Methodological standards for in vitro models of epilepsy and epileptic seizures. A TASK1-WG4 report of the AES/ILAE Translational Task Force of the ILAE
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
Grantová podpora
R01 NS076885
NINDS NIH HHS - United States
R01 NS091170
NINDS NIH HHS - United States
U54 NS100064
NINDS NIH HHS - United States
PubMed
29105075
PubMed Central
PMC5679463
DOI
10.1111/epi.13901
Knihovny.cz E-zdroje
- Klíčová slova
- Animal selection and killing, Brain slice preparation, Electrophysiological recording methods, In vitro models of seizures, Recording solution composition,
- MeSH
- epilepsie patologie MeSH
- modely nemocí na zvířatech MeSH
- mozek patofyziologie MeSH
- mozkové vlny fyziologie MeSH
- orgánové kultury - kultivační techniky metody normy MeSH
- poradní výbory MeSH
- techniky in vitro * přístrojové vybavení metody normy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In vitro preparations are a powerful tool to explore the mechanisms and processes underlying epileptogenesis and ictogenesis. In this review, we critically review the numerous in vitro methodologies utilized in epilepsy research. We provide support for the inclusion of detailed descriptions of techniques, including often ignored parameters with unpredictable yet significant effects on study reproducibility and outcomes. In addition, we explore how recent developments in brain slice preparation relate to their use as models of epileptic activity.
Case Western Reserve University Cleveland Ohio U S A
Department of Neuroscience Tufts University School of Medicine Boston Massachusetts U S A
Departments of Neurology and Pediatrics University of Virginia Charlottesville Virginia U S A
Flocel Inc Cleveland Ohio U S A
Inserm Institut de Neurosciences des Systemes UMRS 1106 Aix Marseille University Marseille France
Neuroscience Research Center Charité Universitätsmedizin Berlin Berlin Germany
Zobrazit více v PubMed
Heinemann U, Staley KJ. What is the clinical relevance of in vitro epileptiform activity? Adv Exp Med Biol. 2014;813:25–41. PubMed
Khalilov I, Esclapez M, Medina I, et al. A Novel In Vitro Preparation: the Intact Hippocampal Formation. Neuron. 1997;19:743–749. PubMed
de Curtis M, Paré D, Llinás RR. The electrophysiology of the olfactory-hippocampal circuit in the isolated and perfused adult mammalian brain in vitro. Hippocampus. 1991;1:341–54. PubMed
de Curtis M, Librizzi L, Uva L. The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns. J Neurosci Methods. 2015 PubMed
Heinemann U. An overview of in vitro seizure models in acute and organotypic slices, Model. Seizures. 2006
Müller CJ, Gröticke I, Hoffmann K, et al. Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice. Genes Brain Behav. 2009;8:481–92. PubMed
McKhann G, Wenzel H, Robbins C, et al. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience. 2003;122:551–561. PubMed
Giorgi FS, Galanopoulou AS, Moshé SL. Sex dimorphism in seizure-controlling networks. Neurobiol Dis. 2014;72(Pt B):144–52. PubMed PMC
Velíšek L, Velíšková J, Etgen A. Region-specific modulation of limbic seizure susceptibility by ovarian steroids. Brain Res. 1999 PubMed
Taubøll E, Sveberg L, Svalheim S. Interactions between hormones and epilepsy. Seizure. 2015;28:3–11. PubMed
Herzog AG, Harden CL, Liporace J, et al. Frequency of catamenial seizure exacerbation in women with localization-related epilepsy. Ann Neurol. 2004;56:431–4. PubMed
Velísková J. The role of estrogens in seizures and epilepsy: the bad guys or the good guys? Neuroscience. 2006;138:837–44. PubMed
Galanopoulou AS, Moshé SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med. 2011;5:615–28. PubMed PMC
Khazipov R, Khalilov I, Tyzio R, et al. Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J Neurosci. 2004;19:590–600. PubMed
Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol. 2005;562:27–36. PubMed PMC
Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–739. PubMed
Langer M, Brandt C, Löscher W. Marked strain and substrain differences in induction of status epilepticus and subsequent development of neurodegeneration, epilepsy, and behavioral alterations in rats [corrected] Epilepsy Res. 2011;96:207–24. PubMed
Galanopoulou AS. Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: role of GABA(A) receptors. J Neurosci. 2008;28:1557–67. PubMed PMC
Koe AS, Salzberg MR, Morris MJ, et al. Early life maternal separation stress augmentation of limbic epileptogenesis: the role of corticosterone and HPA axis programming. Psychoneuroendocrinology. 2014;42:124–33. PubMed
Young D, Lawlor PA, Leone P, et al. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med. 1999;5:448–53. PubMed
Clark J, Baldwin R, Bayne K. Guide for the care and use of laboratory animals. DC Inst Lab. 1996
Matos G, Andersen ML, do Valle AC, et al. The relationship between sleep and epilepsy: evidence from clinical trials and animal models. J Neurol Sci. 2010;295:1–7. PubMed
Quigg M, Clayburn H, Straume M, et al. Effects of Circadian Regulation and Rest-Activity State on Spontaneous Seizures in a Rat Model of Limbic Epilepsy. Epilepsia. 2000;41:502–509. PubMed
Schmitt LI, Sims RE, Dale N, et al. Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. 2012;32:4417–4425. PubMed PMC
During MJ, Spencer DD. Adenosine: A potential mediator of seizure arrest and postictal refractoriness. Ann Neurol. 1992;32:618–624. PubMed
Mareš P, Kubová H. GABAB, not GABAA receptors play a role in cortical postictal refractoriness. Neuropharmacology. 2015;88:99–102. PubMed
Wolfensohn S, Lloyd M. Handbook of Laboratory Animal Management and Welfare (Google eBook) John Wiley & Sons; 2013.
Li X, Pearce RA. Effects of Halothane on GABA A Receptor Kinetics : Evidence for Slowed Agonist Unbinding. 2000;20:899–907. PubMed PMC
Zschenderlein C, Gebhardt C, von Bohlen Und Halbach O, et al. Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1. PLoS One. 2011;6:e16116. PubMed PMC
Wölfer J, Bantel C, Köhling R, et al. Electrophysiology in ischemic neocortical brain slices: species differences vs. influences of anaesthesia and preparation. Eur J Neurosci. 2006;23:1795–800. PubMed
Tétrault S, Chever O, Sik A, et al. Opening of the blood-brain barrier during isoflurane anaesthesia. Eur J Neurosci. 2008;28:1330–41. PubMed
Aghajanian GK, Rasmussen K. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse. 1989;3:331–8. PubMed
Ting JT, Daigle TL, Chen Q, et al. Patch-Clamp Methods and Protocols. 2014;1183:221–242. PubMed PMC
Moyer JR, Brown TH. Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. J Neurosci Methods. 1998;86:35–54. PubMed
Bischofberger J, Engel D, Li L, et al. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc. 2006;1:2075–81. PubMed
Mainen ZF, Maletic-Savatic M, Shi SH, et al. Two-photon imaging in living brain slices. Methods. 1999;18:231–9. 181. PubMed
Alkondon M, Pereira EFR, Cartes WS, et al. Choline is a Selective Agonist of α7 Nicotinic Acetylcholine Receptors in the Rat Brain Neurons. Eur J Neurosci. 1997;9:2734–2742. PubMed
Tanaka Y, Tanaka Y, Furuta T, et al. The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. J Neurosci Methods. 2008;171:118–25. PubMed
Ye JH, Zhang J, Xiao C, et al. Patch-clamp studies in the CNS illustrate a simple new method for obtaining viable neurons in rat brain slices: glycerol replacement of NaCl protects CNS neurons. J Neurosci Methods. 2006;158:251–9. PubMed
Dugué GP, Dumoulin A, Triller A, et al. Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci. 2005;25:6490–6498. PubMed PMC
Zhao S, Ting JT, Atallah HE, et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods. 2011;8:745–752. PubMed PMC
Davie JT, Kole MHP, Letzkus JJ, et al. Dendritic patch-clamp recording. Nat Protoc. 2006;1:1235–47. PubMed
Douglas RJ, Martin KAC. Inhibition in cortical circuits. Curr Biol. 2009;19:R398–402. PubMed
