Microencapsulation of phages to analyze their demeanor in physiological conditions

. 2019 Nov ; 64 (6) : 751-763. [epub] 20190212

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30756236

Grantová podpora
114Z680 T?rkiye Bilimsel ve Teknolojik Ara?tirma Kurumu

Odkazy

PubMed 30756236
DOI 10.1007/s12223-019-00688-1
PII: 10.1007/s12223-019-00688-1
Knihovny.cz E-zdroje

Nowadays, phage therapy emerges as one of the alternative solutions to the problems arising from antibiotic resistance in pathogenic bacteria. Although phage therapy has been successfully applied both in vitro and in vivo, one of the biggest concerns in this regard is the stability of phages in body environment. Within the scope of this study, microencapsulation technology was used to increase the resistance of phages to physiological conditions, and the resulting microcapsules were tested in environments simulating body conditions. For this purpose, Bacillus subtilis, Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), and Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) phages were isolated from different sources and then microencapsulated with 1.33% (w/v) sodium alginate using a spray dryer to minimize the damage of physiological environment. Stability of microcapsules in simulated gastric fluid and bile salt presence was tested. As a consequence, the maximum titer decrease of microencapsulated phages after 2-h incubation was found to be 2.29 log unit for B. subtilis phages, 1.71 log unit for S. Enteritidis phages, and 0.60 log unit for S. Typhimurium phages, while free phages lost their viability even after a 15-min incubation. Similarly, microencapsulation was found to increase the stability of phages in the bile salt medium and it was seen that after 3 h of incubation, the difference between the titers of microencapsulated phages and free phages could reach up to 3 log unit.

Zobrazit více v PubMed

Molecules. 2012 Aug 24;17(9):10094-107 PubMed

Antimicrob Agents Chemother. 2004 Jul;48(7):2558-69 PubMed

Trends Biotechnol. 2010 Dec;28(12):591-5 PubMed

Acta Pharm. 2015 Mar;65(1):15-27 PubMed

J Food Prot. 2000 Dec;63(12):1665-9 PubMed

Macromol Biosci. 2012 Sep;12(9):1200-8 PubMed

PLoS One. 2017 Oct 12;12(10):e0186239 PubMed

Int J Pharm. 2017 Apr 15;521(1-2):141-149 PubMed

Appl Environ Microbiol. 2015 Jul;81(14):4841-9 PubMed

Sci Rep. 2016 Dec 15;6:39235 PubMed

Sci Rep. 2017 Jan 25;7:41441 PubMed

Adv Drug Deliv Rev. 2006 Oct 31;58(9-10):1009-29 PubMed

Curr Opin Microbiol. 2008 Oct;11(5):393-400 PubMed

Folia Microbiol (Praha). 2011 May;56(3):191-200 PubMed

Int J Pharm. 2014 Sep 10;472(1-2):202-5 PubMed

Int J Pharm. 2018 Mar 1;538(1-2):14-20 PubMed

Bacteriophage. 2011 Mar;1(2):66-85 PubMed

PLoS One. 2018 May 15;13(5):e0195023 PubMed

Eur J Pharm Biopharm. 2013 Aug;84(3):578-82 PubMed

Eur J Pharm Biopharm. 2018 Jun;127:213-222 PubMed

Pharm Res. 2016 Jun;33(6):1486-96 PubMed

Food Microbiol. 2011 Dec;28(8):1448-52 PubMed

Appl Environ Microbiol. 2008 Aug;74(15):4799-805 PubMed

Poult Sci. 2003 Apr;82(4):640-7 PubMed

PLoS One. 2015 Mar 11;10(3):e0118557 PubMed

J Pharm Sci. 2011 Dec;100(12):5197-205 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace