freely moving animals,” Science 359(6378), 935–939 (2018).SCIEAS10.1126/science.aaq1067 PubMed DOI

Helmstaedter M., et al. , “Reconstruction of an average cortical column in silico,” Brain Res. Rev. 55(2), 193–203 (2007).BRERD210.1016/j.brainresrev.2007.07.011 PubMed DOI

Erturk A., et al. , “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc. 7(11), 1983–1995 (2012).10.1038/nprot.2012.119 PubMed DOI

Costantini I., et al. , “In-vivo and ex-vivo optical clearing methods for biological tissues: review,” Biomed. Opt. Express 10(10), 5251–5267 (2019).BOEICL10.1364/BOE.10.005251 PubMed DOI PMC

Ku T., et al. , “Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues,” Nat. Biotechnol. 34(9), 973–981 (2016).NABIF910.1038/nbt.3641 PubMed DOI PMC

Park Y. G., et al. , “Protection of tissue physicochemical properties using polyfunctional crosslinkers,” Nat. Biotechnol. 37(1), 73–83 (2019).NABIF910.1038/nbt.4281 PubMed DOI PMC

Murray E., et al. , “Simple, scalable proteomic imaging for high-dimensional profiling of intact systems,” Cell 163(6), 1500–1514 (2015).CELLB510.1016/j.cell.2015.11.025 PubMed DOI PMC

Choquet D., Sainlos M., Sibarita J. B., “Advanced imaging and labelling methods to decipher brain cell organization and function,” Nat. Rev. Neurosci. 22(4), 237–255 (2021).NRNAAN10.1038/s41583-021-00441-z PubMed DOI

Pfeiffer T., et al. , “Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo,” Elife 7, e34700 (2018).10.7554/eLife.34700 PubMed DOI PMC

Inavalli V., et al. , “A super-resolution platform for correlative live single-molecule imaging and STED microscopy,” Nat. Methods 16(12), 1263–1268 (2019).10.1038/s41592-019-0611-8 PubMed DOI

Tonnesen J., Inavalli V., Nagerl U. V., “Super-resolution imaging of the extracellular space in living brain tissue,” Cell 172(5), 1108–1121.e15 (2018).CELLB510.1016/j.cell.2018.02.007 PubMed DOI

Hell S. W., “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).SCIEAS10.1126/science.1137395 PubMed DOI

Furstenberg A., Heilemann M., “Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores,” Phys. Chem. Chem. Phys. 15(36), 14919–14930 (2013).PPCPFQ10.1039/c3cp52289j PubMed DOI

Xu K., Zhong G., Zhuang X., “Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons,” Science 339(6118), 452–456 (2013).SCIEAS10.1126/science.1232251 PubMed DOI PMC

Tang A. H., et al. , “A trans-synaptic nanocolumn aligns neurotransmitter release to receptors,” Nature 536(7615), 210–214 (2016).10.1038/nature19058 PubMed DOI PMC

Hrabetova S., et al. , “Unveiling the extracellular space of the brain: from super-resolved microstructure to in vivo function,” J. Neurosci. 38(44), 9355–9363 (2018).JNRSDS10.1523/JNEUROSCI.1664-18.2018 PubMed DOI PMC

Chen F., Tillberg P. W., Boyden E. S., “Expansion microscopy,” Science 347(6221), 543–548 (2015).SCIEAS10.1126/science.1260088 PubMed DOI PMC

Klimas A., Zhao Y., “Expansion microscopy: toward nanoscale imaging of a diverse range of biomolecules,” ACS Nano 14(7), 7689–7695 (2020).ANCAC310.1021/acsnano.0c04374 PubMed DOI PMC

Wassie A. T., Zhao Y., Boyden E. S., “Expansion microscopy: principles and uses in biological research,” Nat. Methods 16(1), 33–41 (2019).10.1038/s41592-018-0219-4 PubMed DOI PMC

Gallagher B. R., Zhao Y., “Expansion microscopy: a powerful nanoscale imaging tool for neuroscientists,” Neurobiol. Dis. 154, 105362 (2021).NUDIEM10.1016/j.nbd.2021.105362 PubMed DOI PMC

Zhao Y. X., et al. , “Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy,” Nat. Biotechnol. 35(8), 757–764 (2017).NABIF910.1038/nbt.3892 PubMed DOI PMC

Bucur O., et al. , “Nanoscale imaging of clinical specimens using conventional and rapid-expansion pathology,” Nat. Protoc. 15(5), 1649–1672 (2020).10.1038/s41596-020-0300-1 PubMed DOI PMC

Chen F., et al. , “Nanoscale imaging of RNA with expansion microscopy,” Nat. Methods 13(8), 679–684 (2016).10.1038/nmeth.3899 PubMed DOI PMC

Chozinski T. J., et al. , “Expansion microscopy with conventional antibodies and fluorescent proteins,” Nat. Methods 13(6), 485–488 (2016).10.1038/nmeth.3833 PubMed DOI PMC

Truckenbrodt S., et al. , “X10 expansion microscopy enables 25-nm resolution on conventional microscopes,” Embo Rep. 19(9), e45836 (2018).10.15252/embr.201845836 PubMed DOI PMC

Chang J. B., et al. , “Iterative expansion microscopy,” Nat. Methods 14(6), 593–599 (2017).10.1038/nmeth.4261 PubMed DOI PMC

Jiang N., et al. , “Superresolution imaging of Drosophila tissues using expansion microscopy,” Mol. Biol. Cell 29(12), 1413–1421 (2018).MBCEEV10.1091/mbc.E17-10-0583 PubMed DOI PMC

Mosca T. J., et al. , “Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons,” Elife 6, e27347 (2017).10.7554/eLife.27347 PubMed DOI PMC

Yu C. C., et al. , “Expansion microscopy of C. elegans,” Elife 9, e46249 (2020).10.7554/eLife.46249 PubMed DOI PMC

Wang I. E., et al. , “Hedgehog signaling regulates gene expression in planarian glia,” Elife 5, e16996 (2016).10.7554/eLife.16996 PubMed DOI PMC

Freifeld L., et al. , “Expansion microscopy of zebrafish for neuroscience and developmental biology studies,” Proc. Natl. Acad. Sci. U. S. A. 114(50), E10799–E10808 (2017).10.1073/pnas.1706281114 PubMed DOI PMC

Gao R. X., et al. , “Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution,” Science 363(6424), 245 (2019).SCIEAS10.1126/science.aau8302 PubMed DOI PMC

Crittenden J. R., Graybiel A. M., “Disease-associated changes in the striosome and matrix compartments of the dorsal striatum,” HBK Behav. Neurosci. 24, 783–802 (2016).10.1016/B978-0-12-802206-1.00039-8 DOI

Corner A. L., et al. , “Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction,” PLoS Biol. 18(1), e3000604 (2020).10.1371/journal.pbio.3000604 PubMed DOI PMC

Ortega J. A., et al. , “Nucleocytoplasmic proteomic analysis uncovers eRF1 and nonsense-mediated decay as modifiers of ALS/FTD C9orf72 toxicity,” Neuron 106(1), 90–107.e13 (2020).NERNET10.1016/j.neuron.2020.01.020 PubMed DOI PMC

Crittenden J. R., et al. , “Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons,” Proc. Natl. Acad. Sci. U. S. A. 113(40), 11318–11323 (2016).10.1073/pnas.1613337113 PubMed DOI PMC

Pesce L., et al. , “Exploring the human cerebral cortex using confocal microscopy,” Prog. Biophys. Mol. Biol. 168, 3–9 (2022).10.1016/j.pbiomolbio.2021.09.001 PubMed DOI PMC

Marchetti M., et al. , “Custom multiphoton/raman microscopy setup for imaging and characterization of biological samples,” Methods Protoc. 2(2), 51 (2019).10.3390/mps2020051 PubMed DOI PMC

Cicchi R., et al. , “From molecular structure to tissue architecture: collagen organization probed by SHG microscopy,” J. Biophotonics 6(2), 129–142 (2013).10.1002/jbio.201200092 PubMed DOI

Cox G., “Biological applications of second harmonic imaging,” Biophys. Rev. 3(3), 131–141 (2011).10.1007/s12551-011-0052-9 PubMed DOI PMC

Weigelin B., Bakker G. J., Friedl P., “Third harmonic generation microscopy of cells and tissue organization,” J.Cell Sci. 129(2), 245–255 (2016).10.1242/jcs.152272 PubMed DOI

Axer M., et al. , “High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging,” Front. Neuroinf. 5, 34 (2011).10.3389/fninf.2011.00034 PubMed DOI PMC

Stacho M., et al. , “A cortex-like canonical circuit in the avian forebrain,” Science 369(6511), eabc5534 (2020).SCIEAS10.1126/science.abc5534 PubMed DOI

Shaik T. A.-O., et al. , “Monitoring changes in biochemical and biomechanical properties of collagenous tissues using label-free and nondestructive optical imaging techniques,” Anal. Chem. 93(8), 3813–3821 (2021).ANCHAM10.1021/acs.analchem.0c04306 PubMed DOI

Wei M., et al. , “Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 116(14), 6608 (2019).10.1073/pnas.1813044116 PubMed DOI PMC

Silvestri L., et al. , “Universal autofocus for quantitative volumetric microscopy of whole mouse brains,” Nat. Methods 18(8), 953–958 (2021).10.1038/s41592-021-01208-1 PubMed DOI

Costantini I., et al. , “Large-scale, cell-resolution volumetric mapping allows layer-specific investigation of human brain cytoarchitecture,” Biomed. Opt. Express 12(6), 3684–3699 (2021).BOEICL10.1364/BOE.415555 PubMed DOI PMC

Huang D., et al. , “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).SCIEAS10.1126/science.1957169 PubMed DOI PMC

Kut C., et al. , “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).STMCBQ10.1126/scitranslmed.3010611 PubMed DOI PMC

Srinivasan V. J., et al. , “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012).OPEXFF10.1364/OE.20.002220 PubMed DOI PMC

Ben Arous J., et al. , “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt. 16(11), 116012 (2011).JBOPFO10.1117/1.3650770 PubMed DOI

Marchand P. J., et al. , “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” Biomed. Opt. Express 8(7), 3343–3359 (2017).BOEICL10.1364/BOE.8.003343 PubMed DOI PMC

Srinivasan V. J., et al. , “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLOS ONE 8(8), e71478 (2013).POLNCL10.1371/journal.pone.0071478 PubMed DOI PMC

Li F., et al. , “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1(2), 025002 (2014).10.1117/1.NPh.1.2.025002 PubMed DOI PMC

Bolmont T., et al. , “Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci. 32(42), 14548–14556 (2012).JNRSDS10.1523/JNEUROSCI.0925-12.2012 PubMed DOI PMC

Zhu J., et al. , “1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain,” Light Sci. Appl. 10(1), 145 (2021).10.1038/s41377-021-00586-7 PubMed DOI PMC

Assayag O., et al. , “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” NeuroImage: Clin. 2, 549–557 (2013).10.1016/j.nicl.2013.04.005 PubMed DOI PMC

Bizheva K., et al. , “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10(1), 011006 (2007).JBOPFO10.1117/1.1851513 PubMed DOI

Magnain C., et al. , “Blockface histology with optical coherence tomography: a comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).NEIMEF10.1016/j.neuroimage.2013.08.072 PubMed DOI PMC

Wang H., et al. , “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).NEIMEF10.1016/j.neuroimage.2011.07.005 PubMed DOI PMC

Wang H., et al. , “Cross-validation of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in human medulla oblongata,” Neuroimage 100, 395–404 (2014).NEIMEF10.1016/j.neuroimage.2014.06.032 PubMed DOI PMC

Lefebvre J., et al. , “Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI,” Neurophotonics 4(4), 041501 (2017).10.1117/1.NPh.4.4.041501 PubMed DOI PMC

Castonguay A., et al. , “Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain,” J. Biomed. Opt. 23(1), 016008 (2018).JBOPFO10.1117/1.JBO.23.1.016008 PubMed DOI

Liu C. J., et al. , “Visualizing and mapping the cerebellum with serial optical coherence scanner,” Neurophotonics 4(1), 011006 (2017).10.1117/1.NPh.4.1.011006 PubMed DOI PMC

Li T. Q., Liu C. J., Akkin T., “Contrast-enhanced serial optical coherence scanner with deep learning network reveals vasculature and white matter organization of mouse brain,” Neurophotonics 6(3), 035004 (2019).10.1117/1.NPh.6.3.035004 PubMed DOI PMC

Liu C. J., et al. , “Polarization-sensitive optical coherence tomography reveals gray matter and white matter atrophy in SCA1 mouse models,” Neurobiol. Dis. 116, 69–77 (2018).NUDIEM10.1016/j.nbd.2018.05.003 PubMed DOI

Inoue M., “Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo,” Neurosci. Res. 169, 2–8 (2021).10.1016/j.neures.2020.05.013 PubMed DOI

Barson D., et al. , “Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits,” Nat. Methods 17(1), 107–113 (2020).10.1038/s41592-019-0625-2 PubMed DOI PMC

Lohr C., et al. , “Using genetically encoded calcium indicators to study astrocyte physiology: a field guide,” Front. Cell Neurosci. 15, 690147 (2021).10.3389/fncel.2021.690147 PubMed DOI PMC

Cohen L. B., Salzberg B. M., Grinvald A., “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1, 171–182 (1978).ARNSD510.1146/annurev.ne.01.030178.001131 PubMed DOI

Abdelfattah A. S., et al. , “Bright and photostable chemigenetic indicators for extended in vivo voltage imaging,” Science 365(6454), 699–704 (2019).SCIEAS10.1126/science.aav6416 PubMed DOI

Piatkevich K. D., et al. , “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).10.1038/s41586-019-1641-1 PubMed DOI PMC

Villette V., et al. , “Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice,” Cell 179(7), 1590–1608.e23 (2019).CELLB510.1016/j.cell.2019.11.004 PubMed DOI PMC

Kannan M., et al. , “Fast, in vivo voltage imaging using a red fluorescent indicator,” Nat. Methods 15(12), 1108–1116 (2018).10.1038/s41592-018-0188-7 PubMed DOI PMC

Kulkarni R. U., et al. , “In vivo two-photon voltage imaging with sulfonated rhodamine dyes,” ACS Cent. Sci. 4(10), 1371–1378 (2018).10.1021/acscentsci.8b00422 PubMed DOI PMC

Pal A., Tian L., “Imaging voltage and brain chemistry with genetically encoded sensors and modulators,” Curr. Opin. Chem. Biol. 57, 166–176 (2020).COCBF410.1016/j.cbpa.2020.07.006 PubMed DOI

Kulkarni R. U., Miller E. W., “Voltage imaging: pitfalls and potential,” Biochemistry 56(39), 5171–5177 (2017).10.1021/acs.biochem.7b00490 PubMed DOI PMC

Andreoni A., Davis C. M. O., Tian L., “Measuring brain chemistry using genetically encoded fluorescent sensors,” Curr. Opin. Biomed. Eng. 12, 59–67 (2019).10.1016/j.cobme.2019.09.008 DOI

Lee S. J., et al. , “Cell-type-specific asynchronous modulation of PKA by dopamine in learning,” Nature 590(7846), 451–456 (2021).10.1038/s41586-020-03050-5 PubMed DOI PMC

Oe Y., et al. , “Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance,” Nat. Commun. 11, 471 (2020).NCAOBW10.1038/s41467-020-14378-x PubMed DOI PMC

Augustine V., et al. , “Temporally and spatially distinct thirst satiation signals,” Neuron 103(2), 242–249.e4 (2019).NERNET10.1016/j.neuron.2019.04.039 PubMed DOI PMC

Mohebi A., et al. , “Dissociable dopamine dynamics for learning and motivation,” Nature 570(7759), 65–70 (2019).10.1038/s41586-019-1235-y PubMed DOI PMC

de Jong J. W., et al. , “A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system,” Neuron 101(1), 133–151.e7 (2019).NERNET10.1016/j.neuron.2018.11.005 PubMed DOI PMC

