The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20/FFP-P/8613
Science Foundation Ireland - Ireland
MR/X004317/1
Medical Research Council - United Kingdom
R01 NS127524
NINDS NIH HHS - United States
ERDF-ProjectBraindynamicsCZ.02.01.01/00/22_008/0004643
Ministerstvo školství, mládeže a tělovýchovy
U54 NS100064
NINDS NIH HHS - United States
LCF/PR/HR21/52410030
Fundación La Caixa
W81XWH-22-1-0510
U.S. Department of Defense
16/RC/3948
Science Foundation Ireland - Ireland
LCF/PR/HR22/52420005
Fundación La Caixa
21-17564S
Grantová agentura České republiky
NU21-08-00533
Agentura pro zdravotnický výzkum České republiky
R01NS127524
NIH HHS - United States
R21AG086880
NIA NIH HHS - United States
R21 AG086880
NIA NIH HHS - United States
UNCE24/MED/021
Univerzita Karlova
LX22NPO5107
Ministerstvo školství, mládeže a tělovýchovy
W81XWH-22-1-0210
U.S. Department of Defense
U54 NS100064
NIH HHS - United States
PubMed
39913107
PubMed Central
PMC12097480
DOI
10.1111/epi.18282
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, analysis, animal models, genetic epilepsies, high‐frequency oscillations, mechanisms, preclinical,
- MeSH
- elektroencefalografie * metody MeSH
- epilepsie * patofyziologie diagnóza epidemiologie MeSH
- komorbidita MeSH
- lidé MeSH
- mozek * patofyziologie MeSH
- záchvaty * patofyziologie diagnóza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Electroencephalography (EEG) has been instrumental in epilepsy research for the past century, both for basic and translational studies. Its contributions have advanced our understanding of epilepsy, shedding light on the pathophysiology and functional organization of epileptic networks, and the mechanisms underlying seizures. Here we re-examine the historical significance, ongoing relevance, and future trajectories of EEG in epilepsy research. We describe traditional approaches to record brain electrical activity and discuss novel cutting-edge, large-scale techniques using micro-electrode arrays. Contemporary EEG studies explore brain potentials beyond the traditional Berger frequencies to uncover underexplored mechanisms operating at ultra-slow and high frequencies, which have proven valuable in understanding the principles of ictogenesis, epileptogenesis, and endogenous epileptogenicity. Integrating EEG with modern techniques such as optogenetics, chemogenetics, and imaging provides a more comprehensive understanding of epilepsy. EEG has become an integral element in a powerful suite of tools for capturing epileptic network dynamics across various temporal and spatial scales, ranging from rapid pathological synchronization to the long-term processes of epileptogenesis or seizure cycles. Advancements in EEG recording techniques parallel the application of sophisticated mathematical analyses and algorithms, significantly augmenting the information yield of EEG recordings. Beyond seizures and interictal activity, EEG has been instrumental in elucidating the mechanisms underlying epilepsy-related cognitive deficits and other comorbidities. Although EEG remains a cornerstone in epilepsy research, persistent challenges such as limited spatial resolution, artifacts, and the difficulty of long-term recording highlight the ongoing need for refinement. Despite these challenges, EEG continues to be a fundamental research tool, playing a central role in unraveling disease mechanisms and drug discovery.
CNRS UMR7275 Institute of Molecular and Cellular Pharmacology Valbonne Sophia Antipolis France
Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
Department of Epileptology University Hospital Bonn Bonn Germany
Department of Neurology School of Medicine New York University New York New York USA
Department of Neuroscience and Medical Genetics Meyer Children's Hospital IRCSS Florence Italy
Department of Physiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Physiology and Medical Physics Royal College of Surgeons in Ireland Dublin Ireland
Department of Psychiatry New York University Grossman School of Medicine New York New York USA
Discipline of Physiology School of Medicine Trinity College Dublin Dublin Ireland
Dominick P Purpura Department of Neuroscience Albert Einstein College of Medicine Bronx New York USA
Epilepsy Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
FutureNeuro Research Ireland Centre Royal College of Surgeons in Ireland Dublin Ireland
Inserm U1323 Valbonne Sophia Antipolis France
Instituto Cajal CSIC Madrid Spain
Langone Medical Center New York University New York New York USA
Neuroscience Institute Langone Medical Center New York University New York New York USA
School of Pharmacy and Biomolecular Sciences Royal College of Surgeons in Ireland Dublin Ireland
Université Côte d'Azur Valbonne Sophia Antipolis France
Zobrazit více v PubMed
Cybulski N, Jelenska‐Macieszyna X. Action currents of the cerebral cortex Bull. Acad Sci Cracov. 1914;B:776–781.
Penfield W, Jasper HH. Epilepsy and the functional anatomy of the human brain 1st ed. Boston: Little; 1954.
Aladjalova NA. Infra‐slow rhythmic oscillations of the steady potential of the cerebral cortex. Nature. 1957;179(4567):957–959. PubMed
Kandel A, Buzsáki G. Cellular‐synaptic generation of sleep spindles, spike‐and‐wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 1997;17(17):6783–6797. PubMed PMC
Bureš J, Petráň M, Zachar J. Electrophysiological methods in biological research. 2d ed. Praha, New York: House of the Czechoslovak Academy of Sciences; Academic Press; 1962.
Niedermeyer E, Lopes da Silva FH. Electroencephalography: basic principles, clinical applications, and related fields. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.
Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci. 2020;23(12):1655–1665. PubMed PMC
Bragin A, Hetke J, Wilson CL, Anderson DJ, Engel J Jr, Buzsáki G. Multiple site silicon‐based probes for chronic recordings in freely moving rats: implantation, recording and histological verification. J Neurosci Methods. 2000;98(1):77–82. PubMed
Buzsáki G. Large‐scale recording of neuronal ensembles. Nat Neurosci. 2004;7(5):446–451. PubMed
Vazquez‐Guardado A, Yang Y, Bandodkar AJ, Rogers JA. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci. 2020;23(12):1522–1536. PubMed
Drongelen W. Signal processing for neuroscientists. 2d ed. London: Elsevier/Academic Press; 2018.