Dreier J, Heinemann U. Regional and time dependent variations of low Mg2+ induced epileptiform activity in rat temporal cortex slices. Exp Brain Res. 1991;3:581–596. PubMed
Kuenzi FM, Fitzjohn SM, Morton RA, et al. Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. J Neurosci Methods. 2000;100:117–122. PubMed
Dzhala V, Valeeva G, Glykys J, et al. Traumatic Alterations in GABA Signaling Disrupt Hippocampal Network Activity in the Developing Brain. J Neurosci. 2012;32:4017–4031. PubMed PMC
Capron B, Sindic C, Godaux E, et al. The characteristics of LTP induced in hippocampal slices are dependent on slice-recovery conditions. Learn Mem. 2006;13:271–7. PubMed PMC
Gähwiler BH, Capogna M, Debanne D, et al. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997;20:471–7. PubMed
Debanne D, Guerineau NC, Gahwiler BH, et al. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. J Neurophysiol. 1995;73:1282–1294. PubMed
Routbort M, Bausch S, McNamara J. Seizures, cell death, and mossy fiber sprouting in kainic acid-treated organotypic hippocampal cultures. Neuroscience. 1999;94:755–765. PubMed
Dyhrfjeld-Johnsen J, Berdichevsky Y, Swiercz W, et al. Interictal spikes precede ictal discharges in an organotypic hippocampal slice culture model of epileptogenesis. J Clin Neurophysiol. 2010;27:418–24. PubMed PMC
Stoppini L, Buchs P-A, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Meth. 1991;37:173–182. PubMed
De Simoni A, Yu LMY. Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc. 2006;1:1439–45. PubMed
Pomper JK, Graulich J, Kovacs R, et al. High oxygen tension leads to acute cell death in organotypic hippocampal slice cultures. Dev Brain Res. 2001;126:109–116. PubMed
Zhang M, Ladas TP, Qiu C, et al. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission. J Neurosci. 2014;34 PubMed PMC
Jackson J, Amilhon B, Goutagny R, et al. Reversal of theta rhythm flow through intact hippocampal circuits. Nat Neurosci. 2014;17:1362–70. PubMed
Jirsa VK, Stacey WC, Quilichini PP, et al. On the nature of seizure dynamics. Brain. 2014;137:2210–30. PubMed PMC
Ivanov AI, Bernard C, Turner DA. Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro. Neurobiol Dis. 2015;75:1–14. PubMed PMC
Hájos N, Ellender TJ, Zemankovics R, et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci. 2009;29:319–27. PubMed PMC
Morris G, Jiruska P, Jefferys JGR, et al. A New Approach of Modified Submerged Patch Clamp Recording Reveals Interneuronal Dynamics during Epileptiform Oscillations. Front Neurosci. 2016;10:519. PubMed PMC
Khalilov I, Holmes GL, Ben-Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci. 2003;6:1079–85. PubMed
Williamson A, Ferro M, Leleux P, et al. Localized Neuron Stimulation with Organic Electrochemical Transistors on Delaminating Depth Probes. Adv Mater. 2015 n/a-n/a. PubMed
Librizzi L, Pastori C, De Grazia U, et al. Rapid in vitro elimination of anesthetic doses of thiopental in the isolated guinea pig brain. Neurosci Lett. 2005;380:66–69. PubMed
Singer W, Lux HD. Extracellular potassium gradients and visual receptive fields in the cat striate cortex. Brain Res. 1975;96:378–383. PubMed
Mody I, Lambert JD, Heinemann U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol. 1987;57:869–88. PubMed
Turner RW, Baimbridge KG, Miller JJ. Calcium-induced long-term potentiation in the hippocampus. Neuroscience. 1982;7:1411–1416. PubMed
Rheims S, Holmgren CD, Chazal G, et al. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies. J Neurochem. 2009;110:1330–8. PubMed
Tyzio R, Allene C, Nardou R, et al. Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate. J Neurosci. 2011;31:34–45. PubMed PMC
Gruetter R, Ugurbil K, Seaquist ER. Steady-State Cerebral Glucose Concentrations and Transport in the Human Brain. J Neurochem. 2002;70:397–408. PubMed
