A New Approach of Modified Submerged Patch Clamp Recording Reveals Interneuronal Dynamics during Epileptiform Oscillations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27881950
PubMed Central
PMC5101843
DOI
10.3389/fnins.2016.00519
Knihovny.cz E-zdroje
- Klíčová slova
- LFP, epilepsy, high frequency activity, in vitro, membrane chamber, patch clamp,
- Publikační typ
- časopisecké články MeSH
Highlights Simultaneous epileptiform LFPs and single-cell activity can be recorded in the membrane chamber.Interneuron firing can be linked to epileptiform high frequency activity.Fast ripples, unique to chronic epilepsy, can be modeled in ex vivo tissue from TeNT-treated rats. Traditionally, visually-guided patch clamp in brain slices using submerged recording conditions has been required to characterize the activity of individual neurons. However, due to limited oxygen availability, submerged conditions truncate fast network oscillations including epileptiform activity. Thus, it is technically challenging to study the contribution of individual identified neurons to fast network activity. The membrane chamber is a submerged-style recording chamber, modified to enhance oxygen supply to the slice, which we use to demonstrate the ability to record single-cell activity during in vitro epilepsy. We elicited epileptiform activity using 9 mM potassium and simultaneously recorded from fluorescently labeled interneurons. Epileptiform discharges were more reliable than in standard submerged conditions. During these synchronous discharges interneuron firing frequency increased and action potential amplitude progressively decreased. The firing of 15 interneurons was significantly correlated with epileptiform high frequency activity (HFA; ~100-500 Hz) cycles. We also recorded epileptiform activity in tissue prepared from chronically epileptic rats, treated with intrahippocampal tetanus neurotoxin. Four of these slices generated fast ripple activity, unique to chronic epilepsy. We showed the membrane chamber is a promising new in vitro environment facilitating patch clamp recordings in acute epilepsy models. Further, we showed that chronic epilepsy can be better modeled using ex vivo brain slices. These findings demonstrate that the membrane chamber facilitates previously challenging investigations into the neuronal correlates of epileptiform activity in vitro.
Zobrazit více v PubMed
Bragin A., Engel J., Jr., Wilson C. L., Fried I., Mathern G. W. (1999). Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid–treated rats with chronic seizures. Epilepsia 40, 127–137. 10.1111/j.1528-1157.1999.tb02065.x PubMed DOI
Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. 10.3758/BF03193146 PubMed DOI
Fisher N. I. (1995). Statistical Analysis of Circular Data. Cambridge: Cambridge University Press.
Fox J. E., Bikson M., Jefferys J. G. (2004). Tissue resistance changes and the profile of synchronized neuronal activity during ictal events in the low-calcium model of epilepsy. J. Neurophysiol. 92, 181–188. 10.1152/jn.00123.2004 PubMed DOI
Gloveli T., Dugladze T., Saha S., Monyer H., Heinemann U., Traub R. D., et al. . (2005). Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J. Physiol. 562 (Pt 1), 131–147. 10.1113/jphysiol.2004.073007 PubMed DOI PMC
Haas H. L., Schaerer B., Vosmansky M. (1979). A simple perfusion chamber for the study of nervous tissue slices in vitro. J. Neurosci. Methods 1, 323–325. 10.1016/0165-0270(79)90021-9 PubMed DOI
Hájos N., Ellender T. J., Zemankovics R., Mann E. O., Exley R., Cragg S. J., et al. . (2009). Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur. J. Neurosci. 29, 319–327. 10.1111/j.1460-9568.2008.06577.x PubMed DOI PMC
Hájos N., Mody I. (2009). Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. J. Neurosci. Methods 183, 107–113. 10.1016/j.jneumeth.2009.06.005 PubMed DOI PMC
Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflug. Arch. 391, 85–100. 10.1007/BF00656997 PubMed DOI
Hill M. R., Greenfield S. A. (2011). The membrane chamber: a new type of in vitro recording chamber. J. Neurosci. Methods 195, 15–23. 10.1016/j.jneumeth.2010.10.024 PubMed DOI
Jefferys J. G., Haas H. L. (1982). Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300, 448–450. 10.1038/300448a0 PubMed DOI
Jefferys J. G. (1989). Chronic epileptic foci in vitro in hippocampal slices from rats with the tetanus toxin epileptic syndrome. J. Neurophysiol. 62, 458–468. PubMed
Jefferys J. G., Menendez de la Prida L., Wendling F., Bragin A., Avoli M., Timofeev I., et al. . (2012). Mechanisms of physiological and epileptic HFO generation. Prog. Neurobiol. 98, 250–264. 10.1016/j.pneurobio.2012.02.005 PubMed DOI PMC
Jiruska P., Csicsvari J., Powell A. D., Fox J. E., Chang W. C., Vreugdenhil M., et al. . (2010a). High-frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J. Neurosci. 30, 5690–5701. 10.1523/JNEUROSCI.0535-10.2010 PubMed DOI PMC
Jiruska P., Finnerty G. T., Powell A. D., Lofti N., Cmejla R., Jefferys J. G. (2010b). Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain 133, 1380–1390. 10.1093/brain/awq070 PubMed DOI PMC
Jiruska P., Powell A. D., Chang W. C., Jefferys J. G. (2010c). Electrographic high-frequency activity and epilepsy. Epilepsy Res. 89, 60–65. 10.1016/j.eplepsyres.2009.11.008 PubMed DOI
Jordan S. J., Jefferys J. G. (1992). Sustained and selective block of IPSPs in brain slices from rats made epileptic by intrahippocampal tetanus toxin. Epilepsy Res. 11, 119–129. PubMed
Karlócai M. R., Kohus Z., Kali S., Ulbert I., Szabo G., Mate Z., et al. . (2014). Physiological sharp wave-ripples and interictal events in vitro: what's the difference? Brain 137, 463–485. 10.1093/brain/awt348 PubMed DOI
Klausberger T., Somogyi P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57. 10.1126/science.1149381 PubMed DOI PMC
Li C. L., McIlwain H. (1957). Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J. Physiol. 139, 178–190. 10.1113/jphysiol.1957.sp005885 PubMed DOI PMC
Mellanby J., George G., Robinson A., Thompson P. (1977). Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J. Neurol. Neurosurg. Psychiatr. 40, 404–414. 10.1136/jnnp.40.4.404 PubMed DOI PMC
Mody I., Lambert J. D., Heinemann U. (1987). Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J. Neurophysiol. 57, 869–888. PubMed
Obrenovitch T. P., Zilkha E. (1995). High extracellular potassium, and not extracellular glutamate, is required for the propagation of spreading depression. J. Neurophysiol. 73, 2107–2114. PubMed
Serafini R., Dettloff S., Loeb J. A. (2016). Neocortical slices from adult chronic epileptic rats exhibit discharges of higher voltages and broader spread. Neuroscience 322, 509–524. 10.1016/j.neuroscience.2016.02.026 PubMed DOI
Traynelis S. F., Dingledine R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276. PubMed
Uematsu M., Hirai Y., Karube F., Ebihara S., Kato M., Abe K., et al. . (2008). Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. Cereb. Cortex 18, 315–330. 10.1093/cercor/bhm056 PubMed DOI
Ylinen A., Bragin A., Nádasdy Z., Jandó G., Szabo I., Sik A., et al. . (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46. PubMed PMC