Le Van Quyen M, Bragin A. Analysis of dynamic brain oscillations: methodological advances. Trends Neurosci. 2007;30(7):365–373. PubMed
de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol. 2001;63(5):541–567. PubMed
Dudek FE, Staley KJ. The time course of acquired epilepsy: implications for therapeutic intervention to suppress epileptogenesis. Neurosci Lett. 2011;497(3):240–246. PubMed
Williams PA, White AM, Clark S, Ferraro DJ, Swiercz W, Staley KJ, et al. Development of spontaneous recurrent seizures after kainate‐induced status epilepticus. J Neurosci. 2009;29(7):2103–2112. PubMed PMC
Bragin A, Wilson CL, Engel J Jr. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia. 2000;41(Suppl 6):S144–S152. PubMed
de Curtis M, Gnatkovsky V. Reevaluating the mechanisms of focal ictogenesis: the role of low‐voltage fast activity. Epilepsia. 2009;50(12):2514–2525. PubMed
Blauwblomme T, Jiruska P, Huberfeld G. Mechanisms of ictogenesis. Int Rev Neurobiol. 2014;114:155–185. PubMed
Jiruska P, De Curtis M, Jefferys JG. Modern concepts of focal epileptic networks. Int Rev Neurobiol. 2014;114:1–7. PubMed
Holmes GL. EEG abnormalities as a biomarker for cognitive comorbidities in pharmacoresistant epilepsy. Epilepsia. 2013;54(s2):60–62. PubMed PMC
Ravizza T, Onat FY, Brooks‐Kayal AR, Depaulis A, Galanopoulou AS, Mazarati A, et al. WONOEP appraisal: biomarkers of epilepsy‐associated comorbidities. Epilepsia. 2017;58(3):331–342. PubMed PMC
Jiruska P, Alvarado‐Rojas C, Schevon CA, Staba R, Stacey W, Wendling F, et al. Update on the mechanisms and roles of high‐frequency oscillations in seizures and epileptic disorders. Epilepsia. 2017;58(8):1330–1339. PubMed PMC
Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S, Cascino GJ, et al. High‐frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain. 2008;131(Pt 4):928–937. PubMed PMC
Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen M. Recording and analysis techniques for high‐frequency oscillations. Prog Neurobiol. 2012;98(3):265–278. PubMed PMC
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and Spikes. Nat Rev Neurosci. 2012;13(6):407–420. PubMed PMC
Gloor P. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol. 1985;2(4):327–354. PubMed
Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. Oxford; New York: Oxford University Press; 2006.
Buzsáki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–225. PubMed PMC
Fries P, Nikolić D, Singer W. The gamma cycle. Trends Neurosci. 2007;30(7):309–316. PubMed
Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12(10):1222–1223. PubMed
Buzsáki G. Rhythms of the brain. Oxford, New York: Oxford University Press; 2006.
Buzsáki G, Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98(3):241–249. PubMed PMC
Matsumoto H, Marsan CA. Cortical cellular phenomena in experimental epilepsy: Interictal manifestations. Exp Neurol. 1964;9(4):286–304. PubMed
Johnston D, Brown TH. Giant synaptic potential hypothesis for epileptiform activity. Science. 1981;211(4479):294–297. PubMed
Jefferys JGR, Jiruska P, de Curtis M, Avoli M. Limbic network sééynchronization and temporal lobe epilepsy. In: Noebels JL, Avoli M, Rogawski MA, editors. Jasper's Basic Mechanisms of the Epilepsies. Bethesda (MD): National Center for Biotechnology Information (US); 2012. PubMed
Chvojka J, Kudlacek J, Chang WC, Novak O, Tomaska F, Otahal J, et al. The role of interictal discharges in ictogenesis—a dynamical perspective. Epilepsy Behav. 2021;121:106591. PubMed
Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol. 2011;95(2):104–132. PubMed PMC
Avoli M, de Curtis M, Köhling R. Does interictal synchronization influence ictogenesis? Neuropharmacology. 2013;69:37–44. PubMed PMC
Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D. Acquired dendritic channelopathy in temporal lobe epilepsy. Science. 2004;305(5683):532–535. PubMed
Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, et al. Upregulation of a T‐type Ca2+ channel causes a long‐lasting modification of neuronal firing mode after status epilepticus. J Neurosci. 2002;22(9):3645–3655. PubMed PMC
Yaari Y, Beck H. "Epileptic neurons" in temporal lobe epilepsy. Brain Pathol. 2002;12(2):234–239. PubMed PMC
Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsáki G. High‐frequency oscillations in human brain. Hippocampus. 1999;9(2):137–142. PubMed
Bragin A, Engel J, Wilson CL, Vizentin E, Mathern GW. Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia. 1999;40(9):1210–1221. PubMed
Jefferys JG, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, et al. Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol. 2012;98(3):250–264. PubMed PMC
Staba RJ, Bragin A. High‐frequency oscillations and other electrophysiological biomarkers of epilepsy: underlying mechanisms. Biomark Med. 2011;5(5):545–556. PubMed PMC
Lisgaras CP, Scharfman HE. High frequency oscillations (250–500 Hz) in animal models of Alzheimer's disease and two animal models of epilepsy. Epilepsia. 2022;64(1):231–246. PubMed PMC
Thio BJ, Grill WM. Relative contributions of different neural sources to the EEG. NeuroImage. 2023;275:120179. PubMed PMC
Kirschstein T, Köhling R. What is the source of the EEG? Clin EEG Neurosci. 2009;40(3):146–149. PubMed
Bragin A, Jandó G, Nádasdy Z, van Landeghem M, Buzsáki G. Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. J Neurophysiol. 1995;73(4):1691–1705. PubMed
Karaba LA, Robinson HL, Harvey RE, Chen W, Fernandez‐Ruiz A, Oliva A. A hippocampal circuit mechanism to balance memory reactivation during sleep. Science. 2024;385(6710):738–743. PubMed PMC
Valero M, Navas‐Olive A, de la Prida LM, Buzsáki G. Inhibitory conductance controls place field dynamics in the hippocampus. Cell Rep. 2022;40(8):111232. PubMed PMC
de Curtis M, Avoli M. GABAergic networks jump‐start focal seizures. Epilepsia. 2016;57(5):679–687. PubMed PMC
Bastany ZJR, Askari S, Dumont GA, Kellinghaus C, Askari B, Gharagozli K, et al. Concurrent recordings of slow DC‐potentials and epileptiform discharges: novel EEG amplifier and signal processing techniques. J Neurosci Methods. 2023;393:109894. PubMed
