Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator

. 2023 May 17 ; 111 (10) : 1547-1563.e9. [epub] 20230403

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37015225

Grantová podpora
R01 NS102727 NINDS NIH HHS - United States
F32 MH129149 NIMH NIH HHS - United States
Howard Hughes Medical Institute - United States
RF1 MH126882 NIMH NIH HHS - United States
RF1 AG079269 NIA NIH HHS - United States
DP2 MH129956 NIMH NIH HHS - United States

Odkazy

PubMed 37015225
PubMed Central PMC10280807
DOI 10.1016/j.neuron.2023.03.009
PII: S0896-6273(23)00205-2
Knihovny.cz E-zdroje

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.

Zobrazit více v PubMed

Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, et al. (2014). All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833. 10.1038/nmeth.3000. PubMed DOI PMC

Lin MZ, and Schnitzer MJ (2016). Genetically encoded indicators of neuronal activity. Nat. Neurosci 19, 1142–1153. 10.1038/nn.4359. PubMed DOI PMC

Antic SD, Empson RM, and Knöpfel T. (2016). Voltage imaging to understand connections and functions of neuronal circuits. J. Neurophysiol 116, 135–152. 10.1152/jn.00226.2016. PubMed DOI PMC

Knöpfel T, and Song C. (2019). Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci 20, 719–727. 10.1038/s41583-019-0231-4. PubMed DOI

Bando Y, Sakamoto M, Kim S, Ayzenshtat I, and Yuste R. (2019). Comparative Evaluation of Genetically Encoded Voltage Indicators. Cell Rep. 26, 802–813.e4. 10.1016/j.celrep.2018.12.088. PubMed DOI PMC

Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, and Cohen AE (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95. 10.1038/nmeth.1782. PubMed DOI PMC

Chien M-P, Brinks D, Testa-Silva G, Tian H, Brooks FP, Adam Y, Bloxham W, Gmeiner B, Kheifets S, and Cohen AE (2021). Photoactivated voltage imaging in tissue with an archaerhodopsin-derived reporter. Sci. Adv 7, eabe3216. 10.1126/sciadv.abe3216. PubMed DOI PMC

Flytzanis NC, Bedbrook CN, Chiu H, Engqvist MKM, Xiao C, Chan KY, Sternberg PW, Arnold FH, and Gradinaru V. (2014). Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun 5, 4894. 10.1038/ncomms5894. PubMed DOI PMC

Gong Y, Li JZ, and Schnitzer MJ (2013). Enhanced Archaerhodopsin Fluorescent Protein Voltage Indicators. PLOS ONE 8, e66959. 10.1371/journal.pone.0066959. PubMed DOI PMC

McIsaac RS, Engqvist MKM, Wannier T, Rosenthal AZ, Herwig L, Flytzanis NC, Imasheva ES, Lanyi JK, Balashov SP, Gradinaru V, et al. (2014). Directed evolution of a far-red fluorescent rhodopsin. Proc. Natl. Acad. Sci 111, 13034–13039. 10.1073/pnas.1413987111. PubMed DOI PMC

Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, Suk H-J, Hochbaum DR, Goodwin D, Pnevmatikakis E, Pak N, et al. (2018). A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol 14, 352. 10.1038/s41589-018-0004-9. PubMed DOI PMC

Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, and Schnitzer MJ (2015). High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science, aab0810. 10.1126/science.aab0810. PubMed DOI PMC

Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D, Werley CA, Harrison DJ, Campbell RE, and Cohen AE (2014). Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun 5, 4625. 10.1038/ncomms5625. PubMed DOI PMC

Kannan M, Vasan G, Huang C, Haziza S, Li JZ, Inan H, Schnitzer MJ, and Pieribone VA (2018). Fast, in vivo voltage imaging using a red fluorescent indicator. Nat. Methods, 1. 10.1038/s41592-018-0188-7. PubMed DOI PMC

Kannan M, Vasan G, Haziza S, Huang C, Chrapkiewicz R, Luo J, Cardin JA, Schnitzer MJ, and Pieribone VA (2022). Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types. Science 378, eabm8797. 10.1126/science.abm8797. PubMed DOI PMC

Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, et al. (2008). HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol 3, 373–382. 10.1021/cb800025k. PubMed DOI

Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, et al. (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250. 10.1038/nmeth.3256. PubMed DOI PMC

Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, et al. (2017). A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, nmeth.4403. 10.1038/nmeth.4403. PubMed DOI PMC

Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y-C, Campagnola L, Seeman SC, Yu J, et al. (2019). Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704. 10.1126/science.aav6416. PubMed DOI

Abdelfattah AS, Valenti R, Zheng J, Wong A, Podgorski K, Koyama M, Kim DS, and Schreiter ER (2020). A general approach to engineer positive-going eFRET voltage indicators. Nat. Commun 11, 3444. 10.1038/s41467-020-17322-1. PubMed DOI PMC

Curnow P, Di Bartolo ND, Moreton KM, Ajoje OO, Saggese NP, and Booth PJ (2011). Stable folding core in the folding transition state of an alpha-helical integral membrane protein. Proc. Natl. Acad. Sci. U. S. A 108, 14133–14138. 10.1073/pnas.1012594108. PubMed DOI PMC

Faham S, Yang D, Bare E, Yohannan S, Whitelegge JP, and Bowie JU (2004). Side-chain contributions to membrane protein structure and stability. J. Mol. Biol 335, 297–305. 10.1016/j.jmb.2003.10.041. PubMed DOI

Perálvarez-Marín A, Lórenz-Fonfría VA, Simón-Vázquez R, Gomariz M, Meseguer I, Querol E, and Padrós E. (2008). Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins. Biophys. J 95, 4384–4395. 10.1529/biophysj.108.136747. PubMed DOI PMC

Wagner NL, Greco JA, Ranaghan MJ, and Birge RR (2013). Directed evolution of bacteriorhodopsin for applications in bioelectronics. J. R. Soc. Interface 10, 20130197. 10.1098/rsif.2013.0197. PubMed DOI PMC

Kolb I, Landry CR, Yip MC, Lewallen CF, Stoy WA, Lee J, Felouzis A, Yang B, Boyden ES, Rozell CJ, et al. (2019). PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices. J. Neural Eng 16, 046003. 10.1088/1741-2552/ab1834. PubMed DOI PMC

St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, and Lin MZ (2014). High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci 17, 884–889. 10.1038/nn.3709. PubMed DOI PMC

Boyden ES, Zhang F, Bamberg E, Nagel G, and Deisseroth K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci 8, 1263–1268. 10.1038/nn1525. PubMed DOI

Zheng Q, Ayala AX, Chung I, Weigel AV, Ranjan A, Falco N, Grimm JB, Tkachuk AN, Wu C, Lippincott-Schwartz J, et al. (2019). Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. ACS Cent. Sci 5, 1602–1613. 10.1021/acscentsci.9b00676. PubMed DOI PMC

Crochet S, and Petersen CCH (2006). Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci 9, 608–610. 10.1038/nn1690. PubMed DOI

Zhou M, Liang F, Xiong XR, Li L, Li H, Xiao Z, Tao HW, and Zhang LI (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat. Neurosci 17, 841–850. 10.1038/nn.3701. PubMed DOI PMC

Bennett C, Arroyo S, and Hestrin S. (2013). Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80, 350–357. 10.1016/j.neuron.2013.08.007. PubMed DOI PMC

Einstein MC, Polack P-O, Tran DT, and Golshani P. (2017). Visually Evoked 3–5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice. J. Neurosci. Off. J. Soc. Neurosci 37, 5084–5098. 10.1523/JNEUROSCI.3868-16.2017. PubMed DOI PMC

Diba K, Amarasingham A, Mizuseki K, and Buzsáki G. (2014). Millisecond Timescale Synchrony among Hippocampal Neurons. J. Neurosci 34, 14984–14994. 10.1523/JNEUROSCI.1091-14.2014. PubMed DOI PMC

English DF, McKenzie S, Evans T, Kim K, Yoon E, and Buzsáki G. (2017). Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks. Neuron 96, 505–520.e7. 10.1016/j.neuron.2017.09.033. PubMed DOI PMC

Galarreta M, and Hestrin S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75. 10.1038/47029. PubMed DOI

Gentet LJ, Avermann M, Matyas F, Staiger JF, and Petersen CCH (2010). Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435. 10.1016/j.neuron.2010.01.006. PubMed DOI