Robinson J. E., et al. , “Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1,” Elife 8, e48983 (2019).10.7554/eLife.48983 PubMed DOI PMC

Dong H., et al. , “Dorsal striatum dopamine levels fluctuate across the sleep-wake cycle and respond to salient stimuli in mice,” Front. Neurosci. 13, 242 (2019).10.3389/fnins.2019.00242 PubMed DOI PMC

Dai B., et al. , “Dopamine release in nucleus accumbens core during social behaviors in mice,” 10.1101/2021.06.22.449478 (2021). PubMed DOI PMC

Gallo E. F., et al. , “Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning,” Mol. Physchiatry (2021).10.1038/s41380-021-01364-y PubMed DOI PMC

Kjaerby C., et al. , “Dynamic fluctuations of the locus coeruleus-norepinephrine system underlie sleep state transitions,” 10.1101/2020.09.01.274977 (2020). DOI

Sturgill J., et al. , “Basal forebrain-derived acetylcholine encodes valence-free reinforcement prediction error,” 10.1101/2020.02.17.953141 (2020). DOI

Lohani S., et al. , “Dual color mesoscopic imaging reveals spatiotemporally heterogeneous coordination of cholinergic and neocortical activity,” 10.1101/2020.12.09.418632 (2020). PubMed DOI PMC

Iadecola C., “The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease,” Neuron 96(1), 17–42 (2017).NERNET10.1016/j.neuron.2017.07.030 PubMed DOI PMC

Eroglu C., Barres B. A., “Regulation of synaptic connectivity by glia,” Nature 468(7321), 223–231 (2010).10.1038/nature09612 PubMed DOI PMC

Koveal D., Diaz-Garcia C. M., Yellen G., “Fluorescent biosensors for neuronal metabolism and the challenges of quantitation,” Curr. Opin. Neurobiol. 63, 111–121 (2020).COPUEN10.1016/j.conb.2020.02.011 PubMed DOI PMC

Barros L. F., et al. , “Current technical approaches to brain energy metabolism,” Glia 66(6), 1138–1159 (2018).GLIAEJ10.1002/glia.23248 PubMed DOI PMC

Yu X., Nagai J., Khakh B. S., “Improved tools to study astrocytes,” Nat. Rev. Neurosci. 21(3), 121–138 (2020).NRNAAN10.1038/s41583-020-0264-8 PubMed DOI

Wilson D. F., et al. , “Measuring oxygen in living tissue: intravascular, interstitial, and “tissue” oxygen measurements,” Adv. Exp. Med. Biol. 701, 53–59 (2011).AEMBAP10.1007/978-1-4419-7756-4_8 PubMed DOI

Finikova O. S., et al. , “Oxygen microscopy by two-photon-excited phosphorescence,” Chemphyschem 9(12), 1673–1679 (2008).CPCHFT10.1002/cphc.200800296 PubMed DOI PMC

Esipova T. V., et al. , “Oxyphor 2P: a high-performance probe for deep-tissue longitudinal oxygen imaging,” Cell Metab. 29(3), 736–744.e7 (2019).10.1016/j.cmet.2018.12.022 PubMed DOI PMC

Tung J. K., et al. , “Bioluminescence imaging in live cells and animals,” Neurophotonics 3(2), 025001 (2016).10.1117/1.NPh.3.2.025001 PubMed DOI PMC

Park S. Y., et al. , “Novel luciferase-opsin combinations for improved luminopsins,” J. Neurosci. Res. 98(3), 410–421 (2020).JNREDK10.1002/jnr.24152 PubMed DOI PMC

Crespo E. L., et al. , “Bioluminescent optogenetics 2.0: harnessing bioluminescence to activate photosensory proteins in vitro and in vivo,” J. Vis. Exp. 174, e62850 (2021).10.3791/62850 PubMed DOI

Medendorp W. E., et al. , “Selective postnatal excitation of neocortical pyramidal neurons results in distinctive behavioral and circuit deficits in adulthood,” Iscience 24(3), 102157 (2021).10.1016/j.isci.2021.102157 PubMed DOI PMC

Deisseroth K., “Optogenetics: 10 years of microbial opsins in neuroscience,” Nat. Neurosci. 18(9), 1213–1225 (2015).NANEFN10.1038/nn.4091 PubMed DOI PMC

Boyden E. S., et al. , “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).NANEFN10.1038/nn1525 PubMed DOI

Berridge M. J., Bootman M. D., Roderick H. L., “Calcium signalling: dynamics, homeostasis and remodelling,” Nat. Rev. Mol. Cell. Biol. 4(7), 517–529 (2003).NRMCBP10.1038/nrm1155 PubMed DOI

Larkum M. E., et al. , “Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons,” J. Physiol. 549(2), 471–488 (2003).JPHYA710.1113/jphysiol.2002.037614 PubMed DOI PMC

Ross W. N., et al. , “Synaptically activated ca2+ release from internal stores in CNS neurons,” Cell Mol. Neurobiol. 25(2), 283–295 (2005).10.1007/s10571-005-3060-0 PubMed DOI

Miller R. J., “Multiple calcium channels and neuronal function,” Science 235(4784), 46–52 (1987).SCIEAS10.1126/science.2432656 PubMed DOI

Bezanilla F., “Voltage-gated ion channels,” IEEE Trans. Nanobiosci. 4(1), 34–48 (2005).10.1109/TNB.2004.842463 PubMed DOI

Felix R., “Molecular regulation of voltage-gated Ca2+ channels,” J. Recept. Signal Transduct. Res. 25(2), 57–71 (2005).10.1081/RRS-200068102 PubMed DOI

Grynkiewicz G., Poenie M., Tsien R. Y., “A new generation of Ca-2+ indicators with greatly improved fluorescence properties,” J. Biol. Chem. 260(6), 3440–3450 (1985).JBCHA310.1016/S0021-9258(19)83641-4 PubMed DOI

Tsien R. Y., “A non-disruptive technique for loading calcium buffers and indicators into cells,” Nature 290(5806), 527–528 (1981).10.1038/290527a0 PubMed DOI

Levram V., Grinvald A., “Activity-dependent calcium transients in central-nervous-system myelinated axons revealed by the calcium indicator fura-2,” Biophys. J. 52(4), 571–576 (1987).BIOJAU10.1016/S0006-3495(87)83246-0 PubMed DOI PMC

Yuste R., Katz L. C., “Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters,” Neuron 6(3), 333–344 (1991).NERNET10.1016/0896-6273(91)90243-S PubMed DOI

Garaschuk O., Milos R. I., Konnerth A., “Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo,” Nat. Protoc. 1(1), 380–386 (2006).10.1038/nprot.2006.58 PubMed DOI

Garaschuk O., et al. , “Optical monitoring of brain function in vivo: from neurons to networks,” Pflugers Arch. 453(3), 385–396 (2006).10.1007/s00424-006-0150-x PubMed DOI

Kerr J. N., et al. , “Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex,” J. Neurosci. 27(48), 13316–13328 (2007).JNRSDS10.1523/JNEUROSCI.2210-07.2007 PubMed DOI PMC

Kerr J. N., Greenberg D., Helmchen F., “Imaging input and output of neocortical networks in vivo,” Proc. Natl. Acad. Sci. U. S. A. 102(39), 14063–14068 (2005).10.1073/pnas.0506029102 PubMed DOI PMC

Ohki K., et al. , “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433(7026), 597–603 (2005).10.1038/nature03274 PubMed DOI

Sato T. R., et al. , “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).10.1371/journal.pbio.0050189 PubMed DOI PMC

Sullivan M. R., et al. , “In vivo calcium imaging of circuit activity in cerebellar cortex,” J. Neurophysiol. 94(2), 1636–1644 (2005).JONEA410.1152/jn.01013.2004 PubMed DOI

Wilson J. M., et al. , “Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse,” J. Neurophysiol. 97(4), 3118–3125 (2007).JONEA410.1152/jn.01207.2006 PubMed DOI

Chaigneau E., et al. , “Two-photon imaging of capillary blood flow in olfactory bulb glomeruli,” Proc. Natl. Acad. Sci. U. S. A. 100(22), 13081–13086 (2003).10.1073/pnas.2133652100 PubMed DOI PMC

Chaigneau E., et al. , “The relationship between blood flow and neuronal activity in the rodent olfactory bulb,” J. Neurosci. 27(24), 6452–6460 (2007).JNRSDS10.1523/JNEUROSCI.3141-06.2007 PubMed DOI PMC

Nimmerjahn A., et al. , “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).10.1038/nmeth706 PubMed DOI

Wang X., et al. , “Astrocytic Ca(2+) signaling evoked by sensory stimulation in vivo,” Nat. Neurosci. 9(6), 816–823 (2006).NANEFN10.1038/nn1703 PubMed DOI

Hirase H., “A multi-photon window onto neuronal-glial-vascular communication,” Trends Neurosci. 28(5), 217–219 (2005).TNSCDR10.1016/j.tins.2005.03.002 PubMed DOI

Takano T., et al. , “Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease,” Ann. N. Y. Acad. Sci. 1097, 40–50 (2007).ANYAA910.1196/annals.1379.004 PubMed DOI

Tian G. F., et al. , “An astrocytic basis of epilepsy,” Nat. Med. 11(9), 973–981 (2005).10.1038/nm1277 PubMed DOI PMC

Miyawaki A., et al. , “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).10.1038/42264 PubMed DOI

Baird G. S., Zacharias D. A., Tsien R. Y., “Circular permutation and receptor insertion within green fluorescent proteins,” Proc. Natl. Acad. Sci. U. S. A. 96(20), 11241–11246 (1999).10.1073/pnas.96.20.11241 PubMed DOI PMC

Nagai T., et al. , “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U. S. A. 98(6), 3197–3202 (2001).10.1073/pnas.051636098 PubMed DOI PMC

Nakai J., Ohkura M., Imoto K., “A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein,” Nat. Biotechnol. 19(2), 137–141 (2001).NABIF910.1038/84397 PubMed DOI

Nasu Y., et al. , “Structure- and mechanism-guided design of single fluorescent protein-based biosensors,” Nat. Chem. Biol. 17(5), 509–518 (2021).10.1038/s41589-020-00718-x PubMed DOI

Tian L., et al. , “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods 6(12), 875–881 (2009).10.1038/nmeth.1398 PubMed DOI PMC

Dana H., et al. , “High-performance calcium sensors for imaging activity in neuronal populations and microcompartments,” Nat. Methods 16(7), 649–657 (2019).10.1038/s41592-019-0435-6 PubMed DOI

Inoue M., et al. , “Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics,” Cell 177(5), 1346–1360.e24 (2019).CELLB510.1016/j.cell.2019.04.007 PubMed DOI

Zarowny L., et al. , “Bright and high-performance genetically encoded Ca2+ indicator based on mneongreen fluorescent protein,” ACS Sens. 5(7), 1959–1968 (2020).10.1021/acssensors.0c00279 PubMed DOI

Subach O. M., et al. , “Novel genetically encoded bright positive calcium indicator NCaMP7 based on the mNeonGreen fluorescent protein,” Int. J. Mol. Sci. 21(5), 1644 (2020).10.3390/ijms21051644 PubMed DOI PMC

Zhao Y. X., et al. , “An expanded palette of genetically encoded Ca2+ indicators,” Science 333(6051), 1888–1891 (2011).SCIEAS10.1126/science.1208592 PubMed DOI PMC

Dana H., et al. , “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).10.7554/eLife.12727 PubMed DOI PMC

Shen Y., et al. , “A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578,” BMC Biol. 16(1), 9 (2018).10.1186/s12915-018-0480-0 PubMed DOI PMC

Qian Y., et al. , “Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging,” PLoS Biol. 18(11), e3000965 (2020).10.1371/journal.pbio.3000965 PubMed DOI PMC

Qian Y., et al. , “A genetically encoded near-infrared fluorescent calcium ion indicator,” Nat. Methods 16(2), 171–174 (2019).10.1038/s41592-018-0294-6 PubMed DOI PMC

Davila H. V., et al. , “A large change in axon fluorescence that provides a promising method for measuring membrane potential,” Nat. New Biol. 241(109), 159–160 (1973).10.1038/newbio241159a0 PubMed DOI

Peterka D. S., Takahashi H., Yuste R., “Imaging voltage in neurons,” Neuron 69(1), 9–21 (2011).NERNET10.1016/j.neuron.2010.12.010 PubMed DOI PMC

Grinvald A., Hildesheim R., “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Rev. Neurosci. 5(11), 874–885 (2004).NRNAAN10.1038/nrn1536 PubMed DOI

de Silva A. P., et al. , “New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state,” Angew. Chem. Int. Ed. Engl. 34(16), 1728–1731 (1995).ACIEAY10.1002/anie.199517281 DOI

Li L.-S., “Fluorescence probes for membrane potentials based on mesoscopic electron transfer,” Nano Lett. 7(10), 2981–2986 (2007).NALEFD10.1021/nl071163p PubMed DOI

Miller E. W., et al. , “Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires,” Proc. Natl. Acad. Sci. U. S. A. 109(6), 2114–2119 (2012).10.1073/pnas.1120694109 PubMed DOI PMC

Walker A. S., et al. , “Optical spike detection and connectivity analysis with a far-red voltage-sensitive fluorophore reveals changes to network connectivity in development and disease,” Front. Neurosci. 15, 643859 (2021).10.3389/fnins.2021.643859 PubMed DOI PMC

Liu P., Miller E. W., “Electrophysiology, unplugged: imaging membrane potential with fluorescent indicators,” Acc. Chem. Res. 53(1), 11–19 (2020).ACHRE410.1021/acs.accounts.9b00514 PubMed DOI PMC

Milosevic M. M., et al. , “In vitro testing of voltage indicators: Archon1, ArcLightD, ASAP1, ASAP2s, ASAP3b, Bongwoori-Pos6, BeRST1, FlicR1, and Chi-VSFP-butterfly,” eNeuro 7(5), ENEURO.0060-20.2020 (2020).10.1523/ENEURO.0060-20.2020 PubMed DOI PMC

Kulkarni R. U., et al. , “Voltage-sensitive rhodol with enhanced two-photon brightness,” Proc. Natl. Acad. Sci. U. S. A. 114(11), 2813–2818 (2017).10.1073/pnas.1610791114 PubMed DOI PMC

Kazemipour A., et al. , “Kilohertz frame-rate two-photon tomography,” Nat. Methods 16(8), 778–786 (2019).10.1038/s41592-019-0493-9 PubMed DOI PMC

Fiala T., et al. , “Chemical targeting of voltage sensitive dyes to specific cells and molecules in the brain,” J. Am. Chem. Soc. 142(20), 9285–9301 (2020).JACSAT10.1021/jacs.0c00861 PubMed DOI PMC

Wakayama S., et al. , “Chemical labelling for visualizing native AMPA receptors in live neurons,” Nat. Commun. 8, 14850 (2017).NCAOBW10.1038/ncomms14850 PubMed DOI PMC

Cosco E. D., et al. , “Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection,” J. Am. Chem. Soc. 143(18), 6836–6846 (2021).JACSAT10.1021/jacs.0c11599 PubMed DOI PMC

Matikonda S. S., et al. , “Core remodeling leads to long wavelength fluoro-coumarins,” Chem. Sci. 11(28), 7302–7307 (2020).10.1039/D0SC02566F PubMed DOI PMC

Hinner M. J., Hübener G., Fromherz P., “Genetic targeting of individual cells with a voltage-sensitive dye through enzymatic activation of membrane binding,” Chembiochem 7(3), 495–505 (2006).CBCHFX10.1002/cbic.200500395 PubMed DOI

Ng D. N., Fromherz P., “Genetic targeting of a voltage-sensitive dye by enzymatic activation of phosphonooxymethyl-ammonium derivative,” ACS Chem. Biol. 6(5), 444–451 (2011).10.1021/cb100312d PubMed DOI

Liu P., et al. , “Fluorogenic targeting of voltage-sensitive dyes to neurons,” J. Am. Chem. Soc. 139(48), 17334–17340 (2017).JACSAT10.1021/jacs.7b07047 PubMed DOI PMC

Ortiz G., et al. , “Synthesis of sulfonated carbofluoresceins for voltage imaging,” J. Am. Chem. Soc. 141(16), 6631–6638 (2019).JACSAT10.1021/jacs.9b01261 PubMed DOI PMC

Grenier V., et al. , “Spying on neuronal membrane potential with genetically targetable voltage indicators,” J. Am. Chem. Soc. 141(3), 1349–1358 (2019).JACSAT10.1021/jacs.8b11997 PubMed DOI PMC

Sundukova M., et al. , “A chemogenetic approach for the optical monitoring of voltage in neurons,” Angew. Chem. Int. Ed. 58(8), 2341–2344 (2019).10.1002/anie.201812967 PubMed DOI PMC

Deal P. E., et al. , “Covalently tethered rhodamine voltage reporters for high speed functional imaging in brain tissue,” J. Am. Chem. Soc. 142(1), 614–622 (2020).JACSAT10.1021/jacs.9b12265 PubMed DOI PMC

Abdelfattah A. S., et al. , “A general approach to engineer positive-going eFRET voltage indicators,” Nat. Commun. 11(1), 3444 (2020).NCAOBW10.1038/s41467-020-17322-1 PubMed DOI PMC

Deo C., et al. , “The HaloTag as a general scaffold for far-red tunable chemigenetic indicators,” Nat. Chem. Biol. 17(6), 718–723 (2021).10.1038/s41589-021-00775-w PubMed DOI

Los G. V., et al. , “HaloTag: a novel protein labeling technology for cell imaging and protein analysis,” ACS Chem. Biol. 3(6), 373–382 (2008).10.1021/cb800025k PubMed DOI

Encell L. P., et al. , “Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands,” Curr. Chem. Genom. 6, 55–71 (2012).10.2174/1875397301206010055 PubMed DOI PMC

Grimm J. B., et al. , “A general method to fine-tune fluorophores for live-cell and in vivo imaging,” Nat. Methods 14(10), 987–994 (2017).10.1038/nmeth.4403 PubMed DOI PMC

Gong Y., et al. , “High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor,” Science 350(6266), 1361–1366 (2015).SCIEAS10.1126/science.aab0810 PubMed DOI PMC

Adam Y., et al. , “Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics,” Nature 569(7756), 413–417 (2019).10.1038/s41586-019-1166-7 PubMed DOI PMC

Fan L. Z., et al. , “All-optical electrophysiology reveals the role of lateral inhibition in sensory processing in cortical layer 1,” Cell 180(3), 521–535.e18 (2020).CELLB510.1016/j.cell.2020.01.001 PubMed DOI PMC

Lin M. Z., Schnitzer M. J., “Genetically encoded indicators of neuronal activity,” Nat. Neurosci. 19(9), 1142–1153 (2016).NANEFN10.1038/nn.4359 PubMed DOI PMC

Bando Y., et al. , “Genetic voltage indicators,” BMC Biol. 17(1), 71 (2019).10.1186/s12915-019-0682-0 PubMed DOI PMC

Xu Y., Zou P., Cohen A. E., “Voltage imaging with genetically encoded indicators,” Curr. Opin. Chem. Biol. 39, 1–10 (2017).COCBF410.1016/j.cbpa.2017.04.005 PubMed DOI PMC

Kannan M., Vasan G., Pieribone V. A., “Optimizing strategies for developing genetically encoded voltage indicators,” Front. Cell Neurosci. 13, 53 (2019).10.3389/fncel.2019.00053 PubMed DOI PMC

Beck C., Zhang D., Gong Y., “Enhanced genetically encoded voltage indicators advance their applications in neuroscience,” Curr. Opin. Biomed. Eng. 12, 111–117 (2019).10.1016/j.cobme.2019.10.010 PubMed DOI PMC

Knopfel T., Song C., “Optical voltage imaging in neurons: moving from technology development to practical tool,” Nat. Rev. Neurosci. 20(12), 719–727 (2019).NRNAAN10.1038/s41583-019-0231-4 PubMed DOI

Peng L. X., Xu Y. X., Zou P., “Genetically-encoded voltage indicators,” Chin. Chem. Lett. 28(10), 1925–1928 (2017).10.1016/j.cclet.2017.09.037 DOI

Ma Y., Bayguinov P. O., Jackson M. B., “Optical studies of action potential dynamics with hVOS probes,” Curr. Opin. Biomed. Eng. 12, 51–58 (2019).10.1016/j.cobme.2019.09.007 PubMed DOI PMC

Patriarchi T., et al. , “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).SCIEAS10.1126/science.aat4422 PubMed DOI PMC

Borden P. M., et al. , “A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies,” 10.1101/2020.02.07.939504 (2020). DOI

Lobas M. A., et al. , “A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP,” Nat. Commun. 10, 711 (2019).NCAOBW10.1038/s41467-019-08441-5 PubMed DOI PMC

Marvin J. S., et al. , “A genetically encoded fluorescent sensor for in vivo imaging of GABA,” Nat. Methods 16(8), 763–770 (2019).10.1038/s41592-019-0471-2 PubMed DOI

Shivange A. V., et al. , “Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors,” J. Gen. Physiol. 151(6), 738–757 (2019).JGPLAD10.1085/jgp.201812201 PubMed DOI PMC

Unger E. K., et al. , “Directed evolution of a selective and sensitive serotonin sensor via machine learning,” Cell 183(7), 1986–2002.e26 (2020).CELLB510.1016/j.cell.2020.11.040 PubMed DOI PMC

Hoffmann C., et al. , “A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells,” Nat. Methods 2(3), 171–176 (2005).10.1038/nmeth742 PubMed DOI

Jensen J. B., et al. , “Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels,” J. Gen. Physiol. 133(4), 347–359 (2009).JGPLAD10.1085/jgp.200810075 PubMed DOI PMC

Maier-Peuschel M., et al. , “A FRET-based M2 muscarinic receptor sensor to study the mechanisms of allosteric modulation,” N-S Arch. Pharmacol. 377, 15 (2008).

Vilardaga J. P., et al. , “Measurement of the millisecond activation switch of G protein-coupled receptors in living cells,” Nat. Biotechnol. 21(7), 807–812 (2003).NABIF910.1038/nbt838 PubMed DOI

Latorraca N. R., Venkatakrishnan A. J., Dror R. O., “GPCR dynamics: structures in motion,” Chem. Rev. 117(1), 139–155 (2017).CHREAY10.1021/acs.chemrev.6b00177 PubMed DOI

Dong A., et al. , “A fluorescent sensor for spatiotemporally resolved endocannabinoid dynamics in vitro and in vivo,” Nat. Biotechnol. (2021).10.1038/s41587-021-01074-4 PubMed DOI PMC

Sun F., et al. , “A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice,” Cell 174(2), 481–496.e19 (2018).CELLB510.1016/j.cell.2018.06.042 PubMed DOI PMC

Sun F. M., et al. , “Next-generation GRAB sensors for monitoring dopaminergic activity in vivo,” Nat. Methods 17(11), 1156–1166 (2020).10.1038/s41592-020-00981-9 PubMed DOI PMC

Feng J., et al. , “A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine,” Neuron 102(4), 745–761.e8 (2019).NERNET10.1016/j.neuron.2019.02.037 PubMed DOI PMC

Wan J. X., et al. , “A genetically encoded sensor for measuring serotonin dynamics,” Nat. Neurosci. 24(5), 746–752 (2021).NANEFN10.1038/s41593-021-00823-7 PubMed DOI PMC

Wu Z., et al. , “A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release,” 10.1101/2020.05.04.075564 (2020). DOI

Deuschle K., et al. , “Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering,” Protein Sci. 14(9), 2304–2314 (2005).PRCIEI10.1110/ps.051508105 PubMed DOI PMC

Takanaga H., Chaudhuri B., Frommer W. B., “GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor,” BBA-Biomembr. 1778(4), 1091–1099 (2008).10.1016/j.bbamem.2007.11.015 PubMed DOI PMC

Diaz-Garcia C. M., et al. , “Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor,” J. Neurosci. Res. 97(8), 946–960 (2019).JNREDK10.1002/jnr.24433 PubMed DOI PMC

Keller J. P., et al. , “In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor,” Cell Rep. 35(12), 109284 (2021).10.1016/j.celrep.2021.109284 PubMed DOI

Berg J., Hung Y. P., Yellen G., “A genetically encoded fluorescent reporter of ATP:ADP ratio,” Nat. Methods 6(2), 161–166 (2009).10.1038/nmeth.1288 PubMed DOI PMC

Imamura H., et al. , “Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators,” Proc. Natl. Acad. Sci. U. S. A. 106(37), 15651–15656 (2009).10.1073/pnas.0904764106 PubMed DOI PMC

Tantama M., et al. , “Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio,” Nat. Commun. 4, 2550 (2013).NCAOBW10.1038/ncomms3550 PubMed DOI PMC

Hung Y. P., et al. , “Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor,” Cell Metab. 14(4), 545–554 (2011).10.1016/j.cmet.2011.08.012 PubMed DOI PMC

Zhao Y., et al. , “SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents,” Cell Metab. 21(5), 777–789 (2015).10.1016/j.cmet.2015.04.009 PubMed DOI PMC

Tao R., et al. , “Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism,” Nat. Methods 14(7), 720–728 (2017).10.1038/nmeth.4306 PubMed DOI PMC

Sallin O., et al. , “Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides,” Elife 7, e32638 (2018).10.7554/eLife.32638 PubMed DOI PMC

San Martin A., et al. , “Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate,” PLOS ONE 9(1), e85780 (2014).POLNCL10.1371/journal.pone.0085780 PubMed DOI PMC

San Martin A., et al. , “A genetically encoded FRET lactate sensor and its use to detect the warburg effect in single cancer cells,” PLOS ONE 8(2), e57712 (2013).POLNCL10.1371/journal.pone.0057712 PubMed DOI PMC

Mächler P., et al. , “In vivo evidence for a lactate gradient from astrocytes to neurons,” Cell Metab. 23(1), 94–102 (2016).10.1016/j.cmet.2015.10.010 PubMed DOI

Diaz-Garcia C. M., et al. , “Neuronal stimulation triggers neuronal glycolysis and not lactate uptake,” Cell Metab. 26(2), 361–374 (2017).10.1016/j.cmet.2017.06.021 PubMed DOI PMC

Yellen G., Mongeon R., “Quantitative two-photon imaging of fluorescent biosensors,” Curr. Opin. Chem. Biol. 27, 24–30 (2015).COCBF410.1016/j.cbpa.2015.05.024 PubMed DOI PMC

Allen N. J., Lyons D. A., “Glia as architects of central nervous system formation and function,” Science 362(6411), 181–185 (2018).SCIEAS10.1126/science.aat0473 PubMed DOI PMC

Chung W. S., Allen N. J., Eroglu C., “Astrocytes control synapse formation, function, and elimination,” Cold Spring Harb. Perspect. Biol. 7(9), a020370 (2015).10.1101/cshperspect.a020370 PubMed DOI PMC

Ziemens D., et al. , “Heterogeneity of activity-induced sodium transients between astrocytes of the mouse hippocampus and neocortex: mechanisms and consequences,” J. Neurosci. 39(14), 2620–2634 (2019).JNRSDS10.1523/JNEUROSCI.2029-18.2019 PubMed DOI PMC

Shen Y., et al. , “Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration,” Commun. Biol. 2, 18 (2019).10.1038/s42003-018-0269-2 PubMed DOI PMC

Octeau J. C., et al. , “An optical neuron-astrocyte proximity assay at synaptic distance scales,” Neuron 98(1), 49–66.e9 (2018).NERNET10.1016/j.neuron.2018.03.003 PubMed DOI PMC

Bernardinelli Y., et al. , “Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability,” Curr. Biol. 24(15), 1679–1688 (2014).CUBLE210.1016/j.cub.2014.06.025 PubMed DOI

Murphy-Royal C., et al. , “Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission,” Nat. Neurosci. 18(2), 219–226 (2015).NANEFN10.1038/nn.3901 PubMed DOI

Araque A., et al. , “Gliotransmitters travel in time and space,” Neuron 81(4), 728–739 (2014).NERNET10.1016/j.neuron.2014.02.007 PubMed DOI PMC

Nagai J., et al. , “Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with ibetaARK,” Neuron 109(14), 2256–2274.e9 (2021).NERNET10.1016/j.neuron.2021.05.023 PubMed DOI PMC

Pestana F., et al. , “No longer underappreciated: the emerging concept of astrocyte heterogeneity in neuroscience,” Brain Sci 10(3), 168 (2020).10.3390/brainsci10030168 PubMed DOI PMC

Ben Haim L., Rowitch D. H., “Functional diversity of astrocytes in neural circuit regulation,” Nat. Rev. Neurosci. 18(1), 31–41 (2017).NRNAAN10.1038/nrn.2016.159 PubMed DOI

Batiuk M. Y., et al. , “Identification of region-specific astrocyte subtypes at single cell resolution,” Nat. Commun. 11, 1220 (2020).NCAOBW10.1038/s41467-019-14198-8 PubMed DOI PMC

Luo L., Callaway E. M., Svoboda K., “Genetic dissection of neural circuits: a decade of progress,” Neuron 98(2), 256–281 (2018).NERNET10.1016/j.neuron.2018.03.040 PubMed DOI PMC

Yu X., et al. , “Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior,” Neuron 99(6), 1170–1187.e9 (2018).NERNET10.1016/j.neuron.2018.08.015 PubMed DOI PMC

Mederos S., et al. , “Melanopsin for precise optogenetic activation of astrocyte-neuron networks,” Glia 67(5), 915–934 (2019).GLIAEJ10.1002/glia.23580 PubMed DOI

Octeau J. C., et al. , “Transient, consequential increases in extracellular potassium ions accompany Channelrhodopsin2 excitation,” Cell Rep. 27(8), 2249–2261.e7 (2019).10.1016/j.celrep.2019.04.078 PubMed DOI PMC

Depaoli M. R., et al. , “Live cell imaging of signaling and metabolic activities,” Pharmacol. Ther. 202, 98–119 (2019).10.1016/j.pharmthera.2019.06.003 PubMed DOI

Bi X., Beck C., Gong Y., “Genetically encoded fluorescent indicators for imaging brain chemistry,” Biosensors (Basel) 11(4), 116 (2021).10.3390/bios11040116 PubMed DOI PMC

Slezak M., et al. , “Distinct mechanisms for visual and motor-related astrocyte responses in mouse visual cortex,” Curr. Biol. 29(18), 3120–3127.e5 (2019).CUBLE210.1016/j.cub.2019.07.078 PubMed DOI PMC

Steinmetz N. A., et al. , “Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings,” Science 372(6539), eabf4588 (2021).SCIEAS10.1126/science.abf4588 PubMed DOI PMC

Vanderkooi J. M., et al. , “An optical method for measurement of dioxygen concentration based on quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).JBCHA310.1016/S0021-9258(18)45596-2 PubMed DOI

Rumsey W. L., Vanderkooi J. M., Wilson D. F., “Imaging of phosphorescence: a novel method for measuring the distribution of oxygen in perfused tissue,” Science 241, 1649–1651 (1988).SCIEAS10.1126/science.3420417 PubMed DOI

Vinogradov S. A., Wilson D. F., “Porphyrin-dendrimers as biological oxygen sensors,” in Designing Dendrimers, Capagna S., Ceroni P., Eds., Wiley, New York: (2012).