Nasretdinov A, Evstifeev A, Vinokurova D, Burkhanova‐Zakirova G, Chernova K, Churina Z, et al. Full‐band EEG recordings using hybrid AC/DC‐divider filters. eNeuro. 2021;8(4):ENEURO.0246‐21.2021. PubMed PMC
Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005;116(4):799–806. PubMed
Kovac S, Speckmann EJ, Gorji A. Uncensored EEG: the role of DC potentials in neurobiology of the brain. Prog Neurobiol. 2018;165‐167:51–65. PubMed
Herreras O, Somjen GG. Analysis of potential shifts associated with recurrent spreading depression and prolonged unstable spreading depression induced by microdialysis of elevated K+ in hippocampus of anesthetized rats. Brain Res. 1993;610(2):283–294. PubMed
Jing J, Aitken PG, Somjen GG. Role of calcium channels in spreading depression in rat hippocampal slices. Brain Res. 1993;604(1–2):251–259. PubMed
Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain. 2014;137(Pt 8):2210–2230. PubMed PMC
Valero M, English DF. Head‐mounted approaches for targeting single‐cells in freely moving animals. J Neurosci Methods. 2019;326:108397. PubMed
Timofeev I, Steriade M. Neocortical seizures: initiation, development and cessation. Neuroscience. 2004;123(2):299–336. PubMed
Jiruska P, De Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591(4):787–797. PubMed PMC
Williams PA, Hellier JL, White AM, Staley KJ, Dudek FE. Development of spontaneous seizures after experimental status epilepticus: implications for understanding epileptogenesis. Epilepsia. 2007;48(Suppl 5):157–163. PubMed
Bragin A, Wilson CL, Almajano J, Mody I, Engel J Jr. High‐frequency oscillations after status epilepticus: Epileptogenesis and seizure genesis. Epilepsia. 2004;45(9):1017–1023. PubMed
Kudlacek J, Chvojka J, Kumpost V, Hermanovska B, Posusta A, Jefferys JGR, et al. Long‐term seizure dynamics are determined by the nature of seizures and the mutual interactions between them. Neurobiol Dis. 2021;154:105347. PubMed
Lisgaras CP, Scharfman HE. Robust chronic convulsive seizures, high‐frequency oscillations, and human seizure onset patterns in an intrahippocampal kainic acid model in mice. Neurobiol Dis. 2022;166:105637. 10.1016/j.nbd.2022.105637 PubMed DOI PMC
Baud MO, Ghestem A, Benoliel JJ, Becker C, Bernard C. Endogenous multidien rhythm of epilepsy in rats. Exp Neurol. 2019;315:82–87. PubMed
Jefferys JGR, Ashby‐Lumsden A, Lovick TA. Cardiac effects of repeated focal seizures in rats induced by intrahippocampal tetanus toxin: Bradyarrhythmias, tachycardias, and prolonged interictal QT interval. Epilepsia. 2020;61(4):798–809. PubMed
Jefferys JGR, Arafat MA, Irazoqui PP, Lovick TA. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia. 2019;60(12):2346–2358. PubMed
Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the international league against epilepsy: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58(4):522–530. PubMed
Cook MJ, O'Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, et al. Prediction of seizure likelihood with a long‐term, implanted seizure advisory system in patients with drug‐resistant epilepsy: a first‐in‐man study. Lancet Neurol. 2013;12(6):563–571. PubMed
Almacellas Barbanoj A, Graham RT, Maffei B, Carpenter JC, Leite M, Hoke J, et al. Anti‐seizure gene therapy for focal cortical dysplasia. Brain. 2024;147(2):542–553. PubMed PMC
Reschke CR, Silva LFA, Norwood BA, Senthilkumar K, Morris G, Sanz‐Rodriguez A, et al. Potent anti‐seizure effects of locked nucleic acid antagomirs targeting miR‐134 in multiple mouse and rat models of epilepsy. Mol Ther Nucleic Acids. 2017;6:45–56. PubMed PMC
Reschke CR, Silva LFA, Vangoor VR, Rosso M, David B, Cavanagh BL, et al. Systemic delivery of antagomirs during blood‐brain barrier disruption is disease‐modifying in experimental epilepsy. Mol Ther. 2021;29(6):2041–2052. PubMed PMC
Snowball A, Chabrol E, Wykes RC, Shekh‐Ahmad T, Cornford JH, Lieb A, et al. Epilepsy gene therapy using an engineered potassium channel. J Neurosci. 2019;39(16):3159–3169. PubMed PMC
Wiegand JP, Gray DT, Schimanski LA, Lipa P, Barnes CA, Cowen SL. Age is associated with reduced sharp‐wave ripple frequency and altered patterns of neuronal variability. J Neurosci. 2016;36(20):5650–5660. PubMed PMC
Cid E, Gomez‐Dominguez D, Martin‐Lopez D, Gal B, Laurent F, Ibarz JM, et al. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations. Front Syst Neurosci. 2014;8:50. PubMed PMC
Inostroza M, Brotons‐Mas JR, Laurent F, Cid E, de la Prida LM. Specific impairment of “what‐where‐when” episodic‐like memory in experimental models of temporal lobe epilepsy. J Neurosci. 2013;33(45):17749–17762. PubMed PMC
Lopez‐Pigozzi D, Laurent F, Brotons‐Mas JR, Valderrama M, Valero M, Fernandez‐Lamo I, et al. Altered oscillatory dynamics of CA1 parvalbumin basket cells during theta‐gamma rhythmopathies of temporal lobe epilepsy. eNeuro. 2016;3(6):ENEURO.0284‐16.2016. PubMed PMC
Shuman T, Amendolara B, Golshani P. Theta rhythmopathy as a cause of cognitive disability in TLE. Epilepsy Curr. 2017;17(2):107–111. PubMed PMC
Chauvière L, Rafrafi N, Thinus‐Blanc C, Bartolomei F, Esclapez M, Bernard C. Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. J Neurosci. 2009;29(17):5402–5410. PubMed PMC
Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K. High‐frequency network oscillation in the hippocampus. Science. 1992;256(5059):1025–1027. PubMed
Frauscher B, von Ellenrieder N, Zelmann R, Rogers C, Nguyen DK, Kahane P, et al. High‐frequency oscillations in the normal human brain. Ann Neurol. 2018;84(3):374–385. PubMed
Engel J Jr, Bragin A, Staba R, Mody I. High‐frequency oscillations: what is normal and what is not? Epilepsia. 2009;50(4):598–604. PubMed
Pierre‐Pascal Lenck‐Santini Liset M.de la P rida. Temporal coordination: a key to understand cognitive and behavioral deficits in epilepsy. In: Jerome Engel J, Mody I, editors. Neurobiology of the epilepsies: from Epilepsy: a comprehensive textbook. 3rd ed. Philadephia: Wolters Kluwer; 2023. p. 114–130.
Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal‐cortical coupling in temporal lobe epilepsy. Nat Med. 2016;22(6):641–648. PubMed PMC
Zhou JL, Lenck‐Santini PP, Zhao Q, Holmes GL. Effect of interictal spikes on single‐cell firing patterns in the hippocampus. Epilepsia. 2007;48(4):720–731. PubMed
Titiz AS, Mahoney JM, Testorf ME, Holmes GL, Scott RC. Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information. Hippocampus. 2014;24(9):1129–1145. PubMed PMC
Ewell LA, Fischer KB, Leibold C, Leutgeb S, Leutgeb JK. The impact of pathological high‐frequency oscillations on hippocampal network activity in rats with chronic epilepsy. elife. 2019;8:e42148. PubMed PMC
Dahal P, Ghani N, Flinker A, Dugan P, Friedman D, Doyle W, et al. Interictal epileptiform discharges shape large‐scale intercortical communication. Brain. 2019;142(11):3502–3513. PubMed PMC
Yu H, Kim W, Park DK, Phi JH, Lim BC, Chae JH, et al. Interaction of interictal epileptiform activity with sleep spindles is associated with cognitive deficits and adverse surgical outcome in pediatric focal epilepsy. Epilepsia. 2024;65(1):190–203. PubMed PMC
Kleen JK, Scott RC, Holmes GL, Lenck‐Santini PP. Hippocampal interictal spikes disrupt cognition in rats. Ann Neurol. 2010;67(2):250–257. PubMed PMC
Kleen JK, Scott RC, Holmes GL, Roberts DW, Rundle MM, Testorf M, et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology. 2013;81(1):18–24. PubMed PMC
Binnie CD, Marston D. Cognitive correlates of interictal discharges. Epilepsia. 1992;33(Suppl 6):S11–S17. PubMed
Kasteleijn‐Nolst Trenité DG, Bakker DJ, Binnie CD, Buerman A, Van Raaij M. Psychological effects of subclinical epileptiform EEG discharges: i. scholastic skills. Epilepsy Res. 1988;2(2):111–116. PubMed
Cheng D, Yan X, Xu K, Zhou X, Chen Q. The effect of interictal epileptiform discharges on cognitive and academic performance in children with idiopathic epilepsy. BMC Neurol. 2020;20(1):233. PubMed PMC
Dodrill CB, Wilkus RJ. Relationships between intelligence and electroencephalographic epileptiform activity in adult epileptics. Neurology. 1976;26(6 pt 1):525–531. PubMed
Wilkus RJ, Dodrill CB. Neuropsychological correlates of the electroencephalogram in epileptics: i. topographic distribution and average rate of epileptiform activity. Epilepsia. 1976;17(1):89–100. PubMed
Aarts JH, Binnie CD, Smit AM, Wilkins AJ. Selective cognitive impairment during focal and generalized epileptiform EEG activity. Brain. 1984;107(Pt 1):293–308. PubMed
Altafullah I, Halgren E. Focal medial temporal lobe spike‐wave complexes evoked by a memory task. Epilepsia. 1988;29(1):8–13. PubMed
Kooi KA, Hovey HB. Alterations in mental function and paroxysmal cerebral activity. AMA Arch Neurol Psychiatry. 1957;78(3):264–271. PubMed
Silva AB, Leonard MK, Oganian Y, D'Esopo E, Krish D, Kopald B, et al. Interictal epileptiform discharges contribute to word‐finding difficulty in epilepsy through multiple cognitive mechanisms. Epilepsia. 2023;64(12):3266–3278. PubMed PMC
Ung H, Cazares C, Nanivadekar A, Kini L, Wagenaar J, Becker D, et al. Interictal epileptiform activity outside the seizure onset zone impacts cognition. Brain. 2017;140(8):2157–2168. PubMed PMC
Henin S, Shankar A, Borges H, Flinker A, Doyle W, Friedman D, et al. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain. 2021;144(5):1590–1602. PubMed PMC
Peltola J, Surges R, Voges B, von Oertzen TJ. Expert opinion on diagnosis and management of epilepsy‐associated comorbidities. Epilepsia Open. 2024;9(1):15–32. PubMed PMC
Aldenkamp AP, De Krom M, Reijs R. Newer antiepileptic drugs and cognitive issues. Epilepsia. 2003;44(Suppl 4):21–29. PubMed
Ortinski P, Meador KJ. Cognitive side effects of antiepileptic drugs. Epilepsy Behav. 2004;5(Suppl 1):S60–S65. PubMed
Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer's disease. Ann Neurol. 2016;80(6):858–870. PubMed PMC
Lam AD, Sarkis RA, Pellerin KR, Jing J, Dworetzky BA, Hoch DB, et al. Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology. 2020;95(16):e2259–e2270. PubMed PMC
Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149(3):708–721. PubMed PMC
Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540(7632):230–235. PubMed PMC
Gillespie AK, Jones EA, Lin YH, Karlsson MP, Kay K, Yoon SY, et al. Apolipoprotein E4 causes age‐dependent disruption of slow gamma oscillations during hippocampal sharp‐wave ripples. Neuron. 2016;90(4):740–751. PubMed PMC
Jones EA, Gillespie AK, Yoon SY, Frank LM, Huang Y. Early hippocampal sharp‐wave ripple deficits predict later learning and memory impairments in an Alzheimer's disease mouse model. Cell Rep. 2019;29(8):2123–2133.e4. PubMed PMC
Valero M, Averkin RG, Fernandez‐Lamo I, Aguilar J, Lopez‐Pigozzi D, Brotons‐Mas JR, et al. Mechanisms for selective single‐cell reactivation during offline sharp‐wave ripples and their distortion by fast ripples. Neuron. 2017;94(6):1234–1247.e7. PubMed
Vossel K, Ranasinghe KG, Beagle AJ, La A, Ah Pook K, Castro M, et al. Effect of levetiracetam on cognition in patients with Alzheimer disease with and without epileptiform activity: a randomized clinical trial. JAMA Neurol. 2021;78(11):1345–1354. PubMed PMC
Friedman D, Honig LS, Scarmeas N. Seizures and epilepsy in Alzheimer's disease. CNS Neurosci Ther. 2012;18(4):285–294. PubMed PMC
Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013;70(9):1158–1166. PubMed PMC
Lisgaras CP, Oliva A, McKenzie S, LaFrancois J, Siegelbaum SA, Scharman HE. Hippocampal area CA2 controls seizure dynamics, interictal EEG abnormalities and social comorbidity in mouse models of temporal lobe epilepsy. bioRxiv 2023. 10.1101/2023.01.15.524149 DOI
Pitkänen A, Buckmaster PS, Galanopoulou AS, Moshé SL. Chapter 8—crodents. Models of seizures and epilepsy. Second ed. Academic Press; 2017. p. 97–109.
