Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 NS102727
NINDS NIH HHS - United States
F32 MH129149
NIMH NIH HHS - United States
Howard Hughes Medical Institute - United States
RF1 MH126882
NIMH NIH HHS - United States
RF1 AG079269
NIA NIH HHS - United States
DP2 MH129956
NIMH NIH HHS - United States
PubMed
37015225
PubMed Central
PMC10280807
DOI
10.1016/j.neuron.2023.03.009
PII: S0896-6273(23)00205-2
Knihovny.cz E-zdroje
- Klíčová slova
- biosensors, fluorescence imaging, fluorescent proteins, genetically encoded indicators, voltage imaging,
- MeSH
- akční potenciály fyziologie MeSH
- angiotensin-konvertující enzym 2 * MeSH
- mutace genetika MeSH
- myši MeSH
- neurony fyziologie MeSH
- rodopsin * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- angiotensin-konvertující enzym 2 * MeSH
- rodopsin * MeSH
The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.
Allen Institute for Brain Science Seattle WA USA
Department of Biomedical Engineering Boston University Boston MA USA
Department of Physiology 2nd Faculty of Medicine Charles University Prague Czech Republic
George W Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA USA
Institute of Neuroscience National Yang Ming Chiao Tung University Taipei Taiwan
Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA
Zobrazit více v PubMed
Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, et al. (2014). All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833. 10.1038/nmeth.3000. PubMed DOI PMC
Lin MZ, and Schnitzer MJ (2016). Genetically encoded indicators of neuronal activity. Nat. Neurosci 19, 1142–1153. 10.1038/nn.4359. PubMed DOI PMC
Antic SD, Empson RM, and Knöpfel T. (2016). Voltage imaging to understand connections and functions of neuronal circuits. J. Neurophysiol 116, 135–152. 10.1152/jn.00226.2016. PubMed DOI PMC
Knöpfel T, and Song C. (2019). Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci 20, 719–727. 10.1038/s41583-019-0231-4. PubMed DOI
Bando Y, Sakamoto M, Kim S, Ayzenshtat I, and Yuste R. (2019). Comparative Evaluation of Genetically Encoded Voltage Indicators. Cell Rep. 26, 802–813.e4. 10.1016/j.celrep.2018.12.088. PubMed DOI PMC
Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, and Cohen AE (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95. 10.1038/nmeth.1782. PubMed DOI PMC
Chien M-P, Brinks D, Testa-Silva G, Tian H, Brooks FP, Adam Y, Bloxham W, Gmeiner B, Kheifets S, and Cohen AE (2021). Photoactivated voltage imaging in tissue with an archaerhodopsin-derived reporter. Sci. Adv 7, eabe3216. 10.1126/sciadv.abe3216. PubMed DOI PMC
Flytzanis NC, Bedbrook CN, Chiu H, Engqvist MKM, Xiao C, Chan KY, Sternberg PW, Arnold FH, and Gradinaru V. (2014). Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun 5, 4894. 10.1038/ncomms5894. PubMed DOI PMC
Gong Y, Li JZ, and Schnitzer MJ (2013). Enhanced Archaerhodopsin Fluorescent Protein Voltage Indicators. PLOS ONE 8, e66959. 10.1371/journal.pone.0066959. PubMed DOI PMC
McIsaac RS, Engqvist MKM, Wannier T, Rosenthal AZ, Herwig L, Flytzanis NC, Imasheva ES, Lanyi JK, Balashov SP, Gradinaru V, et al. (2014). Directed evolution of a far-red fluorescent rhodopsin. Proc. Natl. Acad. Sci 111, 13034–13039. 10.1073/pnas.1413987111. PubMed DOI PMC
Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, Suk H-J, Hochbaum DR, Goodwin D, Pnevmatikakis E, Pak N, et al. (2018). A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol 14, 352. 10.1038/s41589-018-0004-9. PubMed DOI PMC
Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, and Schnitzer MJ (2015). High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science, aab0810. 10.1126/science.aab0810. PubMed DOI PMC
Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D, Werley CA, Harrison DJ, Campbell RE, and Cohen AE (2014). Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun 5, 4625. 10.1038/ncomms5625. PubMed DOI PMC