Lebedev A. Y., et al. , “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).AAMICK10.1021/am9001698 PubMed DOI PMC

Esipova T. V., et al. , “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem. 83(22), 8756–8765 (2011).ANCHAM10.1021/ac2022234 PubMed DOI PMC

Sakadzic S., et al. , “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).10.1038/nmeth.1490 PubMed DOI PMC

Lecoq J., et al. , “Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels,” Nat. Med. 17(7), 893–898 (2011).10.1038/nm.2394 PubMed DOI PMC

Devor A., et al. , “"Overshoot” of O(2) is required to maintain baseline tissue oxygenation at locations distal to blood vessels,” J. Neurosci. 31(38), 13676–13681 (2011).JNRSDS10.1523/JNEUROSCI.1968-11.2011 PubMed DOI PMC

Kazmi S. M. S., et al. , “Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion,” Biomed. Opt. Express 4(7), 1061–1073 (2013).BOEICL10.1364/BOE.4.001061 PubMed DOI PMC

Sakadzic S., et al. , “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).NCAOBW10.1038/ncomms6734 PubMed DOI PMC

Parpaleix A., Goulam Houssen Y., Charpak S., “Imaging local neuronal activity by monitoring PO(2) transients in capillaries,” Nat. Med. 19(2), 241–246 (2013).10.1038/nm.3059 PubMed DOI

Lyons D. G., et al. , “Mapping oxygen concentration in the awake mouse brain,” Elife 5, e12024 (2016).10.7554/eLife.12024 PubMed DOI PMC

Brinas R. P., et al. , “Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna,” J. Am. Chem. Soc. 127(33), 11851–11862 (2005).JACSAT10.1021/ja052947c PubMed DOI PMC

Roussakis E., et al. , “Two-photon antenna-core oxygen probe with enhanced performance,” Anal. Chem. 86, 5937−5945 (2014).ANCHAM10.1021/ac501028m PubMed DOI PMC

Esipova T. V., et al. , “Two-photon absorbing phosphorescent metalloporphyrins: effects of PubMed DOI PMC

Esipova T. V., et al. , “Stabilizing g-states in centrosymmetric tetrapyrroles: two-photon-absorbing porphyrins with bright phosphorescence,” J. Phys. Chem. A 121(33), 6243–6255 (2017).JPCAFH10.1021/acs.jpca.7b04333 PubMed DOI

Cao X., et al. , “Quantification of oxygen depletion during FLASH irradiation in vitro and in vivo,” Int. J. Radiat. Oncol. Biol. Phys. (RED J.) 111(1), 240–248 (2021).10.1016/j.ijrobp.2021.03.056 PubMed DOI PMC

Berglund K., et al. , “Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons,” PLOS ONE 8(3), e59759 (2013).POLNCL10.1371/journal.pone.0059759 PubMed DOI PMC

Berglund K., et al. , “Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation,” Proc. Natl. Acad. Sci. U. S. A. 113(3), E358–E367 (2016).10.1073/pnas.1510899113 PubMed DOI PMC

Naim N., et al. , “Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis,” J. Biol. Chem. 294(4), 1095–1103 (2019).JBCHA310.1074/jbc.AC118.004905 PubMed DOI PMC

Li T., et al. , “A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice,” Nat. Commun. 12, 615 (2021).NCAOBW10.1038/s41467-021-20913-1 PubMed DOI PMC

Zenchak J. R., et al. , “Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson’s disease mouse model,” J. Neurosci. Res. 98(3), 458–468 (2020).JNREDK10.1002/jnr.24237 PubMed DOI PMC

Tung J. K., et al. , “Chemically activated luminopsins allow optogenetic inhibition of distributed nodes in an epileptic network for non-invasive and multi-site suppression of seizure activity,” Neurobiol. Dis. 109, 1–10 (2018).NUDIEM10.1016/j.nbd.2017.09.007 PubMed DOI PMC

Yu S. P., et al. , “Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke,” J. Neurosci. 39(33), 6571–6594 (2019).JNRSDS10.1523/JNEUROSCI.2010-18.2019 PubMed DOI PMC

Song D., et al. , “Manipulation of hippocampal CA3 firing via luminopsins modulates spatial and episodic short-term memory, especially working memory, but not long-term memory,” Neurobiol. Learn. Mem. 155, 435–445 (2018).10.1016/j.nlm.2018.09.009 PubMed DOI

Jaiswal P. B., et al. , “Motoneuron activity is required for enhancements in functional recovery after peripheral nerve injury in exercised female mice,” J. Neurosci. Res. 98(3), 448–457 (2020).JNREDK10.1002/jnr.24109 PubMed DOI PMC

Love A. C., Prescher J. A., “Seeing (and using) the light: recent developments in bioluminescence technology,” Cell Chem. Biol. 27(8), 904–920 (2020).10.1016/j.chembiol.2020.07.022 PubMed DOI PMC

Celinskis D., et al. , “Miniaturized devices for bioluminescence imaging in freely behaving animals,” IEEE Eng. Med. Biol. Soc. 2020, 4385–4389 (2020).10.1109/EMBC44109.2020.9175375 PubMed DOI

Nagel G., et al. , “Channelrhodopsin-1: a light-gated proton channel in green algae,” Science 296(5577), 2395–2398 (2002).SCIEAS10.1126/science.1072068 PubMed DOI

Nagel G., et al. , “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A. 100(24), 13940–13945 (2003).10.1073/pnas.1936192100 PubMed DOI PMC

Li X., et al. , “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17816–17821 (2005).10.1073/pnas.0509030102 PubMed DOI PMC

Bi A. D., et al. , “Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration,” Neuron 50(1), 23–33 (2006).NERNET10.1016/j.neuron.2006.02.026 PubMed DOI PMC

Yizhar O., et al. , “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).NERNET10.1016/j.neuron.2011.06.004 PubMed DOI

Deisseroth K., Hegemann P., “The form and function of channelrhodopsin,” Science 357(6356), eaan5544 (2017).SCIEAS10.1126/science.aan5544 PubMed DOI PMC

Levitz J., et al. , “Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors,” Proc. Natl. Acad. Sci. U. S. A. 114(17), E3546–E3554 (2017).10.1073/pnas.1619652114 PubMed DOI PMC

Levitz J., et al. , “Optical control of metabotropic glutamate receptors,” Nat. Neurosci. 16(4), 507–516 (2013).NANEFN10.1038/nn.3346 PubMed DOI PMC

Kramer R. H., Mourot A., Adesnik H., “Optogenetic pharmacology for control of native neuronal signaling proteins,” Nat. Neurosci. 16(7), 816–823 (2013).NANEFN10.1038/nn.3424 PubMed DOI PMC

Lin J. Y., et al. , “Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI),” Neuron 79(2), 241–253 (2013).NERNET10.1016/j.neuron.2013.05.022 PubMed DOI PMC

Rost B. R., et al. , “Optogenetic tools for subcellular applications in neuroscience,” Neuron 96(3), 572–603 (2017).NERNET10.1016/j.neuron.2017.09.047 PubMed DOI

Petreanu L., et al. , “Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections,” Nat. Neurosci. 10(5), 663–668 (2007).NANEFN10.1038/nn1891 PubMed DOI

Lin D., et al. , “Functional identification of an aggression locus in the mouse hypothalamus,” Nature 470(7333), 221–226 (2011).10.1038/nature09736 PubMed DOI PMC

Paz J. T., et al. , “Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury,” Nat. Neurosci. 16(1), 64–70 (2013).NANEFN10.1038/nn.3269 PubMed DOI PMC

Sahel J. A., et al. , “Partial recovery of visual function in a blind patient after optogenetic therapy,” Nat. Med. 27(7), 1223–1229 (2021).10.1038/s41591-021-01351-4 PubMed DOI

Adamantidis A. R., et al. , “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature 450(7168), 420–424 (2007).10.1038/nature06310 PubMed DOI PMC

Jazayeri M., Afraz A., “Navigating the neural space in search of the neural code,” Neuron 93(5), 1003–1014 (2017).NERNET10.1016/j.neuron.2017.02.019 PubMed DOI

Rickgauer J. P., Tank D. W., “Two-photon excitation of channelrhodopsin-2 at saturation,” Proc. Natl. Acad. Sci. U. S. Am 106(35), 15025–15030 (2009).10.1073/pnas.0907084106 PubMed DOI PMC

Prakash R., et al. , “Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation,” Nat. Methods 9(12), 1171–1179 (2012).10.1038/nmeth.2215 PubMed DOI PMC

Packer A. M., et al. , “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).10.1038/nmeth.2249 PubMed DOI PMC

Papagiakoumou E., Ronzitti E., Emiliani V., “Scanless two-photon excitation with temporal focusing,” Nat. Methods 17(6), 571–581 (2020).10.1038/s41592-020-0795-y PubMed DOI

Yang W. J., et al. , “Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions,” Elife 7, e32671 (2018).10.7554/eLife.32671 PubMed DOI PMC

Robinson N. T. M., et al. , “Targeted activation of hippocampal place cells drives memory-guided spatial behavior,” Cell 183(6), 1586–1599.e10 (2020).CELLB510.1016/j.cell.2020.09.061 PubMed DOI PMC

Marshel J. H., et al. , “Cortical layer-specific critical dynamics triggering perception,” Science 365(6453), eaaw5202 (2019).SCIEAS10.1126/science.aaw5202 PubMed DOI PMC

Carrillo-Reid L., et al. , “Controlling visually guided behavior by holographic recalling of cortical ensembles,” Cell 178(2), 447–457.e5 (2019).CELLB510.1016/j.cell.2019.05.045 PubMed DOI PMC

Chettih S. N., Harvey C. D., “Single-neuron perturbations reveal feature-specific competition in V1,” Nature 567(7748), 334–340 (2019).10.1038/s41586-019-0997-6 PubMed DOI PMC

Ernst O. P., et al. , “Microbial and animal rhodopsins: structures, functions, and molecular mechanisms,” Chem. Rev. 114(1), 126–163 (2014).CHREAY10.1021/cr4003769 PubMed DOI PMC

Yutin N., Koonin E. V., “Proteorhodopsin genes in giant viruses,” Biol. Direct. 7, 34 (2012).10.1186/1745-6150-7-34 PubMed DOI PMC

Rozenberg A., et al. , “Microbial rhodopsins: the last two decades,” Annu. Rev. Microbiol. 75, 427–447 (2021).ARMIAZ10.1146/annurev-micro-031721-020452 PubMed DOI

Nagel G., et al. , “Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid Behavioral responses,” Curr. Biol. 15(24), 2279–2284 (2005).CUBLE210.1016/j.cub.2005.11.032 PubMed DOI

Vierock J., et al. , “Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson,” Sci. Rep. 7, 9928 (2017).SRCEC310.1038/s41598-017-09600-8 PubMed DOI PMC

Govorunova E. G., et al. , “Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics,” Science 349(6248), 647–650 (2015).SCIEAS10.1126/science.aaa7484 PubMed DOI PMC

Govorunova E. G., et al. , “The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity,” Sci. Rep. 7, 43358 (2017).SRCEC310.1038/srep43358 PubMed DOI PMC

Mahn M., et al. , “High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins,” Nat. Commun. 9, 4125 (2018).NCAOBW10.1038/s41467-018-06511-8 PubMed DOI PMC

Messier J. E., et al. , “Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon,” Elife 7, e38506 (2018).10.7554/eLife.38506 PubMed DOI PMC

Kopton R. A., et al. , “Cardiac electrophysiological effects of light-activated chloride channels,” Front. Physiol. 9, 1806 (2018).FROPBK10.3389/fphys.2018.01806 PubMed DOI PMC

Shevchenko V., et al. , “Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach,” Sci. Adv. 3(9), e1603187 (2017).STAMCV10.1126/sciadv.1603187 PubMed DOI PMC

Mattis J., et al. , “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2012).10.1038/nmeth.1808 PubMed DOI PMC

Gradinaru V., Thompson K. R., Deisseroth K., “eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications,” Brain Cell Biol. 36(1–4), 129–139 (2008).10.1007/s11068-008-9027-6 PubMed DOI PMC

Grimm C., et al. , “Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2,” Sci. Rep. 8, 9316 (2018).SRCEC310.1038/s41598-018-27690-w PubMed DOI PMC

Gradinaru V., et al. , “Molecular and cellular approaches for diversifying and extending optogenetics,” Cell 141(1), 154–165 (2010).CELLB510.1016/j.cell.2010.02.037 PubMed DOI PMC

Cardin J. A., et al. , “Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2,” Nat. Protoc. 5(2), 247–254 (2010).10.1038/nprot.2009.228 PubMed DOI PMC

Govorunova E. G., et al. , “Cation and anion channelrhodopsins: sequence motifs and taxonomic distribution,” mBio 12(4), e0165621 (2021).10.1128/mBio.01656-21 PubMed DOI PMC

Wietek J., et al. , “Conversion of channelrhodopsin into a light-gated chloride channel,” Science 344(6182), 409–412 (2014).SCIEAS10.1126/science.1249375 PubMed DOI

Lin J. Y., et al. , “ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation,” Nat. Neurosci. 16(10), 1499–1508 (2013).NANEFN10.1038/nn.3502 PubMed DOI PMC

Wietek J., et al. , “Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior,” Sci. Rep. 7, 14957 (2017).SRCEC310.1038/s41598-017-14330-y PubMed DOI PMC

Klapoetke N. C., et al. , “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).10.1038/nmeth.2836 PubMed DOI PMC

Mager T., et al. , “High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics,” Nat. Commun. 9, 1750 (2018).NCAOBW10.1038/s41467-018-04146-3 PubMed DOI PMC

Spoida K., et al. , “Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways,” Curr. Biol. 26(9), 1206–1212 (2016).CUBLE210.1016/j.cub.2016.03.007 PubMed DOI

Eickelbeck D., et al. , “Lamprey parapinopsin (“UVLamP”): a bistable UV-sensitive optogenetic switch for ultrafast control of GPCR pathways,” Chembiochem 21(5), 612–617 (2020).CBCHFX10.1002/cbic.201900485 PubMed DOI PMC

Mahn M., et al. , “Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin,” Neuron 109(10), 1621–1635.e8 (2021).NERNET10.1016/j.neuron.2021.03.013 PubMed DOI PMC

Copits B. A., et al. , “A photoswitchable GPCR-based opsin for presynaptic inhibition,” Neuron 109(11), 1791–1809.e11 (2021).NERNET10.1016/j.neuron.2021.04.026 PubMed DOI PMC

Karapinar R., et al. , “Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks,” Nat. Commun. 12, 4488 (2021).NCAOBW10.1038/s41467-021-24718-0 PubMed DOI PMC

Tsunoda S. P., Sugiura M., Kandori H., “Molecular properties and optogenetic applications of enzymerhodopsins,” in Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond, Yawo H., et al., Eds., Springer Nature, Singapore: (2021). PubMed

Luck M., et al. , “A photochromic Histidine Kinase Rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light,” J. Biol. Chem. 287(47), 40083–40090 (2012).JBCHA310.1074/jbc.M112.401604 PubMed DOI PMC

Avelar G. M., et al. , “A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus,” Curr. Biol. 24(11), 1234–1240 (2014).CUBLE210.1016/j.cub.2014.04.009 PubMed DOI PMC

Yoshida K., et al. , “A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity,” J. Biol. Chem. 292(18), 7531–7541 (2017).JBCHA310.1074/jbc.M117.775569 PubMed DOI PMC

Sierra Y. A. B., et al. , “Potassium channel-based optogenetic silencing,” Nat. Commun. 9, 4611(2018).NCAOBW10.1038/s41467-018-07038-8 PubMed DOI PMC

Zhang S. X., et al. , “Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling,” Nature 597(7875), 245–249 (2021).10.1038/s41586-021-03845-0 PubMed DOI PMC

Ghosh K. K., et al. , “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).10.1038/nmeth.1694 PubMed DOI PMC

Aharoni D., et al. , “All the light that we can see: a new era in miniaturized microscopy,” Nat. Methods 16(1), 11–13 (2019).10.1038/s41592-018-0266-x PubMed DOI PMC