Kadam SD, D'Ambrosio R, Duveau V, Roucard C, Garcia‐Cairasco N, Ikeda A, et al. Methodological standards and interpretation of video‐electroencephalography in adult control rodents. A TASK1‐WG1 report of the AES/ILAE translational TASK force of the ILAE. Epilepsia. 2017;58(Suppl 4):10–27. PubMed PMC
Ono T, Wagenaar J, Giorgi FS, Fabera P, Hanaya R, Jefferys J, et al. A companion to the preclinical common data elements and case report forms for rodent EEG studies. A report of the TASK3 EEG working group of the ILAE/AES joint translational TASK force. Epilepsia Open. 2018;3(S1):90–103. PubMed PMC
Manouze H, Ghestem A, Poillerat V, Bennis M, Ba‐M'hamed S, Benoliel JJ, et al. Effects of single cage housing on stress, cognitive, and seizure parameters in the rat and mouse pilocarpine models of epilepsy. eNeuro. 2019;6(4):ENEURO.0179‐18.2019. PubMed PMC
Zayachkivsky A, Lehmkuhle MJ, Fisher JH, Ekstrand JJ, Dudek FE. Recording EEG in immature rats with a novel miniature telemetry system. J Neurophysiol. 2013;109(3):900–911. PubMed PMC
Filippini L, Lim D, Khuon L, Taskin B. Wireless charge recovery system for implanted electroencephalography applications in mice. Santa Clara, CA, USA: 2017 18th International Symposium on Quality Electronic Design (ISQED); 2017.
Liao ZX, Chang YT, Tsou C, Cheng PH, Lee HY, Huang PW, et al. Wireless charging EEG monitoring SoC with AI algorithm‐driven electrical and optogenetic stimulation for epilepsy control. Hiroshima, Japan: 2020 IEEE Asian solid‐state circuits conference (A‐SSCC); 2020.
Ouyang W, Lu W, Zhang Y, Liu Y, Kim JU, Shen H, et al. A wireless and battery‐less implant for multimodal closed‐loop neuromodulation in small animals. Nat Biomed Eng. 2023;7(10):1252–1269. PubMed
Vuong JS, Garrett JJ, Connolly MJ, York AR, Gross RE, Devergnas A. Head‐mounted telemetry system for seizures monitoring and sleep scoring on non‐human primate. J Neurosci Methods. 2020;346:108915. PubMed PMC
Ghestem A, Pompili MN, Dipper‐Wawra M, Quilichini PP, Bernard C, Ferraris M. Long‐term near‐continuous recording with Neuropixels probes in healthy and epileptic rats. J Neural Eng. 2023;20(4):46003. PubMed
Bragin A, Csicsvári J, Penttonen M, Buzsáki G. Epileptic afterdischarge in the hippocampal–entorhinal system: current source density and unit studies. Neuroscience. 1997;76(4):1187–1203. PubMed
Ibarz JM, Foffani G, Cid E, Inostroza M, Prida LM. Emergent dynamics of fast ripples in the epileptic hippocampus. J Neurosci. 2010;30(48):16249–16261. PubMed PMC
Zakharov A, Chernova K, Burkhanova G, Holmes GL, Khazipov R. Segregation of seizures and spreading depolarization across cortical layers. Epilepsia. 2019;60(12):2386–2397. PubMed PMC
Kloc ML, Chen Y, Daglian JM, Holmes GL, Baram TZ, Barry JM. Spatial learning impairments and discoordination of entorhinal‐hippocampal circuit coding following prolonged febrile seizures. Hippocampus. 2023;33(8):970–992. PubMed PMC
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis. 2023;187:106294. PubMed PMC
Bower MR, Stead M, Meyer FB, Marsh WR, Worrell GA. Spatiotemporal neuronal correlates of seizure generation in focal epilepsy. Epilepsia. 2012;53(5):807–816. PubMed PMC
Ewell LA, Liang L, Armstrong C, Soltész I, Leutgeb S, Leutgeb JK. Brain state is a major factor in preseizure hippocampal network activity and influences success of seizure intervention. J Neurosci. 2015;35(47):15635–15648. PubMed PMC
Harte‐Hargrove LC, Galanopoulou AS, French JA, Pitkänen A, Whittemore V, Scharfman HE. Common data elements (CDEs) for preclinical epilepsy research: introduction to CDEs and description of core CDEs. A TASK3 report of the ILAE/AES joint translational TASK force. Epilepsia Open. 2018;3(Suppl 1):13–23. PubMed PMC
Scharfman HE, Galanopoulou AS, French JA, Pitkänen A, Whittemore V, Harte‐Hargrove LC. Preclinical common data elements (CDEs) for epilepsy: a joint ILAE/AES and NINDS translational initiative. Epilepsia Open. 2018;3(Suppl 1):9–12. PubMed PMC
Deisseroth K. Optogenetics. Nat Methods. 2011;8(1):26–29. PubMed PMC
Krook‐Magnuson E, Ledri M, Soltesz I, Kokaia M. How might novel technologies such as optogenetics lead to better treatments in epilepsy? Adv Exp Med Biol. 2014;813:319–336. PubMed PMC
Forcelli PA. Applications of optogenetic and chemogenetic methods to seizure circuits: where to go next? J Neurosci Res. 2017;95(12):2345–2356. PubMed PMC
Tønnesen J, Kokaia M. Epilepsy and optogenetics: can seizures be controlled by light? Clin Sci (Lond). 2017;131(14):1605–1616. PubMed
Christenson Wick Z, Krook‐Magnuson E. Specificity, versatility, and continual development: the power of optogenetics for epilepsy research. Front Cell Neurosci. 2018;12:151. PubMed PMC
Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, et al. Closed‐loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci. 2013;16(1):64–70. PubMed PMC
Krook‐Magnuson E, Armstrong C, Oijala M, Soltesz I. On‐demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun. 2013;4:1376. PubMed PMC
Campos‐Rodriguez C, Palmer D, Forcelli PA. Optogenetic stimulation of the superior colliculus suppresses genetic absence seizures. Brain. 2023;146(10):4320–4335. PubMed PMC
Streng ML, Krook‐Magnuson E. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures. J Physiol. 2019;598(1):171–187. 10.1113/jp278747 PubMed DOI PMC
Takeuchi Y, Harangozó M, Pedraza L, Földi T, Kozák G, Li Q, et al. Closed‐loop stimulation of the medial septum terminates epileptic seizures. Brain. 2021;144(3):885–908. PubMed
Stieve BJ, Richner TJ, Krook‐Magnuson C, Netoff TI, Krook‐Magnuson E. Optimization of closed‐loop electrical stimulation enables robust cerebellar‐directed seizure control. Brain. 2022;146(1):91–108. PubMed PMC