Kannan M, Vasan G, Huang C, Haziza S, Li JZ, Inan H, Schnitzer MJ, and Pieribone VA (2018). Fast, in vivo voltage imaging using a red fluorescent indicator. Nat. Methods, 1. 10.1038/s41592-018-0188-7. PubMed DOI PMC
Kannan M, Vasan G, Haziza S, Huang C, Chrapkiewicz R, Luo J, Cardin JA, Schnitzer MJ, and Pieribone VA (2022). Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types. Science 378, eabm8797. 10.1126/science.abm8797. PubMed DOI PMC
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, et al. (2008). HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol 3, 373–382. 10.1021/cb800025k. PubMed DOI
Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, et al. (2015). A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250. 10.1038/nmeth.3256. PubMed DOI PMC
Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, et al. (2017). A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, nmeth.4403. 10.1038/nmeth.4403. PubMed DOI PMC
Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y-C, Campagnola L, Seeman SC, Yu J, et al. (2019). Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704. 10.1126/science.aav6416. PubMed DOI
Abdelfattah AS, Valenti R, Zheng J, Wong A, Podgorski K, Koyama M, Kim DS, and Schreiter ER (2020). A general approach to engineer positive-going eFRET voltage indicators. Nat. Commun 11, 3444. 10.1038/s41467-020-17322-1. PubMed DOI PMC
Curnow P, Di Bartolo ND, Moreton KM, Ajoje OO, Saggese NP, and Booth PJ (2011). Stable folding core in the folding transition state of an alpha-helical integral membrane protein. Proc. Natl. Acad. Sci. U. S. A 108, 14133–14138. 10.1073/pnas.1012594108. PubMed DOI PMC
Faham S, Yang D, Bare E, Yohannan S, Whitelegge JP, and Bowie JU (2004). Side-chain contributions to membrane protein structure and stability. J. Mol. Biol 335, 297–305. 10.1016/j.jmb.2003.10.041. PubMed DOI
Perálvarez-Marín A, Lórenz-Fonfría VA, Simón-Vázquez R, Gomariz M, Meseguer I, Querol E, and Padrós E. (2008). Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins. Biophys. J 95, 4384–4395. 10.1529/biophysj.108.136747. PubMed DOI PMC
Wagner NL, Greco JA, Ranaghan MJ, and Birge RR (2013). Directed evolution of bacteriorhodopsin for applications in bioelectronics. J. R. Soc. Interface 10, 20130197. 10.1098/rsif.2013.0197. PubMed DOI PMC
Kolb I, Landry CR, Yip MC, Lewallen CF, Stoy WA, Lee J, Felouzis A, Yang B, Boyden ES, Rozell CJ, et al. (2019). PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices. J. Neural Eng 16, 046003. 10.1088/1741-2552/ab1834. PubMed DOI PMC
St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, and Lin MZ (2014). High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci 17, 884–889. 10.1038/nn.3709. PubMed DOI PMC
Boyden ES, Zhang F, Bamberg E, Nagel G, and Deisseroth K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci 8, 1263–1268. 10.1038/nn1525. PubMed DOI
Zheng Q, Ayala AX, Chung I, Weigel AV, Ranjan A, Falco N, Grimm JB, Tkachuk AN, Wu C, Lippincott-Schwartz J, et al. (2019). Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. ACS Cent. Sci 5, 1602–1613. 10.1021/acscentsci.9b00676. PubMed DOI PMC
Crochet S, and Petersen CCH (2006). Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci 9, 608–610. 10.1038/nn1690. PubMed DOI
Zhou M, Liang F, Xiong XR, Li L, Li H, Xiao Z, Tao HW, and Zhang LI (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat. Neurosci 17, 841–850. 10.1038/nn.3701. PubMed DOI PMC
Bennett C, Arroyo S, and Hestrin S. (2013). Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80, 350–357. 10.1016/j.neuron.2013.08.007. PubMed DOI PMC
Einstein MC, Polack P-O, Tran DT, and Golshani P. (2017). Visually Evoked 3–5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice. J. Neurosci. Off. J. Soc. Neurosci 37, 5084–5098. 10.1523/JNEUROSCI.3868-16.2017. PubMed DOI PMC
Diba K, Amarasingham A, Mizuseki K, and Buzsáki G. (2014). Millisecond Timescale Synchrony among Hippocampal Neurons. J. Neurosci 34, 14984–14994. 10.1523/JNEUROSCI.1091-14.2014. PubMed DOI PMC