Aharoni D., Hoogland T. M., “Circuit investigations with open-source miniaturized microscopes: past, present and future,” Front. Cell Neurosci. 13, 141 (2019).10.3389/fncel.2019.00141 PubMed DOI PMC

Vladimirov N., et al. , “Light-sheet functional imaging in fictively behaving zebrafish,” Nat. Methods 11(9), 883–884 (2014).10.1038/nmeth.3040 PubMed DOI

Bouchard M. B., et al. , “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9, 113–119 (2015).NPAHBY10.1038/nphoton.2014.323 PubMed DOI PMC

Voleti V., et al. , “Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0,” Nat. Methods 16(10), 1054–1062 (2019).10.1038/s41592-019-0579-4 PubMed DOI PMC

Perkins L. N., et al. , “Extracting individual neural activity recorded through splayed optical microfibers,” Neurophotonics 5(4), 045009 (2018).10.1117/1.NPh.5.4.045009 PubMed DOI PMC

Helmchen F., Gilad A., Chen J. L., “Neocortical dynamics during whisker-based sensory discrimination in head-restrained mice,” Neuroscience 368, 57–69 (2018).10.1016/j.neuroscience.2017.09.003 PubMed DOI PMC

Gilad A., Helmchen F., “Spatiotemporal refinement of signal flow through association cortex during learning,” Nat. Commun. 11, 1744 (2020).NCAOBW10.1038/s41467-020-15534-z PubMed DOI PMC

Gilad A., et al. , “Behavioral strategy determines frontal or posterior location of short-term memory in neocortex,” Neuron 99(4), 814–828.e7 (2018).NERNET10.1016/j.neuron.2018.07.029 PubMed DOI

Gallero-Salas Y., et al. , “Sensory and behavioral components of neocortical signal flow in discrimination tasks with short-term memory,” Neuron 109(1), 135–148.e6 (2021).NERNET10.1016/j.neuron.2020.10.017 PubMed DOI

Pinto L., et al. , “Task-dependent changes in the large-scale dynamics and necessity of cortical regions,” Neuron 104(4), 810–824.e9 (2019).NERNET10.1016/j.neuron.2019.08.025 PubMed DOI PMC

Esmaeili V., et al. , “Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response,” Neuron 109(13), 2183–2201.e9 (2021).NERNET10.1016/j.neuron.2021.05.005 PubMed DOI PMC

Ma Y., et al. , “Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons,” Proc. Natl. Acad. Sci. U. S. A. 113(52), E8463–E8471 (2016).10.1073/pnas.1525369113 PubMed DOI PMC

Mitra A., et al. , “Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure,” Neuron 98(2), 297–305.e6 (2018).NERNET10.1016/j.neuron.2018.03.015 PubMed DOI PMC

Murphy M. C., et al. , “Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology,” Neuroimage 169, 352–362 (2018).NEIMEF10.1016/j.neuroimage.2017.12.070 PubMed DOI PMC

Brier L. M., et al. , “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(3), 035002 (2019).10.1117/1.NPh.6.3.035002 PubMed DOI PMC

Vanni M. P., et al. , “Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules,” J. Neurosci. 37(31), 7513–7533 (2017).JNRSDS10.1523/JNEUROSCI.3560-16.2017 PubMed DOI PMC

Ratzlaff E. H., Grinvald A., “A tandem-lens epifluorescence macroscope – hundred-fold brightness advantage for wide-field imaging,” J. Neurosci. Methods 36(2-3), 127–137 (1991).JNMEDT10.1016/0165-0270(91)90038-2 PubMed DOI

Couto J., et al. , “Chronic, cortex-wide imaging of specific cell populations during behavior,” Nat. Protoc. 16(7), 3241–3263 (2021).10.1038/s41596-021-00527-z PubMed DOI PMC

Vanni M. P., Murphy T. H., “Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex,” J. Neurosci. 34(48), 15931–15946 (2014).JNRSDS10.1523/JNEUROSCI.1818-14.2014 PubMed DOI PMC

Allen W. E., et al. , “Global representations of goal-directed behavior in distinct cell types of mouse neocortex,” Neuron 94(4), 891–907.e6 (2017).NERNET10.1016/j.neuron.2017.04.017 PubMed DOI PMC

Nelson N. A., et al. , “Imaging spinal cord activity in behaving animals,” Exp. Neurol. 320, 112974 (2019).EXNEAC10.1016/j.expneurol.2019.112974 PubMed DOI PMC

Chen S., et al. , “Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals,” Neurosci. Bull. 36(10), 1182–1190 (2020).NRPBA210.1007/s12264-020-00561-z PubMed DOI PMC

Shuman T., et al. , “Breakdown of spatial coding and interneuron synchronization in epileptic mice,” Nat. Neurosci. 23(2), 229–238 (2020).NANEFN10.1038/s41593-019-0559-0 PubMed DOI PMC

Scott B. B., et al. , “Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope,” Neuron 100(5), 1045–1058.e5 (2018).NERNET10.1016/j.neuron.2018.09.050 PubMed DOI PMC

Rynes M. L., et al. , “Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice,” Nat. Methods 18, 417–425 (2021).10.1038/s41592-021-01104-8 PubMed DOI PMC

Sekiguchi K. J., et al. , “Imaging large-scale cellular activity in spinal cord of freely behaving mice,” Nat. Commun. 7, 11450 (2016).NCAOBW10.1038/ncomms11450 PubMed DOI PMC

Shekhtmeyster P., et al. , “Trans-segmental imaging in the spinal cord of behaving mice,” bioRxiv, 2021.12.23.474042 (2021). PubMed PMC

Shekhtmeyster P., et al. , “Multiplex, translaminar imaging in the spinal cord of behaving mice,” 10.1101/2021.12.23.474039 (2021). PubMed DOI PMC

Guo C., et al. , “Miniscope-LFOV: a large field of view, single cell resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals,” 10.1101/2021.11.21.469394 (2021). PubMed DOI PMC

Hillman E. M., et al. , “High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets,” Curr. Opin. Neurobiol. 50, 190–200 (2018).COPUEN10.1016/j.conb.2018.03.007 PubMed DOI PMC

Kim K. H., et al. , “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express 15(18), 11658–11678 (2007).OPEXFF10.1364/OE.15.011658 PubMed DOI PMC

Xue Y., et al. , “Scanless volumetric imaging by selective access multifocal multiphoton microscopy,” Optica 6(1), 76–83 (2019).10.1364/OPTICA.6.000076 PubMed DOI PMC

Lu R., et al. , “Video-rate volumetric functional imaging of the brain at synaptic resolution,” Nat. Neurosci. 20(4), 620–628 (2017).NANEFN10.1038/nn.4516 PubMed DOI PMC

Dufour P., et al. , “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).APOPAI10.1364/AO.45.009246 PubMed DOI

Song A., et al. , “Volumetric two-photon imaging of neurons using stereoscopy (vTwINS),” Nat. Methods 14(4), 420–426 (2017).10.1038/nmeth.4226 PubMed DOI PMC

Voigt F. F., et al. , “The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue,” Nat. Methods 16(11), 1105–1108 (2019).10.1038/s41592-019-0554-0 PubMed DOI PMC

Dodt H.-U., et al. , “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).10.1038/nmeth1036 PubMed DOI

Huisken J., et al. , “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).SCIEAS10.1126/science.1100035 PubMed DOI

Tomer R., et al. , “Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy,” Nat. Methods 9(7), 755–763 (2012).10.1038/nmeth.2062 PubMed DOI

Vaadia R. D., et al. , “Characterization of proprioceptive system dynamics in behaving drosophila larvae using high-speed volumetric microscopy,” Curr. Biol. 29(6), 935–944.e4 (2019).CUBLE210.1016/j.cub.2019.01.060 PubMed DOI PMC

Schaffer E. S., et al. , “Flygenvectors: the spatial and temporal structure of neural activity across the fly brain,” 10.1101/2021.09.25.461804 (2021). PubMed DOI PMC

Wen C., et al. , “3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images,” Elife 10, e59187 (2021).10.7554/eLife.59187 PubMed DOI PMC

Benezra S. E., et al. , “Learning enhances behaviorally relevant representations in apical dendrites,” 10.1101/2021.11.10.468144 (2021). DOI

Xu L., et al. , “Widespread receptor-driven modulation in peripheral olfactory coding,” Science 368(6487), eaaz5390 (2020).SCIEAS10.1126/science.aaz5390 PubMed DOI PMC

Barretto R. P. J., Messerschmidt B., Schnitzer M. J., “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).10.1038/nmeth.1339 PubMed DOI PMC

Levene M. J., et al. , “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).JONEA410.1152/jn.01007.2003 PubMed DOI

Andermann M. L., et al. , “Chronic cellular imaging of entire cortical columns in awake mice using microprisms,” Neuron 80(4), 900–913 (2013).NERNET10.1016/j.neuron.2013.07.052 PubMed DOI PMC

Antonini A., et al. , “Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness,” Elife 9, e58882 (2020).10.7554/eLife.58882 PubMed DOI PMC

Attardo A., Fitzgerald J. E., Schnitzer M. J., “Impermanence of dendritic spines in live adult CA1 hippocampus,” Nature 523(7562), 592–596 (2015).10.1038/nature14467 PubMed DOI PMC

Low R. J., Gu Y., Tank D. W., “Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex,” Proc. Natl. Acad. Sci. U. S. A. 111(52), 18739–18744 (2014).10.1073/pnas.1421753111 PubMed DOI PMC

Popoff S. M., et al. , “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).PRLTAO10.1103/PhysRevLett.104.100601 PubMed DOI

Turtaev S., et al. , “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light-Sci. Appl. 7, 92 (2018).10.1038/s41377-018-0094-x PubMed DOI PMC

Vasquez-Lopez S. A., et al. , “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).10.1038/s41377-018-0111-0 PubMed DOI PMC

Ohayon S., et al. , “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9(4), 1492–1509 (2018).BOEICL10.1364/BOE.9.001492 PubMed DOI PMC

Turcotte R., et al. , “Focusing light in biological tissue through a multimode optical fiber: refractive index matching,” Opt. Lett. 44(10), 2386–2389 (2019).OPLEDP10.1364/OL.44.002386 PubMed DOI PMC

Kleinfeld D., et al. , “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U. S. A. 95(26), 15741–15746 (1998).10.1073/pnas.95.26.15741 PubMed DOI PMC

Sofroniew N. J., et al. , “A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging,” Elife 5, e14472 (2016).10.7554/eLife.14472 PubMed DOI PMC

Rumyantsev O. I., et al. , “Fundamental bounds on the fidelity of sensory cortical coding,” Nature 580(7801), 100–105 (2020).10.1038/s41586-020-2130-2 PubMed DOI

Yu C. H., et al. , “Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry,” Nat. Commun. 12, 6639 (2021).NCAOBW10.1038/s41467-021-26736-4 PubMed DOI PMC

Yang M. K., et al. , “MATRIEX imaging: multiarea two-photon real-time in vivo explorer,” Light-Sci. Appl. 8, 109 (2019).10.1038/s41377-019-0219-x PubMed DOI PMC

Lecoq J., et al. , “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).NANEFN10.1038/nn.3867 PubMed DOI PMC

Wagner M. J., et al. , “Shared cortex-cerebellum dynamics in the execution and learning of a motor task,” Cell 177(3), 669–682.e24 (2019).CELLB510.1016/j.cell.2019.02.019 PubMed DOI PMC

Nadella K. M., et al. , “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).10.1038/nmeth.4033 PubMed DOI PMC

Demas J., et al. , “High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy,” Nat. Methods 18(9), 1103–1111 (2021).10.1038/s41592-021-01239-8 PubMed DOI PMC

Ouzounov D. G., et al. , “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).10.1038/nmeth.4183 PubMed DOI PMC

Klioutchnikov A., et al. , “Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats,” Nat. Methods 17(5), 509–513 (2020).10.1038/s41592-020-0817-9 PubMed DOI

Zong W., et al. , “Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging,” Nat. Methods 18(1), 46–49 (2021).10.1038/s41592-020-01024-z PubMed DOI

Xue Y. J., et al. , “Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope,” Sci. Adv. 6(43), eabb7508 (2020).STAMCV10.1126/sciadv.abb7508 PubMed DOI PMC

Tian F., Hu J. J., Yang W. J., “GEOMScope: large field-of-view 3d lensless microscopy with low computational complexity,” Laser Photonics Rev. 15(8), 2100072 (2021).10.1002/lpor.202100072 PubMed DOI PMC

Qiao P. F., Yang W. J., Chang-Hasnain C. J., “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).AOPAC710.1364/AOP.10.000180 DOI

Stirman J. N., et al. , “Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain,” Nat. Biotechnol. 34(8), 857–862 (2016).NABIF910.1038/nbt.3594 PubMed DOI PMC

Ota K., et al. , “Fast, cell-resolution, contiguous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas,” Neuron 109(11), 1810–1824.e9 (2021).NERNET10.1016/j.neuron.2021.03.032 PubMed DOI

Cheng A., et al. , “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).10.1038/nmeth.1552 PubMed DOI PMC

Weisenburger S., et al. , “Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy,” Cell 177(4), 1050–1066.e14 (2019).CELLB510.1016/j.cell.2019.03.011 PubMed DOI PMC

Lu R. W., et al. , “Rapid mesoscale volumetric imaging of neural activity with synaptic resolution,” Nat. Methods 17(3), 291–294 (2020).10.1038/s41592-020-0760-9 PubMed DOI PMC

Clough M., et al. , “Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds,” Nat. Commun. 12, 6638 (2021).NCAOBW10.1038/s41467-021-26737-3 PubMed DOI PMC

Denk W., Strickler J. H., Webb W. W., “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).SCIEAS10.1126/science.2321027 PubMed DOI

Truong T. V., et al. , “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).10.1038/nmeth.1652 PubMed DOI

Lu R. W., et al. , “Video-rate volumetric functional imaging of the brain at synaptic resolution,” Nat. Neurosci. 20(4), 620–628 (2017).NANEFN10.1038/nn.4516 PubMed DOI PMC

Prevedel R., et al. , “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).10.1038/nmeth.4040 PubMed DOI PMC

Yang W. J., et al. , “Simultaneous multi-plane imaging of neural circuits,” Neuron 89(2), 269–284 (2016).NERNET10.1016/j.neuron.2015.12.012 PubMed DOI PMC

Zhang T., et al. , “Kilohertz two-photon brain imaging in awake mice,” Nat. Methods 16(11), 1119–1122 (2019).10.1038/s41592-019-0597-2 PubMed DOI PMC

Beaulieu D. R., et al. , “Simultaneous multiplane imaging with reverberation two-photon microscopy,” Nat. Methods 17(3), 283 (2020).10.1038/s41592-019-0728-9 PubMed DOI PMC

Wu J. L., et al. , “Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo,” Nat. Methods 17(3), 287–290 (2020).10.1038/s41592-020-0762-7 PubMed DOI PMC

Reddy G. D., et al. , “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neuroscie. 11(6), 713–720 (2008).10.1038/nn.2116 PubMed DOI PMC

Ducros M., et al. , “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U. S. A. 110(32), 13138–13143 (2013).10.1073/pnas.1307818110 PubMed DOI PMC

Oron D., Tal E., Silberberg Y., “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).OPEXFF10.1364/OPEX.13.001468 PubMed DOI

Zhu G. H., et al. , “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).OPEXFF10.1364/OPEX.13.002153 PubMed DOI

Kumar M., et al. , “Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging,” Opt. Express 26(10), 13027–13041 (2018).OPEXFF10.1364/OE.26.013027 PubMed DOI PMC

Quirin S., et al. , “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuit 8, 29 (2014).10.3389/fncir.2014.00029 PubMed DOI PMC

Prevedel R., et al. , “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).10.1038/nmeth.2964 PubMed DOI PMC