Ferrero JJ, Hassan AR, Yu Z, Zhao Z, Ma L, Wu C, et al. Closed‐loop electrical stimulation to prevent focal epilepsy progression and long‐term memory impairment. 2024. bioRxiv 10.1101/2024.02.09.579660 DOI
Paschen E, Kleis P, Vieira DM, Heining K, Boehler C, Egert U, et al. On‐demand low‐frequency stimulation for seizure control: efficacy and behavioural implications. Brain. 2024;147(2):505–520. PubMed
Berenyi A, Belluscio M, Mao D, Buzsáki G. Closed‐loop control of epilepsy by transcranial electrical stimulation. Science. 2012;337(6095):735–737. PubMed PMC
Cela E, McFarlan AR, Chung AJ, Wang T, Chierzi S, Murai KK, et al. An optogenetic kindling model of neocortical epilepsy. Sci Rep. 2019;9(1):5236. PubMed PMC
Choy M, Dadgar‐Kiani E, Cron GO, Duffy BA, Schmid F, Edelman BJ, et al. Repeated hippocampal seizures lead to brain‐wide reorganization of circuits and seizure propagation pathways. Neuron. 2022;110(2):221–236.e4. PubMed PMC
Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature. 1967;214(5092):1020–1021. PubMed
Roth BL. Dreadds for neuroscientists. Neuron. 2016;89(4):683–694. PubMed PMC
Walker MC, Kullmann DM. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology. 2020;168:107751. PubMed
Sternson SM, Bleakman D. Chemogenetics: drug‐controlled gene therapies for neural circuit disorders. Cell Gene Ther Insights. 2020;6(7):1079–1094. PubMed PMC
Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara‐Gonzalez D, Jain S, et al. An excitatory and epileptogenic effect of dentate gyrus mossy cells in a mouse model of epilepsy. Cell Rep. 2019;29(9):2875–2889.e6. PubMed PMC
Merlini M, Rafalski VA, Ma K, Kim K‐Y, Bushong EA, Rios Coronado PE, et al. Microglial Gi‐dependent dynamics regulate brain network hyperexcitability. Nat Neurosci. 2021;24(1):19–23. PubMed PMC
Cǎlin A, Stancu M, Zagrean A‐M, Jefferys JGR, Ilie AS, Akerman CJ. Chemogenetic recruitment of specific interneurons suppresses seizure activity. Front Cell Neurosci. 2018;12:293. PubMed PMC
Whissell PD, Tohyama S, Martin LJ. The use of DREADDs to deconstruct behavior. Front Genet. 2016;7:70. PubMed PMC
Klioutchnikov A, Wallace DJ, Sawinski J, Voit KM, Groemping Y, Kerr JND. A three‐photon head‐mounted microscope for imaging all layers of visual cortex in freely moving mice. Nat Methods. 2023;20(4):610–616. PubMed PMC
Kazemipour A, Novak O, Flickinger D, Marvin JS, Abdelfattah AS, King J, et al. Kilohertz frame‐rate two‐photon tomography. Nat Methods. 2019;16(8):778–786. PubMed PMC
Ozbay BN, Futia GL, Ma M, Bright VM, Gopinath JT, Hughes EG, et al. Three dimensional two‐photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial‐scanning. Sci Rep. 2018;8(1):8108. PubMed PMC
Abdelfattah AS, Zheng J, Singh A, Huang YC, Reep D, Tsegaye G, et al. Sensitivity optimization of a rhodopsin‐based fluorescent voltage indicator. Neuron. 2023;111(10):1547–1563.e9. PubMed PMC
Zhang Y, Looger LL. Fast and sensitive GCaMP calcium indicators for neuronal imaging. J Physiol. 2024;602(8):1595–1604. PubMed
Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, Jensen TP, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods. 2019;16(8):763–770. PubMed
Shimoda Y, Leite M, Graham RT, Marvin JS, Hasseman J, Kolb I, et al. Extracellular glutamate and GABA transients at the transition from interictal spiking to seizures. Brain. 2024;147(3):1011–1024. PubMed PMC
Masala N, Mittag M, Giovannetti EA, O'Neil DA, Distler FJ, Rupprecht P, et al. Aberrant hippocampal Ca2+ microwaves following synapsin‐dependent adeno‐associated viral expression of Ca2+ indicators. elife. 2024;13:RP93804. PubMed PMC
Siegel MS, Isacoff EY. A genetically encoded optical probe of membrane voltage. Neuron. 1997;19(4):735–741. PubMed
Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, et al. Ultrafast two‐photon imaging of a high‐gain voltage indicator in awake behaving mice. Cell. 2019;179(7):1590–1608.e23. PubMed PMC
Yang HH, St‐Pierre F. Genetically encoded voltage indicators: opportunities and challenges. J Neurosci. 2016;36(39):9977–9989. PubMed PMC
Johnston S, Parylak SL, Kim S, Mac N, Lim C, Gallina I, et al. AAV ablates neurogenesis in the adult murine hippocampus. elife. 2021;10:e59291. PubMed PMC
Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL, Ramirez MH, et al. Ultrapotent chemogenetics for research and potential clinical applications. Science. 2019;364(6436):eaav5282. PubMed PMC
Goutaudier R, Coizet V, Carcenac C, Carnicella S. Compound 21, a two‐edged sword with both DREADD‐selective and off‐target outcomes in rats. PLoS One. 2020;15(9):e0238156. PubMed PMC
Moyer JT, Gnatkovsky V, Ono T, Otahal J, Wagenaar J, Stacey WC, et al. Standards for data acquisition and software‐based analysis of in vivo electroencephalography recordings from animals. A TASK1‐WG5 report of the AES/ILAE translational TASK force of the ILAE. Epilepsia. 2017;58(Suppl 4):53–67. PubMed PMC
Andrzejak RG, Schindler K, Rummel C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys Rev E Stat Nonlinear Soft Matter Phys. 2012;86(4 Pt 2):e046206. PubMed
Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain. 2008;131(Pt 7):1818–1830. PubMed
Gnatkovsky V, Francione S, Cardinale F, Mai R, Tassi L, Lo Russo G, et al. Identification of reproducible ictal patterns based on quantified frequency analysis of intracranial EEG signals. Epilepsia. 2011;52(3):477–488. PubMed
Si Y. Machine learning applications for electroencephalograph signals in epilepsy: a quick review. Acta Epileptol. 2020;2(1):5.