English DF, McKenzie S, Evans T, Kim K, Yoon E, and Buzsáki G. (2017). Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks. Neuron 96, 505–520.e7. 10.1016/j.neuron.2017.09.033. PubMed DOI PMC
Galarreta M, and Hestrin S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75. 10.1038/47029. PubMed DOI
Gentet LJ, Avermann M, Matyas F, Staiger JF, and Petersen CCH (2010). Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435. 10.1016/j.neuron.2010.01.006. PubMed DOI
Hu H, Ma Y, and Agmon A. (2011). Submillisecond Firing Synchrony between Different Subtypes of Cortical Interneurons Connected Chemically But Not Electrically. J. Neurosci 31, 3351–3361. 10.1523/JNEUROSCI.4881-10.2011. PubMed DOI PMC
Tian H, Davis HC, Wong-Campos JD, Park P, Fan LZ, Gmeiner B, Begum S, Werley CA, Borja GB, Upadhyay H, et al. (2023). Video-based pooled screening yields improved far-red genetically encoded voltage indicators. Nat. Methods, 1–13. 10.1038/s41592-022-01743-5. PubMed DOI PMC
Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JRP, and Jonas P. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci 99, 13222–13227. 10.1073/pnas.192233099. PubMed DOI PMC
Gibson JR, Beierlein M, and Connors BW (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79. 10.1038/47035. PubMed DOI
Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, et al. (2016). Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727. 10.7554/eLife.12727. PubMed DOI PMC
Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R, et al. (2019). High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657. 10.1038/s41592-019-0435-6. PubMed DOI
Chien M-P, Werley A, C., Farhi L, S., and Cohen AE (2015). Photostick: a method for selective isolation of target cells from culture. Chem. Sci 6, 1701–1705. 10.1039/C4SC03676J. PubMed DOI PMC
Park J, Werley CA, Venkatachalam V, Kralj JM, Dib-Hajj SD, Waxman SG, and Cohen AE (2013). Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells. PLOS ONE 8, e85221. 10.1371/journal.pone.0085221. PubMed DOI PMC
Aaron G, and Yuste R. (2006). Reverse optical probing (ROPING) of neocortical circuits. Synapse 60, 437–440. 10.1002/syn.20316. PubMed DOI
Farhi SL, Parot VJ, Grama A, Yamagata M, Abdelfattah AS, Adam Y, Lou S, Kim JJ, Campbell RE, Cox DD, et al. (2019). Wide-Area All-Optical Neurophysiology in Acute Brain Slices. J. Neurosci 39, 4889–4908. 10.1523/JNEUROSCI.0168-19.2019. PubMed DOI PMC
Packer AM, Russell LE, Dalgleish HWP, and Häusser M. (2015). Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146. 10.1038/nmeth.3217. PubMed DOI PMC
Sasaki T, Minamisawa G, Takahashi N, Matsuki N, and Ikegaya Y. (2009). Reverse optical trawling for synaptic connections in situ. J. Neurophysiol 102, 636–643. 10.1152/jn.00012.2009. PubMed DOI
Zolnik TA, Sha F, Johenning FW, Schreiter ER, Looger LL, Larkum ME, and Sachdev RNS (2017). All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI. J. Physiol 595, 1465–1477. 10.1113/JP273116. PubMed DOI PMC
Evans SW, Shi D, Chavarha M, Plitt MH, Taxidis J, Madruga B, Fan JL, Hwang F-J, Keulen SC van Suomivuori C-M, et al. (2021). A positively tuned voltage indicator reveals electrical correlates of calcium activity in the brain. 2021.10.21.465345. 10.1101/2021.10.21.465345. DOI
Li B, Chavarha M, Kobayashi Y, Yoshinaga S, Nakajima K, Lin MZ, and Inoue T. (2020). Two-Photon Voltage Imaging of Spontaneous Activity from Multiple Neurons Reveals Network Activity in Brain Tissue. iScience 23. 10.1016/j.isci.2020.101363. PubMed DOI PMC
Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, Evans SW, Chamberland S, Shi D, Yang R, et al. (2019). Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 179, 1590–1608.e23. 10.1016/j.cell.2019.11.004. PubMed DOI PMC
Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME, Brinks D, Wu H, Mostajo-Radji MA, Kheifets S, Parot V, et al. (2019). Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417. 10.1038/s41586-019-1166-7. PubMed DOI PMC