Broxton M., et al. , “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).OPEXFF10.1364/OE.21.025418 PubMed DOI PMC

Fan G. Y., et al. , “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).BIOJAU10.1016/S0006-3495(99)77396-0 PubMed DOI PMC

Salome R., et al. , “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154(1–2), 161–174 (2006).JNMEDT10.1016/j.jneumeth.2005.12.010 PubMed DOI

Reddy G. D., Saggau P., “Fast three-dimensional laser scanning scheme using acousto-optic deflectors,” J. Biomed. Opt. 10(6), 064038 (2005).JBOPFO10.1117/1.2141504 PubMed DOI

Shain W. J., et al. , “Extended depth-of-field microscopy with a high-speed deformable mirror,” Opt. Lett. 42(5), 995–998 (2017).OPLEDP10.1364/OL.42.000995 PubMed DOI

Dal Maschio M., et al. , “Three-dimensional in vivo scanning microscopy with inertia-free focus control,” Opt. Lett. 36(17), 3503–3505 (2011).OPLEDP10.1364/OL.36.003503 PubMed DOI

Nikolenko V., et al. , “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuit 2, 5 (2008).10.3389/neuro.04.005.2008 PubMed DOI PMC

Gobel W., Kampa B. M., Helmchen F., “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).10.1038/nmeth989 PubMed DOI

Grewe B. F., et al. , “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).BOEICL10.1364/BOE.2.002035 PubMed DOI PMC

Kong L. J., et al. , “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nat. Methods 12(8), 759–762 (2015).10.1038/nmeth.3476 PubMed DOI PMC

Chakraborty T., et al. , “Converting lateral scanning into axial focusing to speed up 3D microscopy,” Light Sci. Appl. 9, 165 (2020).10.1038/s41377-020-00401-9 PubMed DOI PMC

Bawart M., et al. , “Modified Alvarez lens for high-speed focusing,” Opt. Express 25(24), 29847–29855 (2017).OPEXFF10.1364/OE.25.029847 PubMed DOI

Kirkby P. A., Srinivas Nadella K. M., Silver R. A., “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13720–13745 (2010).OPEXFF10.1364/OE.18.013720 PubMed DOI PMC

Lu R. W., et al. , “50 Hz volumetric functional imaging with continuously adjustable depth of focus,” Biomed. Opt. Express 9(4), 1964–1976 (2018).BOEICL10.1364/BOE.9.001964 PubMed DOI PMC

Meng G. H., et al. , “High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo,” Elife 8, e40805 (2019).10.7554/eLife.40805 PubMed DOI PMC

Bovetti S., et al. , “Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain,” Sci. Rep. 7, 40041 (2017).SRCEC310.1038/srep40041 PubMed DOI PMC

Anselmi F., et al. , “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U. S. A. 108(49), 19504–19509 (2011).10.1073/pnas.1109111108 PubMed DOI PMC

Moretti C., et al. , “Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses,” Biomed. Opt. Express 7(10), 3958–3967 (2016).BOEICL10.1364/BOE.7.003958 PubMed DOI PMC

Duocastella M., et al. , “Acousto-optic systems for advanced microscopy,” J. Phys.: Photonics 3, 012004 (2021).10.1088/2515-7647/abc23c DOI

Griffiths V. A., et al. , “Real-time 3D movement correction for two-photon imaging in behaving animals,” Nat. Methods 17(7), 741–748 (2020).10.1038/s41592-020-0851-7 PubMed DOI PMC

Fernandez-Alfonso T., et al. , “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).JNMEDT10.1016/j.jneumeth.2013.10.021 PubMed DOI PMC

Kaplan A., Friedman N., Davidson N., “Acousto-optic lens with very fast focus scanning,” Opt. Lett. 26(14), 1078–1080 (2001).OPLEDP10.1364/OL.26.001078 PubMed DOI

Gurnani H., Silver R. A., “Multidimensional population activity in an electrically coupled inhibitory circuit in the cerebellar cortex,” Neuron 109(10), 1739–1753.e8 (2021).NERNET10.1016/j.neuron.2021.03.027 PubMed DOI PMC

Szalay G., et al. , “Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals,” Neuron 92(4), 723–738 (2016).NERNET10.1016/j.neuron.2016.10.002 PubMed DOI PMC

Konstantinou G., et al. , “Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy,” Opt. Express 24(6), 6283–6299 (2016).OPEXFF10.1364/OE.24.006283 PubMed DOI PMC

Froudarakis E., et al. , “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).NANEFN10.1038/nn.3707 PubMed DOI PMC

Katona G., et al. , “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).10.1038/nmeth.1851 PubMed DOI

Geiller T., et al. , “Large-scale 3D two-photon imaging of molecularly identified CA1 interneuron dynamics in behaving mice,” Neuron 108(5), 968–983.e9 (2020).NERNET10.1016/j.neuron.2020.09.013 PubMed DOI PMC

Lanore F., et al. , “Cerebellar granule cell axons support high dimensional representations,” Nat. Neurosci. 24(8), 1142–1150 (2021).NANEFN10.1038/s41593-021-00873-x PubMed DOI PMC

Akemann W., et al. , “Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Opt. Express 23(22), 28191–205 (2015).OPEXFF10.1364/OE.23.028191 PubMed DOI

Mahou P., et al. , “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods 9(8), 815–818 (2012).10.1038/nmeth.2098 PubMed DOI

Lakowicz J. R., et al. , “Two-color two-photon excitation of fluorescence,” Photochem. Photobiol. 64(4), 632–635 (1996).PHCBAP10.1111/j.1751-1097.1996.tb03116.x PubMed DOI

Dowley M. W., Eisenthal K. B., Peticolas W. L., “Two-photon laser excitation of polycyclic aromatic molecules,” J. Chem. Phys. 47(5), 1609–1619 (1967).JCPSA610.1063/1.1712141 DOI

Monson P. R., Mcclain W. M., “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53(1), 29–37 (1970).JCPSA610.1063/1.1673778 DOI

Frohlich D., Mahr H., “Two-photon spectroscopy in anthracene,” Phys. Rev. Lett. 16(20), 895–897 (1966).PRLTAO10.1103/PhysRevLett.16.895 DOI

Sadegh S., et al. , “Overcoming the fundamental limit of two-photon microscopywith non-degenerate excitation,” in Biophotonics Congr.: Biomed. Opt. 2020 (Transl., Microsc., OCT, OTS, BRAIN), OSA Tech. Digest, Optica Publishing Group, p. BTu1C.4 (2020).

Sadegh S., et al. , “Measurement of the relative non-degenerate two-photon absorption cross-section for fluorescence microscopy,” Opt. Express 27(6), 8335–8347 (2019).OPEXFF10.1364/OE.27.008335 PubMed DOI PMC

Sadegh S., et al. , “Efficient non-degenerate two-photon excitation for fluorescence microscopy,” Opt. Express 27(20), 28022–28035 (2019).OPEXFF10.1364/OE.27.028022 PubMed DOI PMC

Yang M. H., et al. , “Non-degenerate 2-photon excitation in scattering medium for fluorescence microscopy,” Opt. Express 24(26), 30173–30187 (2016).OPEXFF10.1364/OE.24.030173 PubMed DOI PMC

Hales J. M., et al. , “Resonant enhancement of two-photon absorption in substituted fluorene molecules,” J. Chem. Phys. 121(7), 3152–3160 (2004).JCPSA610.1063/1.1770726 PubMed DOI

Quentmeier S., Denicke S., Gericke K. H., “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19(6), 1037–1043 (2009).JOFLEN10.1007/s10895-009-0503-x PubMed DOI

Perillo E. P., et al. , “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light-Sci. Appl. 6, e17095 (2017).10.1038/lsa.2017.95 PubMed DOI PMC

Lindek S., Stelzer E. H., “Resolution improvement by nonconfocal theta microscopy,” Opt. Lett. 24(21), 1505–1507 (1999).OPLEDP10.1364/OL.24.001505 PubMed DOI

Ibanez-Lopez C., et al. , “Optical-sectioning improvement in two-color excitation scanning microscopy,” Microsc. Res. Tech. 64(2), 96–102 (2004).MRTEEO10.1002/jemt.20073 PubMed DOI

Miller D. R., et al. , “Deep tissue imaging with multiphoton fluorescence microscopy,” Curr. Opin. Biomed. Eng. 4, 32–39 (2017).10.1016/j.cobme.2017.09.004 PubMed DOI PMC

Wang C., et al. , “Reduced deep-tissue image degradation in three-dimensional multiphoton microscopy with concentric two-color two-photon fluorescence excitation,” J. Opt. Soc. Am. B 25(6), 976–982 (2008).JOBPDE10.1364/JOSAB.25.000976 DOI

Cambaliza M. O., Saloma C., “Advantages of two-color excitation fluorescence microscopy with two confocal excitation beams,” Opt. Commun. 184(1-4), 25–35 (2000).OPCOB810.1016/S0030-4018(00)00929-9 DOI

Blanca C. M., Saloma C., “Two-color excitation fluorescence microscopy through highly scattering media,” Appl. Opt. 40(16), 2722–2729 (2001).APOPAI10.1364/AO.40.002722 PubMed DOI

Kobat D., Zhu G., Xu C., “Background reduction with two-color two-beam multiphoton excitation,” in Biomed. Opt., OSA Tech. Digest (CD), Optica Publishing Group, p. BMF6 (2008).

Cheng X., et al. , “Comparing the fundamental imaging depth limit of two-photon, three-photon, and non-degenerate two-photon microscopy,” Opt. Lett. 45(10), 2934–2937 (2020).OPLEDP10.1364/OL.392724 PubMed DOI PMC

Chen T.-W., et al. , “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).10.1038/nature12354 PubMed DOI PMC

Theer P., Denk W., “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A Opt. Image Sci. Vision 23(12), 3139–3149 (2006).10.1364/JOSAA.23.003139 PubMed DOI

Wang T., et al. , “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).10.1038/s41592-018-0115-y PubMed DOI PMC

Liu H., et al. , “In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots,” Nano Lett. 19(8), 5260–5265 (2019).NALEFD10.1021/acs.nanolett.9b01708 PubMed DOI

Horton N. G., et al. , “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).NPAHBY10.1038/nphoton.2012.336 PubMed DOI PMC

Kobat D., et al. , “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).OPEXFF10.1364/OE.17.013354 PubMed DOI

Wang M., et al. , “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).BOEICL10.1364/BOE.9.003534 PubMed DOI PMC

Takasaki K., Abbasi-asl R., Waters J., “Superficial bound of the depth limit of two- photon imaging in mouse brain,” eNeuro 7(1), ENEURO.0255-19.2019 (2020).10.1523/ENEURO.0255-19.2019 PubMed DOI PMC

Wang T., et al. , “Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain,” eLife 9, e53205 (2020).10.7554/eLife.53205 PubMed DOI PMC

Chow D. M., et al. , “Deep three-photon imaging of the brain in intact adult zebrafish,” Nat. Methods 17, 605–608 (2020).10.1038/s41592-020-0819-7 PubMed DOI PMC

Hontani Y., Xia F., Xu C., “Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain,” Sci. Adv. 7, eabf3531 (2021).STAMCV10.1126/sciadv.abf3531 PubMed DOI PMC

Xu C., et al. , “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U. S. A. 93(20), 10763–10768 (1996).10.1073/pnas.93.20.10763 PubMed DOI PMC

Xu C., Webb W. W., “Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy,” Top. Fluoresc. Spectrosc. 5, 471–540 (1997).

Akbari N., et al. , “Imaging deeper than the transport mean free path with multiphoton microscopy,” Biomed. Opt. Express 13(1), 452–463 (2022).BOEICL10.1364/BOE.444696 PubMed DOI PMC

Streich L., et al. , “High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy,” Nat. Methods 18(10), 1253–1258 (2021).10.1038/s41592-021-01257-6 PubMed DOI PMC

Rodríguez C., et al. , “An adaptive optics module for deep tissue multiphoton imaging in vivo,” Nat. Methods 18(10), 1259–1264 (2021).10.1038/s41592-021-01279-0 PubMed DOI PMC

Li B., et al. , “An adaptive excitation source for high-speed multiphoton microscopy,” Nat. Methods 17, 163–166 (2020).10.1038/s41592-019-0663-9 PubMed DOI PMC

Wang M., et al. , “Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains,” Biomed. Opt. Express 10(4), 1905–1918 (2019).BOEICL10.1364/BOE.10.001905 PubMed DOI PMC

Babcock H. W., “The Possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229 (1953).PASPAU10.1086/126606 DOI

Tyson R. K., Principles of Adaptive Optics, CRC Press; (2015).

Liang J. Z., Williams D. R., Miller D. T., “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).JOAOD610.1364/JOSAA.14.002884 PubMed DOI

Porter J., et al. , Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, Wiley; (2006).

Rodriguez C., Ji N., “Adaptive optical microscopy for neurobiology,” Curr. Opin. Neurobiol. 50, 83–91 (2018).COPUEN10.1016/j.conb.2018.01.011 PubMed DOI PMC

Aviles-Espinosa R., et al. , “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express 2(11), 3135–3149 (2011).BOEICL10.1364/BOE.2.003135 PubMed DOI PMC

Wang K., et al. , “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).10.1038/nmeth.2925 PubMed DOI PMC

Debarre D., et al. , “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009).OPLEDP10.1364/OL.34.002495 PubMed DOI PMC

Ji N., Milkie D. E., Betzig E., “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).10.1038/nmeth.1411 PubMed DOI

Wang C., et al. , “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Methods 11(10), 1037–1040 (2014).10.1038/nmeth.3068 PubMed DOI PMC

Papadopoulos I. N., et al. , “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2017).NPAHBY10.1038/nphoton.2016.252 DOI

Wang K., et al. , “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).NCAOBW10.1038/ncomms8276 PubMed DOI PMC

Liu R., et al. , “Direct wavefront sensing enables functional imaging of infragranular axons and spines,” Nat. Methods 16, 615–618 (2019).10.1038/s41592-019-0434-7 PubMed DOI PMC

Jia N., Sato T. R., Betzig E., “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 22–27 (2012).10.1073/pnas.1109202108 PubMed DOI PMC

Tao X. D., et al. , “Transcutical imaging with cellular and subcellular resolution,” Biomed. Opt. Express 8(3), 1277–1289 (2017).BOEICL10.1364/BOE.8.001277 PubMed DOI PMC

Park J. H., et al. , “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).10.1038/nmeth.4290 PubMed DOI PMC

Papadopoulos I. N., et al. , “Dynamic conjugate F-SHARP microscopy,” Light-Sci. Appl. 9, 110 (2020).10.1038/s41377-020-00348-x PubMed DOI PMC

Sun W. Z., et al. , “Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs,” Nat. Neurosci. 19(2), 308–315 (2016).NANEFN10.1038/nn.4196 PubMed DOI PMC

Chen I. W., Papagiakoumou E., Emiliani V., “Towards circuit optogenetics,” Curr. Opin. Neurobiol. 50, 179–189 (2018).COPUEN10.1016/j.conb.2018.03.008 PubMed DOI PMC

Emiliani V., et al. , “All-Optical interrogation of neural circuits,” J. Neurosci. 35(41), 13917–13926 (2015).JNRSDS10.1523/JNEUROSCI.2916-15.2015 PubMed DOI PMC

Adesnik H., Abdeladim L., “Probing neural codes with two-photon holographic optogenetics,” Nat. Neurosci. 24(10), 1356–1366 (2021).NANEFN10.1038/s41593-021-00902-9 PubMed DOI PMC

Packer A. M., et al. , “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2015).10.1038/nmeth.3217 PubMed DOI PMC

Shemesh O. A., et al. , “Temporally precise single-cell-resolution optogenetics,” Nat. Neurosci. 20(12), 1796–1806 (2017).NANEFN10.1038/s41593-017-0018-8 PubMed DOI PMC

Forli A., et al. , “Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo,” Cell Rep. 22(11), 3087–3098 (2018).10.1016/j.celrep.2018.02.063 PubMed DOI PMC