Hu H, Ma Y, and Agmon A. (2011). Submillisecond Firing Synchrony between Different Subtypes of Cortical Interneurons Connected Chemically But Not Electrically. J. Neurosci 31, 3351–3361. 10.1523/JNEUROSCI.4881-10.2011. PubMed DOI PMC

Tian H, Davis HC, Wong-Campos JD, Park P, Fan LZ, Gmeiner B, Begum S, Werley CA, Borja GB, Upadhyay H, et al. (2023). Video-based pooled screening yields improved far-red genetically encoded voltage indicators. Nat. Methods, 1–13. 10.1038/s41592-022-01743-5. PubMed DOI PMC

Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JRP, and Jonas P. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci 99, 13222–13227. 10.1073/pnas.192233099. PubMed DOI PMC

Gibson JR, Beierlein M, and Connors BW (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79. 10.1038/47035. PubMed DOI

Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, et al. (2016). Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727. 10.7554/eLife.12727. PubMed DOI PMC

Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R, et al. (2019). High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657. 10.1038/s41592-019-0435-6. PubMed DOI

Chien M-P, Werley A, C., Farhi L, S., and Cohen AE (2015). Photostick: a method for selective isolation of target cells from culture. Chem. Sci 6, 1701–1705. 10.1039/C4SC03676J. PubMed DOI PMC

Park J, Werley CA, Venkatachalam V, Kralj JM, Dib-Hajj SD, Waxman SG, and Cohen AE (2013). Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells. PLOS ONE 8, e85221. 10.1371/journal.pone.0085221. PubMed DOI PMC

Aaron G, and Yuste R. (2006). Reverse optical probing (ROPING) of neocortical circuits. Synapse 60, 437–440. 10.1002/syn.20316. PubMed DOI

Farhi SL, Parot VJ, Grama A, Yamagata M, Abdelfattah AS, Adam Y, Lou S, Kim JJ, Campbell RE, Cox DD, et al. (2019). Wide-Area All-Optical Neurophysiology in Acute Brain Slices. J. Neurosci 39, 4889–4908. 10.1523/JNEUROSCI.0168-19.2019. PubMed DOI PMC

Packer AM, Russell LE, Dalgleish HWP, and Häusser M. (2015). Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146. 10.1038/nmeth.3217. PubMed DOI PMC

Sasaki T, Minamisawa G, Takahashi N, Matsuki N, and Ikegaya Y. (2009). Reverse optical trawling for synaptic connections in situ. J. Neurophysiol 102, 636–643. 10.1152/jn.00012.2009. PubMed DOI

Zolnik TA, Sha F, Johenning FW, Schreiter ER, Looger LL, Larkum ME, and Sachdev RNS (2017). All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI. J. Physiol 595, 1465–1477. 10.1113/JP273116. PubMed DOI PMC

Evans SW, Shi D, Chavarha M, Plitt MH, Taxidis J, Madruga B, Fan JL, Hwang F-J, Keulen SC van Suomivuori C-M, et al. (2021). A positively tuned voltage indicator reveals electrical correlates of calcium activity in the brain. 2021.10.21.465345. 10.1101/2021.10.21.465345. DOI

Li B, Chavarha M, Kobayashi Y, Yoshinaga S, Nakajima K, Lin MZ, and Inoue T. (2020). Two-Photon Voltage Imaging of Spontaneous Activity from Multiple Neurons Reveals Network Activity in Brain Tissue. iScience 23. 10.1016/j.isci.2020.101363. PubMed DOI PMC

Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, Evans SW, Chamberland S, Shi D, Yang R, et al. (2019). Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 179, 1590–1608.e23. 10.1016/j.cell.2019.11.004. PubMed DOI PMC

Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME, Brinks D, Wu H, Mostajo-Radji MA, Kheifets S, Parot V, et al. (2019). Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417. 10.1038/s41586-019-1166-7. PubMed DOI PMC

Fan LZ, Kheifets S, Böhm UL, Wu H, Piatkevich KD, Xie ME, Parot V, Ha Y, Evans KE, Boyden ES, et al. (2020). All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory Processing in Cortical Layer 1. Cell. 10.1016/j.cell.2020.01.001. PubMed DOI PMC

