Kilohertz frame-rate two-photon tomography
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 NS098088
NINDS NIH HHS - United States
R35 GM119855
NIGMS NIH HHS - United States
PubMed
31363222
PubMed Central
PMC6754705
DOI
10.1038/s41592-019-0493-9
PII: 10.1038/s41592-019-0493-9
Knihovny.cz E-zdroje
- MeSH
- fotony MeSH
- krysa rodu Rattus MeSH
- kyselina glutamová metabolismus MeSH
- mozková kůra cytologie fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neurony cytologie fyziologie MeSH
- tomografie metody MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- kyselina glutamová MeSH
- vápník MeSH
Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 µm and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.
2nd Medical Faculty Charles University Prague Czech Republic
Department of Chemistry University of California Berkeley Berkeley CA USA
Department of Molecular and Cell Biology University of California Berkeley Berkeley CA USA
Department of Neurobiology Stanford University Stanford CA USA
Helen Wills Neuroscience Institute University of California Berkeley Berkeley CA USA
Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA
Zobrazit více v PubMed
Yang W & Yuste R In vivo imaging of neural activity. Nat. Methods 14, 349–359 (2017). PubMed PMC
Sofroniew NJ, Flickinger D, King J & Svoboda K A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5, e14472 (2016). PubMed PMC
Peterka DS, Takahashi H & Yuste R Imaging voltage in neurons. Neuron 69, 9–21 (2011). PubMed PMC
Prevedel R et al. Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nat. Methods 13, 1021–1028 (2016). PubMed PMC
Chen X, Leischner U, Rochefort NL, Nelken I & Konnerth A Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011). PubMed
Strickler SJ & Berg RA Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys. 37, 814–822 (1962).
Sobczyk A, Scheuss V & Svoboda K NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines. J. Neurosci. 25, 6037–6046 (2005). PubMed PMC
Hao J & Oertner TG Depolarization gates spine calcium transients and spike-timing-dependent potentiation. Curr. Opin. Neurobiol. 22, 509–515 (2012). PubMed
Pnevmatikakis EA & Paninski L Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions in Advances in Neural Information Processing Systems 26 (eds. Burges CJC, Bottou L, Welling M, Ghahramani Z & Weinberger KQ) 1250–1258 (Curran Associates, Inc., 2013).
Pnevmatikakis EA et al. Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data. Neuron 89, 285–299 (2016). PubMed PMC
Szalay G et al. Fast 3D Imaging of Spine, Dendritic, and Neuronal Assemblies in Behaving Animals. Neuron 92, 723–738 (2016). PubMed PMC
Bullen A, Patel SS & Saggau P High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73, 477–491 (1997). PubMed PMC
Yang W et al. Simultaneous Multi-plane Imaging of Neural Circuits. Neuron 89, 269–284 (2016). PubMed PMC
Lu R et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20, 620–628 (2017). PubMed PMC
Song A et al. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS). Nat. Methods 14, 420–426 (2017). PubMed PMC
Botcherby EJ, Juškaitis R & Wilson T Scanning two photon fluorescence microscopy with extended depth of field. Opt. Commun. 268, 253–260 (2006).
Thériault G, Cottet M, Castonguay A, McCarthy N & De Koninck Y Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging. Front. Cell. Neurosci. 8, (2014). PubMed PMC
Field JJ et al. Superresolved multiphoton microscopy with spatial frequency-modulated imaging. Proc. Natl. Acad. Sci. 113, 6605–6610 (2016). PubMed PMC
Richardson WH Bayesian-Based Iterative Method of Image Restoration*. JOSA 62, 55–59 (1972).
Lucy LB An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974).
Neil M. a. A., Juškaitis R & Wilson T Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22, 1905–1907 (1997). PubMed
Gustafsson MG Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–628 (1999). PubMed
Preibisch S et al. Efficient Bayesian-based multiview deconvolution. Nat. Methods 11, 645–648 (2014). PubMed PMC
Broxton M et al. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express 21, 25418–25439 (2013). PubMed PMC
Antipa N et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018).
Prevedel R et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014). PubMed PMC
Brown GD, Yamada S & Sejnowski TJ Independent component analysis at the neural cocktail party. Trends Neurosci. 24, 54–63 (2001). PubMed
Candes EJ The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346, 589–592 (2008).
Lustig M, Donoho D & Pauly JM Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007). PubMed
Pégard NC et al. Compressive light-field microscopy for 3D neural activity recording. Optica 3, 517–524 (2016).