Wiener M, Sommer FT, Ives ZG, Poldrack RA, Litt B. Enabling an open data ecosystem for the neurosciences. Neuron. 2016;92(3):617–621. PubMed
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. PubMed PMC
Navas‐Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp‐wave ripples reveals common waveform features across species. Commun Biol. 2024;7(1):211. PubMed PMC
Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user‐friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716. PubMed PMC
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. PubMed
Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MEG and EEG data analysis with MNE‐python. Front Neurosci. 2013;7:267. PubMed PMC
Petersen PC, Siegle JH, Steinmetz NA, Mahallati S, Buzsáki G. CellExplorer: a framework for visualizing and characterizing single neurons. Neuron. 2021;109(22):3594–3608.e2. PubMed PMC
Nasiotis K, Cousineau M, Tadel F, Peyrache A, Leahy RM, Pack CC, et al. Integrated open‐source software for multiscale electrophysiology. Sci Data. 2019;6(1):231. PubMed PMC
Navarrete M, Alvarado‐Rojas C, Le Van QM, Valderrama M. RIPPLELAB: a comprehensive application for the detection, analysis and classification of high frequency oscillations in electroencephalographic signals. PLoS One. 2016;11(6):e0158276. PubMed PMC
Zhou G, Noto T, Sharma A, Yang Q, Otárula KAG, Tate M, et al. HFOApp: a MATLAB graphical user interface for high‐frequency oscillation marking. eNeuro. 2021;8(5):ENEURO.0509‐20.2021. PubMed PMC
Zhang Y, Liu L, Ding Y, Chen X, Monsoor T, Daida A, et al. PyHFO: lightweight deep learning‐powered end‐to‐end high‐frequency oscillations analysis application. J Neural Eng. 2023;21(3):e036023. PubMed PMC
Plenz D, Thiagarajan TC. The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci. 2007;30(3):101–110. PubMed
Ortega GJ, Menendez de la Prida L, Sola RG, Pastor J. Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intraoperative electrocorticographic analysis. Epilepsia. 2008;49(2):269–280. PubMed
Le Van Quyen M, Staba R, Bragin A, Dickson C, Valderrama M, Fried I, et al. Large‐scale microelectrode recordings of high‐frequency gamma oscillations in human cortex during sleep. J Neurosci. 2010;30(23):7770–7782. PubMed PMC
Siebenhühner F, Wang SH, Arnulfo G, Lampinen A, Nobili L, Palva JM, et al. Genuine cross‐frequency coupling networks in human resting‐state electrophysiological recordings. PLoS Biol. 2020;18(5):e3000685. PubMed PMC
Canolty RT, Knight RT. The functional role of cross‐frequency coupling. Trends Cogn Sci. 2010;14(11):506–515. PubMed PMC
Ramirez‐Villegas JF, Logothetis NK, Besserve M. Diversity of sharp‐wave‐ripple LFP signatures reveals differentiated brain‐wide dynamical events. Proc Natl Acad Sci USA. 2015;112(46):E6379–E6387. PubMed PMC
Sebastian ER, Quintanilla JP, Sánchez‐Aguilera A, Esparza J, Cid E, de la Prida LM. Topological analysis of sharp‐wave ripple waveforms reveals input mechanisms behind feature variations. Nat Neurosci. 2023;26(12):2171–2181. PubMed PMC
Sinha N, Wang Y, Dauwels J, Kaiser M, Thesen T, Forsyth R, et al. Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy. Neuroimage Clin. 2019;21:101655. PubMed PMC
Haufe S, Dähne S, Nikulin VV. Dimensionality reduction for the analysis of brain oscillations. NeuroImage. 2014;101:583–597. PubMed
Sturm I, Lapuschkin S, Samek W, Müller K‐R. Interpretable deep neural networks for single‐trial EEG classification. J Neurosci Methods. 2016;274:141–145. PubMed
Adeli E, Wu G, Saghafi B, An L, Shi F, Shen D. Kernel‐based joint feature selection and max‐margin classification for early diagnosis of Parkinson's disease. Sci Rep. 2017;7(1):41069. PubMed PMC
Navas‐Olive A, Amaducci R, Jurado‐Parras MT, Sebastian ER, de la Prida LM. Deep learning‐based feature extraction for prediction and interpretation of sharp‐wave ripples in the rodent hippocampus. elife. 2022;11:e77772. PubMed PMC
Lucasius C, Grigorovsky V, Nariai H, Galanopoulou AS, Gursky J, Moshé SL, et al. Biomimetic deep learning networks with applications to epileptic spasms and seizure prediction. IEEE Trans Biomed Eng. 2024;71(3):1056–1067. PubMed PMC
Wallisch P. Matlab for neuroscientists: an introduction to scientific computing in Matlab. 2nd ed. Amsterdam: Academic Press; 2014.