Mardinly A. R., et al. , “Precise multimodal optical control of neural ensemble activity,” Nat. Neurosci. 21(6), 881–893 (2018).NANEFN10.1038/s41593-018-0139-8 PubMed DOI PMC

Yang W., et al. , “Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions,” Elife 7, e32671 (2018).10.7554/eLife.32671 PubMed DOI PMC

Dal Maschio M., et al. , “Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging,” Neuron 94(4), 774–789.e5 (2017).NERNET10.1016/j.neuron.2017.04.034 PubMed DOI

Gill J. V., et al. , “Precise holographic manipulation of olfactory circuits reveals coding features determining perceptual detection,” Neuron 108(2), 382–393.e5 (2020).NERNET10.1016/j.neuron.2020.07.034 PubMed DOI PMC

Rickgauer J. P., Deisseroth K., Tank D. W., “Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields,” Nat. Neurosci. 17(12), 1816–1824 (2014).NANEFN10.1038/nn.3866 PubMed DOI PMC

Papagiakoumou E., et al. , “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).OPEXFF10.1364/OE.16.022039 PubMed DOI

Golan L., et al. , “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).10.1088/1741-2560/6/6/066004 PubMed DOI

Pégard N. C., et al. , “Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT),” Nat. Commun. 8, 1228 (2017).NCAOBW10.1038/s41467-017-01031-3 PubMed DOI PMC

Accanto N., et al. , “Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation,” Sci. Rep. 9, 7603 (2019).SRCEC310.1038/s41598-019-43933-w PubMed DOI PMC

Papagiakoumou E., et al. , “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).10.1038/nmeth.1505 PubMed DOI PMC

Paluch-Siegler S., et al. , “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).10.1117/1.NPh.2.3.031208 PubMed DOI PMC

Chen I. W., et al. , “In vivo submillisecond two-photon optogenetics with temporally focused patterned light,” J. Neurosci. 39(18), 3484–3497 (2019).JNRSDS10.1523/JNEUROSCI.1785-18.2018 PubMed DOI PMC

Aharoni T., Shoham S., “Phase-controlled, speckle-free holographic projection with applications in precision optogenetics,” Neurophotonics 5(2), 025004 (2018).10.1117/1.NPh.5.2.025004 PubMed DOI PMC

Lerman G. M., et al. , “Real-time in situ holographic optogenetics confocally unraveled sculpting microscopy,” Laser Photonics Rev. 13(9), 1900144 (2019).10.1002/lpor.201900144 DOI

Chaigneau E., et al. , “Two-photon holographic stimulation of ReaChR,” Front. Cell Neurosci. 10, 234 (2016).10.3389/fncel.2016.00234 PubMed DOI PMC

Baker C. A., et al. , “Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin,” Elife 5, e14193 (2016).10.7554/eLife.14193 PubMed DOI PMC

Forli A., et al. , “Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins,” Elife 10, e63359 (2021).10.7554/eLife.63359 PubMed DOI PMC

Bounds H. A., et al. , “Multifunctional Cre-dependent transgenic mice for high-precision all-optical interrogation of neural circuits,” 10.1101/2021.10.05.463223 (2021). DOI

Sun S., et al. , “Large-scale femtosecond holography for near simultaneous optogenetic neural modulation,” Opt. Express 27(22), 32228–32234 (2019).OPEXFF10.1364/OE.27.032228 PubMed DOI PMC

Faini G., et al. , “Ultrafast light targeting for high-throughput precise control of neuronal networks,” 10.1101/2021.06.14.448315 (2021). PubMed DOI PMC

Frumker E., Silberberg Y., “Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator,” Opti. Lett. 32(11), 1384–1386 (2007).OPLEDP10.1364/OL.32.001384 PubMed DOI

Mayblum T., et al. , “New insights and system designs for temporally focused multiphoton optogenetics,” Proc SPIE 9329, 932928 (2015).10.1117/12.2078678 DOI

Hernandez O., et al. , “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7, 11928 (2016).NCAOBW10.1038/ncomms11928 PubMed DOI PMC

Sun B., et al. , “Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time,” Light: Sci. Appl. 7(1), 17117 (2018).10.1038/lsa.2017.117 PubMed DOI PMC

Lerman G. M., et al. , “Precise optical probing of perceptual detection,” bioRxiv, 10.1101/456764 (2018).

Chong E., et al. , “Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception,” Science 368(6497), eaba2357 (2020).SCIEAS10.1126/science.aba2357 PubMed DOI PMC

Dalgleish H. W., et al. , “How many neurons are sufficient for perception of cortical activity?” Elife 9, e58889 (2020).10.7554/eLife.58889 PubMed DOI PMC

Newsome W. T., Britten K. H., Movshon J. A., “Neuronal correlates of a perceptual decision,” Nature 341(6237), 52–54 (1989).10.1038/341052a0 PubMed DOI

Blinder P., et al. , “The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow,” Nat. Neurosci. 16(7), 889–897 (2013).NANEFN10.1038/nn.3426 PubMed DOI PMC

Cauli B., Hamel E., “Revisiting the role of neurons in neurovascular coupling,” Front. Neuroenerg. 2, 9 (2010).10.3389/fnene.2010.00009 PubMed DOI PMC

Uhlirova H., et al. , “Cell type specificity of neurovascular coupling in cerebral cortex,” Elife 5, e14315 (2016).10.7554/eLife.14315 PubMed DOI PMC

Uhlirova H., et al. , “The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 371(1705), 20150356 (2016).10.1098/rstb.2015.0356 PubMed DOI PMC

Boas D. A., Dunn A. K., “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).JBOPFO10.1117/1.3285504 PubMed DOI PMC

Dunn A. K., et al. , “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).10.1097/00004647-200103000-00002 PubMed DOI

Dunn A. K., et al. , “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).OPLEDP10.1364/OL.28.000028 PubMed DOI

Briers J. D., “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).PMEAE310.1088/0967-3334/22/4/201 PubMed DOI

Devor A., et al. , “Two-photon laser scanning microscopy as a tool to study cortical vasodynamics under normal and ischemic conditions,” in Imaging the Brain with Optical Methods, Roe A. W., Ed., pp. 245–261, Springer; (2009).

Devor A., et al. , “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab. 32(7), 1259–1276 (2012).10.1038/jcbfm.2011.195 PubMed DOI PMC

Devor A., et al. , “Functional imaging of cerebral oxygenation with intrinsic optical contrast and phosphorescent probes,” in Optical Imaging of Cortical Circuit Dynamics, Weber B., Helmchen F., Eds., Springer, New York: (2013).

Sakadžić S., et al. , “Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients,” Neurophotonics 3(4), 045005 (2016).10.1117/1.NPh.3.4.045005 PubMed DOI PMC

Mächler P., et al. , “Microscopic quantification of oxygen consumption across cortical layers,” 10.1101/2021.10.13.464176 (2021). DOI

Mayhew J., et al. , “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).NEIMEF10.1006/nimg.1999.0460 PubMed DOI

Boas D. A., et al. , “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).NEIMEF10.1016/j.neuroimage.2013.11.033 PubMed DOI

Grinvald A., et al. , “Imaging the neocortex functional architecture using multiple intrinsic signals: implications for hemodynamic-based functional imaging,” Cold Spring Harb. Protoc. 2016(3), pdb top089375 (2016).10.1101/pdb.top089375 PubMed DOI

Wang L. V., Yao J., “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).10.1038/nmeth.3925 PubMed DOI PMC

Yao J. J., Wang L. H. V., “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).10.1117/1.NPh.1.1.011003 PubMed DOI PMC

Wang R. K., An L., “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).OPEXFF10.1364/OE.17.008926 PubMed DOI PMC

Baran U., Wang R. K., “Review of optical coherence tomography based angiography in neuroscience,” Neurophotonics 3(1), 010902 (2016).10.1117/1.NPh.3.1.010902 PubMed DOI PMC

Srinivasan V. J., et al. , “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–29 (2012).BOEICL10.1364/BOE.3.000612 PubMed DOI PMC

Ren H., Du C., Pan Y., “Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography,” Opt. Lett. 37(8), 1388–1390 (2012).OPLEDP10.1364/OL.37.001388 PubMed DOI PMC

Rakymzhan A., et al. , “Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation,” J. Biomed. Opt. 25(9), 096005 (2020).JBOPFO10.1117/1.JBO.25.9.096005 PubMed DOI PMC

Merkle C. W., Srinivasan V. J., “Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by dynamic contrast optical coherence tomography,” Neuroimage 125, 350–362 (2016).NEIMEF10.1016/j.neuroimage.2015.10.017 PubMed DOI PMC

Srinivasan V. J., Radhakrishnan H., “Optical coherence tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation,” Neuroimage 102(Pt 2), 393–406 (2014).NEIMEF10.1016/j.neuroimage.2014.08.004 PubMed DOI PMC

Li Y., Wei W., Wang R. K., “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8, 4107 (2018).SRCEC310.1038/s41598-018-22513-4 PubMed DOI PMC

Erdener S. E., et al. , “Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells,” J. Cereb. Blood Flow Metab. 39(5), 886–900 (2019).10.1177/0271678X17743877 PubMed DOI PMC

Shin P., et al. , “High-speed optical coherence tomography angiography for the measurement of stimulus-induced retrograde vasodilation of cerebral pial arteries in awake mice,” Neurophotonics 7(3), 030502 (2020).10.1117/1.NPh.7.3.030502 PubMed DOI PMC

Chen S., et al. , “Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography,” Biomed. Opt. Express 7(9), 3377–3389 (2016).BOEICL10.1364/BOE.7.003377 PubMed DOI PMC

Chong S. P., et al. , “Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT,” Biomed. Opt. Express 6(10), 3941–3951 (2015).BOEICL10.1364/BOE.6.003941 PubMed DOI PMC

Tang P., et al. , “Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography,” Biomed. Opt. Express 11(2), 699–710 (2020).BOEICL10.1364/BOE.381332 PubMed DOI PMC

Tang J., et al. , “Imaging localized fast optical signals of neural activation with optical coherence tomography in awake mice,” Opt. Lett. 46(7), 1744–1747 (2021).OPLEDP10.1364/OL.411897 PubMed DOI PMC

Marchand P. J., et al. , “Validation of red blood cell flux and velocity estimations based on optical coherence tomography intensity fluctuations,” Sci. Rep. 10, 19584 (2020).SRCEC310.1038/s41598-020-76774-z PubMed DOI PMC

Swartz H. M., “Measuring real levels of oxygen in vivo: opportunities and challenges,” Biochem. Soc. Trans. 30, 248–252 (2002).BCSTB510.1042/bst0300248 PubMed DOI

Arbeit J. M., et al. , “Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006).IJRBE710.1080/09553000601002324 PubMed DOI

Vikram D. S., Zweier J. L., Kuppusamy P., “Methods for noninvasive imaging of tissue hypoxia,” Antioxid. Redox Signaling 9(10), 1745–1756 (2007).10.1089/ars.2007.1717 PubMed DOI

Krohn K. A., Link J. M., Mason R. P., “Molecular imaging of hypoxia,” J. Nucl. Med. 49, 129S–148S (2008).JNMEAQ10.2967/jnumed.107.045914 PubMed DOI

Finikova O. S., et al. , “Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores,” J. Phys. Chem. A 111(30), 6977–6990 (2007).JPCAFH10.1021/jp071586f PubMed DOI PMC

Finikova O. S., et al. , “Dynamic quenching of porphyrin triplet states by two-photon absorbing dyes: Towards two-photon-enhanced oxygen nanosensors,” J. Photochem. Photobiol., A: Chem. 198(1), 75–84 (2008).JPPCEJ10.1016/j.jphotochem.2008.02.020 PubMed DOI PMC

Lebedev A. Y., Troxler T., Vinogradov S. A., “Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen,” J. Porphyrins. Phthalocyanines 12(12), 1261–1269 (2008).10.1142/S1088424608000649 PubMed DOI PMC

Sinks L. E., et al. , “Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles,” J. Phys. Chem. B 114(45), 14373–14382 (2010).JPCBFK10.1021/jp100353v PubMed DOI PMC

Li B., et al. , “More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction,” Elife 8, e42299 (2019).10.7554/eLife.42299 PubMed DOI PMC

Buxton R. B., “Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism,” Front. Neuroenerg. 2, 8 (2010).10.3389/fnene.2010.00008 PubMed DOI PMC

Kasischke K. A., et al. , “Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions,” J. Cereb. Blood Flow Metab. 31(1), 68–81 (2011).10.1038/jcbfm.2010.158 PubMed DOI PMC

Krogh A., “The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue,” J. Physiol. 52(6), 409–415 (1919).JPHYA710.1113/jphysiol.1919.sp001839 PubMed DOI PMC

Wang L. H. V., Hu S., “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).SCIEAS10.1126/science.1216210 PubMed DOI PMC

Li L., et al. , “Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo,” Nat. Protoc. 16(5), 2381–2394 (2021).10.1038/s41596-020-00487-w PubMed DOI PMC

Li L., et al. , “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 1–11 (2017).10.1038/s41551-017-0071 PubMed DOI PMC

Zhang P., et al. , “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).10.1002/jbio.201700024 PubMed DOI PMC

Zhang P., et al. , “In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets,” Light: Sci. Appl. 8(1), 36 (2019).10.1038/s41377-019-0147-9 PubMed DOI PMC

Yao J., et al. , “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407 (2015).10.1038/nmeth.3336 PubMed DOI PMC

Li L., et al. , “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3(3), 035001 (2016).10.1117/1.NPh.3.3.035001 PubMed DOI PMC

Na S., et al. , “Massively parallel functional photoacoustic computed tomography of the human brain,” Nat. Biomed. Eng. (2021).10.1038/s41551-021-00735-8 PubMed DOI PMC

Gottschalk S., et al. , “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).10.1038/s41551-019-0372-9 PubMed DOI PMC

Rao B., et al. , “Photoacoustic imaging of voltage responses beyond the optical diffusion limit,” Sci. Rep. 7, 2560 (2017).SRCEC310.1038/s41598-017-02458-w PubMed DOI PMC

Chamanzar M., et al. , “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10, 92 (2019).NCAOBW10.1038/s41467-018-07856-w PubMed DOI PMC

Ruan H. W., et al. , “Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation,” Nat. Photonics 14(8), 511–516 (2020).NPAHBY10.1038/s41566-020-0630-0 DOI

Xu X. A., Liu H. L., Wang L. V., “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).NPAHBY10.1038/nphoton.2010.306 PubMed DOI PMC

Wang Y. M., et al. , “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).NCAOBW10.1038/ncomms1925 PubMed DOI PMC

Si K., Fiolka R., Cui M., “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).NPAHBY10.1038/nphoton.2012.205 PubMed DOI PMC

Jiang Y., et al. , “Optoacoustic brain stimulation at submillimeter spatial precision,” Nat. Commun. 11, 881 (2020).NCAOBW10.1038/s41467-020-14706-1 PubMed DOI PMC

Zhang Y., et al. , “Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics,” Proc. Natl. Acad. Sci. U. S. A. 116(43), 21427–21437 (2019).10.1073/pnas.1909850116 PubMed DOI PMC

Hong G., Lieber C. M., “Novel electrode technologies for neural recordings,” Nat. Rev. Neurosci. 20(6), 330–345 (2019).NRNAAN10.1038/s41583-019-0140-6 PubMed DOI PMC

Moreaux L. C., et al. , “Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity-at depth and in real time,” Neuron 108(1), 66–92 (2020).NERNET10.1016/j.neuron.2020.09.043 PubMed DOI PMC

Kuzum D., et al. , “Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging,” Nat. Commun. 5, 5259 (2014).NCAOBW10.1038/ncomms6259 PubMed DOI PMC