Chen G-H, Tang J & Leng S Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med. Phys. 35, 660–663 (2008). PubMed PMC
von Diezmann A, Shechtman Y & Moerner WE Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. Chem. Rev. 117, 7244–7275 (2017). PubMed PMC
Kazemipour A, Babada B, Wu M, Podgorski K & Druckmann S Multiplicative Updates for Optimization Problems with Dynamics. in Asilomar Conference on Signals, Systems, and Computers (2017).
Marvin JS et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936 (2018). PubMed PMC
Deal PE, Kulkarni RU, Al-Abdullatif SH & Miller EW Isomerically Pure Tetramethylrhodamine Voltage Reporters. J. Am. Chem. Soc. 138, 9085–9088 (2016). PubMed PMC
Gray EG Electron Microscopy of Synaptic Contacts on Dendrite Spines of the Cerebral Cortex. Nature 183, 1592–1593 (1959). PubMed
Mainen ZF, Malinow R & Svoboda K Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999). PubMed
Mayer ML, Westbrook GL & Guthrie PB Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984). PubMed
Chen T-W et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). PubMed PMC
Dana H et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016). PubMed PMC
Tan AYY, Brown BD, Scholl B, Mohanty D & Priebe NJ Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex. J. Neurosci. 31, 12339–12350 (2011). PubMed PMC
Jensen TP et al. Multiplex imaging of quantal glutamate release and presynaptic Ca2+ at multiple synapses in situ. bioRxiv 336891 (2018). doi:10.1101/336891 PubMed DOI PMC
Nahum-Levy R, Tam E, Shavit S & Benveniste M Glutamate But Not Glycine Agonist Affinity for NMDA Receptors Is Influenced by Small Cations. J. Neurosci. 22, 2550–2560 (2002). PubMed PMC
Harris KD & Thiele A Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011). PubMed PMC
Luczak A, Bartho P & Harris KD Gating of Sensory Input by Spontaneous Cortical Activity. J. Neurosci. 33, 1684–1695 (2013). PubMed PMC
Stringer C et al. Spontaneous behaviors drive multidimensional, brain-wide population activity. bioRxiv 306019 (2018). doi:10.1101/306019 DOI
Buzsáki G, Logothetis N & Singer W Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms. Neuron 80, 751–764 (2013). PubMed PMC
Cohen MR & Maunsell JHR Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009). PubMed PMC
Yamamoto J, Suh J, Takeuchi D & Tonegawa S Successful Execution of Working Memory Linked to Synchronized High-Frequency Gamma Oscillations. Cell 157, 845–857 (2014). PubMed
Zucca S et al. An inhibitory gate for state transition in cortex. eLife 2017. May 16;6 pii: e26177. doi: 10.7554/eLife.26177. PubMed DOI PMC
Constantinople CM & Bruno RM Effects and Mechanisms of Wakefulness on Local Cortical Networks. Neuron 69, 1061–1068 (2011). PubMed PMC
Okun M et al. Population Rate Dynamics and Multineuron Firing Patterns in Sensory Cortex. J. Neurosci. 32, 17108–17119 (2012). PubMed PMC
Xie Y et al. Resolution of High-Frequency Mesoscale Intracortical Maps Using the Genetically Encoded Glutamate Sensor iGluSnFR. J. Neurosci. 36, 1261–1272 (2016). PubMed PMC
Schuett S, Bonhoeffer T & Hübener M Mapping Retinotopic Structure in Mouse Visual Cortex with Optical Imaging. J. Neurosci. 22, 6549–6559 (2002). PubMed PMC
Wu J et al. Kilohertz in vivo imaging of neural activity. bioRxiv 543058 (2019). doi:10.1101/543058 DOI
Laissue PP, Alghamdi RA, Tomancak P, Reynaud EG & Shroff H Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017). PubMed
Podgorski K & Ranganathan G Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116, 1012–1023 (2016). PubMed PMC
Brainard DH The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997). PubMed
Sommer C, Straehle C, Köthe U & Hamprecht FA Ilastik: Interactive learning and segmentation toolkit. in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233 (2011). doi:10.1109/ISBI.2011.5872394 DOI
Sakoe H & Chiba S Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978).
Podgorski K & Haas K Fast non-negative temporal deconvolution for laser scanning microscopy. J. Biophotonics 6, 153–162 (2013). PubMed
Friedrich J, Zhou P & Paninski L Fast online deconvolution of calcium imaging data. PLOS Comput. Biol. 13, e1005423 (2017). PubMed PMC
White R Image restoration using the damped Richardson-Lucy iteration. in Astronomical Data Analysis Software and Systems III 61, 292 (1994).
Seeing the Spikes: The Future of Targetable Synthetic Voltage Sensors
Neurophotonic tools for microscopic measurements and manipulation: status report