Fan LZ, Kheifets S, Böhm UL, Wu H, Piatkevich KD, Xie ME, Parot V, Ha Y, Evans KE, Boyden ES, et al. (2020). All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory Processing in Cortical Layer 1. Cell. 10.1016/j.cell.2020.01.001. PubMed DOI PMC
Piatkevich KD, Bensussen S, Tseng H, Shroff SN, Lopez-Huerta VG, Park D, Jung EE, Shemesh OA, Straub C, Gritton HJ, et al. (2019). Population imaging of neural activity in awake behaving mice. Nature 574, 413–417. 10.1038/s41586-019-1641-1. PubMed DOI PMC
van Welie I, Roth A, Ho SSN, Komai S, and Häusser M. (2016). Conditional Spike Transmission Mediated by Electrical Coupling Ensures Millisecond Precision-Correlated Activity among Interneurons In Vivo. Neuron 90, 810–823. 10.1016/j.neuron.2016.04.013. PubMed DOI PMC
Gibson DG, Young L, Chuang R-Y, Venter JC Iii, C.A.H., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345. 10.1038/nmeth.1318. PubMed DOI
Picelli S, Björklund ÅK, Reinius B, Sagasser S, Winberg G, and Sandberg R. (2014). Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040. 10.1101/gr.177881.114. PubMed DOI PMC
Wardill TJ, Chen T-W, Schreiter ER, Hasseman JP, Tsegaye G, Fosque BF, Behnam R, Shields BC, Ramirez M, Kimmel BE, et al. (2013). A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators. PLOS ONE 8, e77728. 10.1371/journal.pone.0077728. PubMed DOI PMC
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, et al. (2019). ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232. 10.1038/s41592-019-0582-9. PubMed DOI
Kolb I, Stoy WA, Rousseau EB, Moody OA, Jenkins A, and Forest CR (2016). Cleaning patch-clamp pipettes for immediate reuse. Sci. Rep 6, 35001. 10.1038/srep35001. PubMed DOI PMC
Campagnola L, Kratz MB, and Manis PB (2014). ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research. Front. Neuroinformatics 8, 3. 10.3389/fninf.2014.00003. PubMed DOI PMC
Wilt BA, Fitzgerald JE, and Schnitzer MJ (2013). Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing. Biophys. J 104, 51–62. 10.1016/j.bpj.2012.07.058. PubMed DOI PMC
Kim J-Y, Grunke SD, Levites Y, Golde TE, and Jankowsky JL (2014). Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. J. Vis. Exp. JoVE, 51863. 10.3791/51863. PubMed DOI PMC
Ting, Jonathan T, Daigle, Tanya L, Chen Q, and Feng G. (2014). Acute Brain Slice Methods for Adult and Aging Animals: Application of Targeted Patch Clamp Analysis and Optogenetics. In Methods Patch-Clamp and Protocols Methods in Molecular Biology., Martina M. and Taverna S, eds. (Springer; New York: ), pp. 221–242. 10.1007/978-1-4939-1096-0_14. PubMed DOI PMC
Badon A, Bensussen S, Gritton HJ, Awal MR, Gabel CV, Han X, and Mertz J. (2019). Video-rate large-scale imaging with Multi-Z confocal microscopy. Optica 6, 389–395. 10.1364/OPTICA.6.000389. PubMed DOI PMC
Pologruto TA, Sabatini BL, and Svoboda K. (2003). ScanImage: Flexible software for operating laser scanning microscopes. Biomed. Eng. OnLine 2, 13. 10.1186/1475-925X-2-13. PubMed DOI PMC
Liu T-L, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Mosaliganti KR, Collins ZM, Hiscock TW, Shea J, et al. (2018). Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360. 10.1126/science.aaq1392. PubMed DOI PMC
Cai C, Friedrich J, Singh A, Eybposh MH, Pnevmatikakis EA, Podgorski K, and Giovannucci A. (2021). VolPy: Automated and scalable analysis pipelines for voltage imaging datasets. PLOS Comput. Biol 17, e1008806. 10.1371/journal.pcbi.1008806. PubMed DOI PMC
Dombeck DA, Harvey CD, Tian L, Looger LL, and Tank DW (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci 13, 1433–1440. 10.1038/nn.2648. PubMed DOI PMC
Yardeni T, Eckhaus M, Morris HD, Huizing M, and Hoogstraten-Miller S. (2011). Retro-orbital injections in mice. Lab Anim. 40, 155–160. 10.1038/laban0511-155. PubMed DOI PMC
Pnevmatikakis EA, and Giovannucci A. (2017). NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94. 10.1016/j.jneumeth.2017.07.031. PubMed DOI
Seeing the Spikes: The Future of Targetable Synthetic Voltage Sensors