Donahue M. J., et al. , “Multimodal characterization of neural networks using highly transparent electrode arrays,” Eneuro 5(6), ENEURO.0187-18.2018 (2018).10.1523/ENEURO.0187-18.2018 PubMed DOI PMC

Qiang Y., et al. , “Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain,” Sci. Adv. 4(9), eaat0626 (2018).STAMCV10.1126/sciadv.aat0626 PubMed DOI PMC

Lake E. M. R., et al. , “Simultaneous cortex-wide fluorescence Ca(2+) imaging and whole-brain fMRI,” Nat. Methods, 17(12), 1262–1271 (2020).10.1038/s41592-020-00984-6 PubMed DOI PMC

Schulz K., et al. , “Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex,” Nat. Methods 9(6), 597–602 (2012).10.1038/nmeth.2013 PubMed DOI

Wang M., et al. , “Brain-state dependent astrocytic Ca(2+) signals are coupled to both positive and negative BOLD-fMRI signals,” Proc. Natl. Acad. Sci. U. S. A. 115(7), E1647–E1656 (2018).10.1073/pnas.1711692115 PubMed DOI PMC

Lee J. H., et al. , “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).10.1038/nature09108 PubMed DOI PMC

Kennerley A. J., et al. , “Concurrent fMRI and optical measures for the investigation of the hemodynamic response function,” Magn. Reson. Med. 54(2), 354–365 (2005).MRMEEN10.1002/mrm.20511 PubMed DOI

Brake J., Jang M., Yang C. H., “Analyzing the relationship between decorrelation time and tissue thickness in acute rat brain slices using multispeckle diffusing wave spectroscopy,” J. Opt. Soc. Am. A 33(2), 270–275 (2016).JOAOD610.1364/JOSAA.33.000270 PubMed DOI PMC

Yaqoob Z., et al. , “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).NPAHBY10.1038/nphoton.2007.297 PubMed DOI PMC

Liu Y., et al. , “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).NCAOBW10.1038/ncomms6904 PubMed DOI PMC

Vellekoop I. M., Mosk A. P., “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).OPLEDP10.1364/OL.32.002309 PubMed DOI

Ma C., et al. , “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).NPAHBY10.1038/nphoton.2014.251 PubMed DOI PMC

Zhou E. H., et al. , “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).10.1364/OPTICA.1.000227 PubMed DOI PMC

Ruan H. W., et al. , “Focusing light inside scattering media with magnetic-particle-guided wavefront shaping,” Optica 4(11), 1337–1343 (2017).10.1364/OPTICA.4.001337 PubMed DOI PMC

Lai P. X., et al. , “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).NPAHBY10.1038/nphoton.2014.322 PubMed DOI PMC

Shen Y. C., et al. , “Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation,” J. Biomed. Opt. 21(8), 085001 (2016).JBOPFO10.1117/1.JBO.21.8.085001 PubMed DOI PMC

Qureshi M. M., et al. , “In vivo study of optical speckle decorrelation time across depths in the mouse brain,” Biomed. Opt. Express 8(11), 4855–4864 (2017).BOEICL10.1364/BOE.8.004855 PubMed DOI PMC

Wang D. F., et al. , “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).10.1364/OPTICA.2.000728 PubMed DOI PMC

Feldkhun D., et al. , “Focusing and scanning through scattering media in microseconds,” Optica 6(1), 72–75 (2019).10.1364/OPTICA.6.000072 DOI

Tzang O., et al. , “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).NPAHBY10.1038/s41566-019-0503-6 DOI

Laforest T., et al. , “Co-integration of a smart CMOS image sensor and a spatial light modulator for real-time optical phase modulation,” Proc SPIE 9022, 90220N (2014).10.1117/12.2039867 DOI

Pisanello F., et al. , “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).NERNET10.1016/j.neuron.2014.04.041 PubMed DOI PMC

Pisanello F., et al. , “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).NANEFN10.1038/nn.4591 PubMed DOI PMC

Pisano F., et al. , “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).10.1038/s41592-019-0581-x PubMed DOI

Balena A., et al. , “Two-photon fluorescence-assisted laser ablation of non-planar metal surfaces: fabrication of optical apertures on tapered fibers for optical neural interfaces,” Opt. Express 28(15), 21368–21381 (2020).OPEXFF10.1364/OE.395187 PubMed DOI PMC

Maglie E., et al. , “Ray tracing models for estimating light collection properties of microstructured tapered optical fibers for optical neural interfaces,” Opt. Lett. 45(14), 3856–3859 (2020).OPLEDP10.1364/OL.397022 PubMed DOI

Pisano F., et al. , “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).MIENEF10.1016/j.mee.2018.03.023 PubMed DOI PMC

Lee J., Wang W. G., Sabatini B. L., “Anatomically segregated basal ganglia pathways allow parallel behavioral modulation,” Nat. Neurosci. 23(11), 1388–1398 (2020).NANEFN10.1038/s41593-020-00712-5 PubMed DOI PMC

Lee S. J., et al. , “Monitoring behaviorally induced biochemical changes using fluorescence lifetime photometry,” Front. Neurosci. 13, 766 (2019).10.3389/fnins.2019.00766 PubMed DOI PMC

Bianco M., et al. , “Comparative study of autofluorescence in flat and tapered optical fibers towards application in depth-resolved fluorescence lifetime photometry in brain tissue,” Biomed. Opt. Express 12(2), 993–1009 (2021).BOEICL10.1364/BOE.410244 PubMed DOI PMC

Spagnolo B., et al. , “Integrated tapered fibertrode for simultaneous control and readout of neural activity over small brain volumes with reduced light-induced artefacts,” 10.1101/2020.07.31.226795 (2021). DOI

Pisano F., et al. , “Plasmonics on a neural implant: engineering light-matter interactions on the nonplanar surface of tapered optical fibers,” Adv. Opt. Mater. 10(2), 2101649 (2022).10.1002/adom.202101649 DOI

Pisano F., et al. , “Single-cell micro- and nano-photonic technologies,” J. Neurosci. Methods 325, 108355 (2019).JNMEDT10.1016/j.jneumeth.2019.108355 PubMed DOI

Park D. W., et al. , “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” Nat. Commun. 5, 5258 (2014).NCAOBW10.1038/ncomms6258 PubMed DOI PMC

Thunemann M., et al. , “Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays,” Nat. Commun. 9, 2035 (2018).NCAOBW10.1038/s41467-018-04457-5 PubMed DOI PMC

Driscoll N., et al. , “Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale,” Commun. Biol. 4(1), 136 (2021).10.1038/s42003-021-01670-9 PubMed DOI PMC

Park D.-W., et al. , “Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice,” ACS Nano 12(1), 148–157 (2018).ANCAC310.1021/acsnano.7b04321 PubMed DOI

Liu X., et al. , “A compact closed-loop optogenetics system based on artifact-free transparent graphene electrodes,” Front. Neurosci. 12, 132 (2018).10.3389/fnins.2018.00132 PubMed DOI PMC

Seo K. J., et al. , “Transparent, flexible, penetrating microelectrode arrays with capabilities of single-unit electrophysiology,” Adv. Biosyst. 3(3), 1800276 (2019).10.1002/adbi.201800276 PubMed DOI

Geim A. K., “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).SCIEAS10.1126/science.1158877 PubMed DOI

Kostarelos K., et al. , “Graphene in the design and engineering of next-generation neural interfaces,” Adv. Mater. 29(42), 1700909 (2017).ADVMEW10.1002/adma.201700909 PubMed DOI

Rastogi S. K., et al. , “Effect of graphene on nonneuronal and neuronal cell viability and stress,” Nano Lett. 17(5), 3297–3301 (2017).NALEFD10.1021/acs.nanolett.7b01215 PubMed DOI

Zhang J., et al. , “Stretchable transparent electrode array for simultaneous electrical and optical interrogation of neural circuits in vivo,” Nano Lett. 18(5), 2903–2911 (2018).NALEFD10.1021/acs.nanolett.8b00087 PubMed DOI

Lu Y. C., et al. , “Ultralow Impedance graphene microelectrodes with high optical transparency for simultaneous deep two-photon imaging in transgenic mice,” Adv. Funct. Mater. 28(31), 1800002 (2018).AFMDC610.1002/adfm.201800002 PubMed DOI PMC

Barkhof F., Haller S., Rombouts S. A. R. B., “Resting-state functional MR imaging: a new window to the brain,” Radiology 272(1), 29–49 (2014).RADLAX10.1148/radiol.14132388 PubMed DOI

He B. J., “Spontaneous and task-evoked brain activity negatively interact,” J. Neurosci. 33(11), 4672–4682 (2013).JNRSDS10.1523/JNEUROSCI.2922-12.2013 PubMed DOI PMC

Ito T., et al. , “Task-evoked activity quenches neural correlations and variability across cortical areas,” PLoS Comput. Biol. 16(8), e1007983 (2020).10.1371/journal.pcbi.1007983 PubMed DOI PMC

Albers F., et al. , “Multimodal functional neuroimaging by simultaneous BOLD fMRI and fiber-optic calcium recordings and optogenetic control,” Mol. Imaging Biol. 20(2), 171–182 (2018).10.1007/s11307-017-1130-6 PubMed DOI

Chen X. M., et al. , “Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus,” Nat. Commun. 10, 5239 (2019).NCAOBW10.1038/s41467-019-12850-x PubMed DOI PMC

Lee J. H., “Informing brain connectivity with optogenetic functional magnetic resonance imaging,” Neuroimage 62(4), 2244–2249 (2012).NEIMEF10.1016/j.neuroimage.2012.01.116 PubMed DOI

Miyamoto D., Murayama M., “The fiber-optic imaging and manipulation of neural activity during animal behavior,” Neurosci. Res. 103, 1–9 (2016).10.1016/j.neures.2015.09.004 PubMed DOI

Palmer H. S., “Optogenetic fMRI sheds light on the neural basis of the BOLD signal,” J. Neurophysiol. 104(4), 1838–1840 (2010).JONEA410.1152/jn.00535.2010 PubMed DOI

Schlegel F., et al. , “Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice,” Nat. Protoc. 13(5), 840–855 (2018).10.1038/nprot.2018.003 PubMed DOI

Schwalm M., et al. , “Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves,” Elife 6, e27602 (2017).10.7554/eLife.27602 PubMed DOI PMC

Pegard N. C., et al. , “Compressive light-field microscopy for 3D neural activity recording,” Optica 3(5), 517–524 (2016).10.1364/OPTICA.3.000517 DOI

Nobauer T., et al. , “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Methods 14(8), 811–818 (2017).10.1038/nmeth.4341 PubMed DOI

Truong T. V., et al. , “High-contrast, synchronous volumetric imaging with selective volume illumination microscopy,” Commun. Biol. 3, 74 (2020).10.1038/s42003-020-0787-6 PubMed DOI PMC

Zhang Z. K., et al. , “Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy,” Nat. Biotechnol. 39(1), 74–83 (2021).NABIF910.1038/s41587-020-0628-7 PubMed DOI

Quicke P., et al. , “Subcellular resolution three-dimensional light-field imaging with genetically encoded voltage indicators,” Neurophotonics 7(3), 035006 (2020).10.1117/1.NPh.7.3.035006 PubMed DOI PMC

Cong L., et al. , “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” Elife 6, e28158 (2017).10.7554/eLife.28158 PubMed DOI PMC

Skocek O., et al. , “High-speed volumetric imaging of neuronal activity in freely moving rodents,” Nat. Methods 15(6), 429–432 (2018).10.1038/s41592-018-0008-0 PubMed DOI PMC

Turcottea R., et al. , “Dynamic super-resolution structured illumination imaging in the living brain,” Proc. Natl. Acad. Sci. U. S. A. 116(19), 9586–9591 (2019).10.1073/pnas.1819965116 PubMed DOI PMC

Yanny K., et al. , “Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy,” Light-Sci. Appl. 9(1), 171 (2020).10.1038/s41377-020-00403-7 PubMed DOI PMC

Adams J. K., et al. , “Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope,” Sci. Adv. 3(12), e1701548 (2017).STAMCV10.1126/sciadv.1701548 PubMed DOI PMC

Hong S., et al. , “Structured illumination microscopy for the investigation of synaptic structure and function,” Synapse Dev. 1538, 155–167 (2017).10.1007/978-1-4939-6688-2_12 PubMed DOI PMC

Winter P. W., et al. , “Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples,” Optica 1(3), 181–191 (2014).10.1364/OPTICA.1.000181 PubMed DOI PMC

Tahir W., et al. , “Anatomical modeling of brain vasculature in two-photon microscopy by generalizable deep learning,” BME Front. 2021, 1 (2021).10.34133/2021/8620932 PubMed DOI PMC

Stefan S., Lee J., “Deep learning toolbox for automated enhancement, segmentation, and graphing of cortical optical coherence tomography microangiograms,” Biomed. Opt. Express 11(12), 7325–7342 (2020).BOEICL10.1364/BOE.405763 PubMed DOI PMC

Soltanian-Zadeh S., et al. , “Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning,” Proc. Natl. Acad. Sci. U. S. A. 116(17), 8554–8563 (2019).10.1073/pnas.1812995116 PubMed DOI PMC

Lecoq J., et al. , “Removing independent noise in systems neuroscience data using DeepInterpolation,” Nat. Methods 18(11), 1401–1408 (2021).10.1038/s41592-021-01285-2 PubMed DOI PMC

Bao Y. J., et al. , “Segmentation of neurons from fluorescence calcium recordings beyond real time,” Nat. Mach. Intell. 3(7), 590–600 (2021).10.1038/s42256-021-00342-x PubMed DOI PMC

Rupprecht P., et al. , “A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging,” Nat. Neurosci. 24(9), 1324–1337 (2021).NANEFN10.1038/s41593-021-00895-5 PubMed DOI PMC

Giovannucci A., et al. , “CaImAn an open source tool for scalable calcium imaging data analysis,” Elife 8, e38173 (2019).10.7554/eLife.38173 PubMed DOI PMC

Wang Z. Q., et al. , “Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning,” Nat. Methods 18(5), 551 (2021).10.1038/s41592-021-01058-x PubMed DOI PMC

Wagner N., et al. , “Deep learning-enhanced light-field imaging with continuous validation,” Nat. Methods 18(5), 557–563 (2021).10.1038/s41592-021-01136-0 PubMed DOI

Jin L. H., et al. , “Deep learning enables structured illumination microscopy with low light levels and enhanced speed,” Nat. Commun. 11, 1934 (2020).NCAOBW10.1038/s41467-020-15784-x PubMed DOI PMC

Pavone F. S., Shoham S., Handbook of Neurophotonics, CRC Press, Boca Raton: (2020).

Richards L. M., et al. , “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).10.1117/1.NPh.1.1.015006 PubMed DOI PMC

Sato K., et al. , “Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations,” Neurophotonics 4(3), 031205 (2017).10.1117/1.NPh.4.3.031205 PubMed DOI PMC

Rayshubskiy A., et al. , “Direct, intraoperative observation of similar to 0.1 Hz hemodynamic oscillations in awake human cortex: Implications for fMRI,” Neuroimage 87, 323–331 (2014).NEIMEF10.1016/j.neuroimage.2013.10.044 PubMed DOI PMC

Kleinlogel S., et al. , “Emerging approaches for restoration of hearing and vision,” Physiol. Rev. 100(4), 1467–1525 (2020).PHREA710.1152/physrev.00035.2019 PubMed DOI

Gagnon L., et al. , “Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe,” J. Neurosci. 35(8), 3663–3675 (2015).JNRSDS10.1523/JNEUROSCI.3555-14.2015 PubMed DOI PMC

Kozberg M. G., et al. , “Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain,” Proc. Natl. Acad. Sci. U. S. A. 110(11), 4380–4385 (2013).10.1073/pnas.1212785110 PubMed DOI PMC

Adams A., et al. , “International brain initiative: an innovative framework for coordinated global brain research efforts,” Neuron 105(2), 212–216 (2020).NERNET10.1016/j.neuron.2020.01.002 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...