Nicholson C, Freeman JA. Theory of current source‐density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol. 1975;38(2):356–368. PubMed
Dulla CG, Janigro D, Jiruska P, Raimondo JV, Ikeda A, Lin CK, et al. How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK1‐WG4 group of the ILAE/AES joint translational TASK force. Epilepsia Open. 2018;3(4):460–473. PubMed PMC
Akman O, Raol YH, Auvin S, Cortez MA, Kubova H, de Curtis M, et al. Methodologic recommendations and possible interpretations of video‐EEG recordings in immature rodents used as experimental controls: a TASK1‐WG2 report of the ILAE/AES joint translational TASK force. Epilepsia Open. 2018;3(4):437–459. PubMed PMC
Raimondo JV, Heinemann U, de Curtis M, Goodkin HP, Dulla CG, Janigro D, et al. Methodological standards for in vitro models of epilepsy and epileptic seizures. A TASK1‐WG4 report of the AES/ILAE translational TASK force of the ILAE. Epilepsia. 2017;58(Suppl 4):40–52. PubMed PMC
Hernan AE, Schevon CA, Worrell GA, Galanopoulou AS, Kahane P, de Curtis M, et al. Methodological standards and functional correlates of depth in vivo electrophysiological recordings in control rodents. A TASK1‐WG3 report of the AES/ILAE translational TASK force of the ILAE. Epilepsia. 2017;58(Suppl 4):28–39. PubMed PMC
Chen JY, Chauvette S, Skorheim S, Timofeev I, Bazhenov M. Interneuron‐mediated inhibition synchronizes neuronal activity during slow oscillation. J Physiol. 2012;590(16):3987–4010. PubMed PMC
Bonaccini Calia A, Masvidal‐Codina E, Smith TM, Schäfer N, Rathore D, Rodríguez‐Lucas E, et al. Full‐bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nat Nanotechnol. 2022;17(3):301–309. PubMed
Garcia‐Cortadella R, Schwesig G, Jeschke C, Illa X, Gray AL, Savage S, et al. Graphene active sensor arrays for long‐term and wireless mapping of wide frequency band epicortical brain activity. Nat Commun. 2021;12(1):211. PubMed PMC
Viana D, Walston ST, Masvidal‐Codina E, Illa X, Rodríguez‐Meana B, del Valle J, et al. Nanoporous graphene‐based thin‐film microelectrodes for in vivo high‐resolution neural recording and stimulation. Nat Nanotechnol. 2024;19(4):514–523. PubMed PMC
Wykes RC, Masvidal‐Codina E, Guimerà‐Brunet A, Garrido JA. The advantages of mapping slow brain potentials using DC‐coupled graphene micro‐transistors: clinical and translational applications. Clin Transl Med. 2022;12(7):e968. PubMed PMC
Dümpelmann M, Elger CE. Visual and automatic investigation of epileptiform spikes in intracranial EEG recordings. Epilepsia. 1999;40(3):275–285. PubMed
Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B. Human and automated detection of high‐frequency oscillations in clinical intracranial EEG recordings. Clin Neurophysiol. 2007;118(5):1134–1143. PubMed PMC
Dümpelmann M, Jacobs J, Kerber K, Schulze‐Bonhage A. Automatic 80‐250 éHz "ripple" high frequency oscillation detection in invasive subdural grid and strip recordings in epilepsy by a radial basis function neural network. Clin Neurophysiol. 2012;123(9):1721–1731. PubMed
Warby SC, Wendt SL, Welinder P, Munk EG, Carrillo O, Sorensen HB, et al. Sleep‐spindle detection: crowdsourcing and evaluating performance of experts, non‐experts and automated methods. Nat Methods. 2014;11(4):385–392. PubMed PMC
Lacourse K, Delfrate J, Beaudry J, Peppard P, Warby SC. A sleep spindle detection algorithm that emulates human expert spindle scoring. J Neurosci Methods. 2019;316:3–11. PubMed PMC
Valenti P, Cazamajou E, Scarpettini M, Aizemberg A, Silva W, Kochen S. Automatic detection of interictal spikes using data mining models. J Neurosci Methods. 2006;150(1):105–110. PubMed
Shen CP, Liu ST, Zhou WZ, Lin FS, Lam AY, Sung HY, et al. A physiology‐based seizure detection system for multichannel EEG. PLoS One. 2013;8(6):e65862. PubMed PMC
Hagen E, Chambers AR, Einevoll GT, Pettersen KH, Enger R, Stasik AJ. RippleNet: a recurrent neural network for sharp wave ripple (SPW‐R) detection. Neuroinformatics. 2021;19(3):493–514. PubMed PMC
Gschwind T, Zeine A, Raikov I, Markowitz JE, Gillis WF, Felong S, et al. Hidden behavioral fingerprints in epilepsy. Neuron. 2023;111(9):1440–1452.e5. PubMed PMC
Zhang JM, Masvidal‐Codina E, Nguyen D, Illa X, Dégardin J, Goulet R, et al. Concurrent functional ultrasound imaging with graphene‐based DC‐coupled electrophysiology as a platform to study slow brain signals and cerebral blood flow under control and pathophysiological brain states. Nanoscale Horiz. 2024;9:544–554. PubMed
Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure‐onset patterns: effect of underlying pathology. Brain. 2014;137(Pt 1):183–196. PubMed
Ulbert I, Halgren E, Heit G, Karmos G. Multiple microelectrode‐recording system for human intracortical applications. J Neurosci Methods. 2001;106(1):69–79. PubMed
Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical electrode array: a recording structure for potential brain‐computer interfaces. Electroencephalogr Clin Neurophysiol. 1997;102(3):228–239. PubMed
Paulk AC, Kfir Y, Khanna AR, Mustroph ML, Trautmann EM, Soper DJ, et al. Large‐scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat Neurosci. 2022;25(2):252–263. PubMed
Khodagholy D, Gelinas JN, Thesen T, Doyle W, Devinsky O, Malliaras GG, et al. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18(2):310–315. PubMed PMC