Piatkevich KD, Bensussen S, Tseng H, Shroff SN, Lopez-Huerta VG, Park D, Jung EE, Shemesh OA, Straub C, Gritton HJ, et al. (2019). Population imaging of neural activity in awake behaving mice. Nature 574, 413–417. 10.1038/s41586-019-1641-1. PubMed DOI PMC

van Welie I, Roth A, Ho SSN, Komai S, and Häusser M. (2016). Conditional Spike Transmission Mediated by Electrical Coupling Ensures Millisecond Precision-Correlated Activity among Interneurons In Vivo. Neuron 90, 810–823. 10.1016/j.neuron.2016.04.013. PubMed DOI PMC

Gibson DG, Young L, Chuang R-Y, Venter JC Iii, C.A.H., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345. 10.1038/nmeth.1318. PubMed DOI

Picelli S, Björklund ÅK, Reinius B, Sagasser S, Winberg G, and Sandberg R. (2014). Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040. 10.1101/gr.177881.114. PubMed DOI PMC

Wardill TJ, Chen T-W, Schreiter ER, Hasseman JP, Tsegaye G, Fosque BF, Behnam R, Shields BC, Ramirez M, Kimmel BE, et al. (2013). A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators. PLOS ONE 8, e77728. 10.1371/journal.pone.0077728. PubMed DOI PMC

Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, et al. (2019). ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232. 10.1038/s41592-019-0582-9. PubMed DOI

Kolb I, Stoy WA, Rousseau EB, Moody OA, Jenkins A, and Forest CR (2016). Cleaning patch-clamp pipettes for immediate reuse. Sci. Rep 6, 35001. 10.1038/srep35001. PubMed DOI PMC

Campagnola L, Kratz MB, and Manis PB (2014). ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research. Front. Neuroinformatics 8, 3. 10.3389/fninf.2014.00003. PubMed DOI PMC

Wilt BA, Fitzgerald JE, and Schnitzer MJ (2013). Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing. Biophys. J 104, 51–62. 10.1016/j.bpj.2012.07.058. PubMed DOI PMC

Kim J-Y, Grunke SD, Levites Y, Golde TE, and Jankowsky JL (2014). Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. J. Vis. Exp. JoVE, 51863. 10.3791/51863. PubMed DOI PMC

Ting, Jonathan T, Daigle, Tanya L, Chen Q, and Feng G. (2014). Acute Brain Slice Methods for Adult and Aging Animals: Application of Targeted Patch Clamp Analysis and Optogenetics. In Methods Patch-Clamp and Protocols Methods in Molecular Biology., Martina M. and Taverna S, eds. (Springer; New York: ), pp. 221–242. 10.1007/978-1-4939-1096-0_14. PubMed DOI PMC

Badon A, Bensussen S, Gritton HJ, Awal MR, Gabel CV, Han X, and Mertz J. (2019). Video-rate large-scale imaging with Multi-Z confocal microscopy. Optica 6, 389–395. 10.1364/OPTICA.6.000389. PubMed DOI PMC

Pologruto TA, Sabatini BL, and Svoboda K. (2003). ScanImage: Flexible software for operating laser scanning microscopes. Biomed. Eng. OnLine 2, 13. 10.1186/1475-925X-2-13. PubMed DOI PMC

Liu T-L, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Mosaliganti KR, Collins ZM, Hiscock TW, Shea J, et al. (2018). Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360. 10.1126/science.aaq1392. PubMed DOI PMC

Cai C, Friedrich J, Singh A, Eybposh MH, Pnevmatikakis EA, Podgorski K, and Giovannucci A. (2021). VolPy: Automated and scalable analysis pipelines for voltage imaging datasets. PLOS Comput. Biol 17, e1008806. 10.1371/journal.pcbi.1008806. PubMed DOI PMC

Dombeck DA, Harvey CD, Tian L, Looger LL, and Tank DW (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci 13, 1433–1440. 10.1038/nn.2648. PubMed DOI PMC

Yardeni T, Eckhaus M, Morris HD, Huizing M, and Hoogstraten-Miller S. (2011). Retro-orbital injections in mice. Lab Anim. 40, 155–160. 10.1038/laban0511-155. PubMed DOI PMC

Pnevmatikakis EA, and Giovannucci A. (2017). NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94. 10.1016/j.jneumeth.2017.07.031. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...