Barros LF, Bittner CX, Loaiza A, et al. A quantitative overview of glucose dynamics in the gliovascular unit. Glia. 2007;55:1222–37. PubMed
Dudek FE, Obenaus A, Tasker JG. Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: importance of non-synaptic mechanisms in hippocampal epileptogenesis. Neurosci Lett. 1990;120:267–70. PubMed
Chesler M. Regulation and modulation of pH in the brain. Physiol Rev. 2003;83:1183–221. PubMed
Taira T, Smirnov S, Voipio J, et al. Intrinsic proton modulation of excitatory transmission in rat hippocampal slices. Neuroreport. 1993;4:93. PubMed
Pasternack M, Smirnov S, Kaila K. Proton Modulation of Functionally Distinct GABAA Receptors in Acutely Isolated Pyramidal Neurons of Rat Hippocampus. Neuropharmacology. 1996;35:1279–1288. PubMed
Dulla CG, Dobelis P, Pearson T, et al. Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron. 2005;48:1011–23. PubMed PMC
Church J. A change from HCO3(-)-CO2- to hepes-buffered medium modifies membrane properties of rat CA1 pyramidal neurones in vitro. J Physiol. 1992;455:51–71. PubMed PMC
Hodgkin AL, Katz B. The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol. 1949;109:240–249. PubMed PMC
Schuchmann S, Meierkord H, Stenkamp K, et al. Synaptic and nonsynaptic ictogenesis occurs at different temperatures in submerged and interface rat brain slices. J Neurophysiol. 2002;87:2929–2935. PubMed
Hill MW, Wong M, Amarakone A, et al. Rapid Cooling Aborts Seizure-Like Activity in Rodent Hippocampal-Entorhinal Slices. Epilepsia. 2000;41:1241–1248. PubMed
Tancredi V, D’Arcangelo G, Zona C, et al. Induction of Epileptiform Activity by Temperature Elevation in Hippocampal Slices from Young Rats: An In Vitro Model for Febrile Seizures? Epilepsia. 1992;33:228–234. PubMed
Croning MD, Haddad G. Comparison of brain slice chamber designs for investigations of oxygen deprivation in vitro. J Neurosci Methods. 1998;81:103–111. PubMed
Bortolotto ZA, Bashir ZI, Davies CH, et al. Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. J Neurosci Methods. 1995;59:19–24. PubMed
Avsar E, Empson RM. Adenosine acting via A1 receptors, controls the transition to status epilepticus-like behaviour in an in vitro model of epilepsy. Neuropharmacology. 2004;47:427–37. PubMed
Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40. PubMed PMC
Hu H, Cavendish JZ, Agmon A. Not all that glitters is gold: off-target recombination in the somatostatin-IRES-Cre mouse line labels a subset of fast-spiking interneurons. Front Neural Circuits. 2013;7:195. PubMed PMC
Raimondo JV, Joyce B, Kay L, et al. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system. Front Cell Neurosci. 2013;7:202. PubMed PMC
Raimondo JV, Irkle A, Wefelmeyer W, et al. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons. Front Mol Neurosci. 2012;5:68. PubMed PMC
Karus C, Mondragão MA, Ziemens D, et al. Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia. 2015 n/a-n/a. PubMed
Raimondo JV, Tomes H, Irkle A, et al. Tight Coupling of Astrocyte pH Dynamics to Epileptiform Activity Revealed by Genetically Encoded pH Sensors. J Neurosci. 2016;36:7002–13. PubMed PMC
Marvin JS, Borghuis BG, Tian L, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013;10:162–70. PubMed PMC
Bittner CX, Valdebenito R, Ruminot I, et al. Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci. 2011;31:4709–13. PubMed PMC
Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8. PubMed
Ellender TJ, Raimondo JV, Irkle A, et al. Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges. J Neurosci. 2014;34:15208–22. PubMed PMC
Tønnesen J, Sørensen AT, Deisseroth K, et al. Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A. 2009;106:12162–7. PubMed PMC
Raimondo JV, Kay L, Ellender TJ, et al. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci. 2012;15:1102–4. PubMed PMC
Alfonsa H, Merricks EM, Codadu NK, et al. The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity. J Neurosci. 2015;35:7715–7726. PubMed PMC