A companion to the preclinical common data elements and case report forms for rodent EEG studies. A report of the TASK3 EEG Working Group of the ILAE/AES Joint Translational Task Force
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 NS091170
NINDS NIH HHS - United States
U54 NS100064
NINDS NIH HHS - United States
PubMed
30450486
PubMed Central
PMC6210053
DOI
10.1002/epi4.12260
PII: EPI412260
Knihovny.cz E-zdroje
- Klíčová slova
- Case report form, Common data elements, EEG, Epilepsy, Guidelines, Preclinical research, Rodent model,
- Publikační typ
- časopisecké články MeSH
Electroencephalography (EEG) is commonly used in epilepsy and neuroscience research to study brain activity. The principles of EEG recording such as signal acquisition, digitization, and conditioning share similarities between animal and clinical EEG systems. In contrast, preclinical EEG studies demonstrate more variability and diversity than clinical studies in the types and locations of EEG electrodes, methods of data analysis, and scoring of EEG patterns and associated behaviors. The TASK3 EEG working group of the International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force has developed a set of preclinical common data elements (CDEs) and case report forms (CRFs) for recording, analysis, and scoring of animal EEG studies. This companion document accompanies the first set of proposed preclinical EEG CRFs and is intended to clarify the CDEs included in these worksheets. We provide 7 CRF and accompanying CDE modules for use by the research community, covering video acquisition, electrode information, experimental scheduling, and scoring of EEG activity. For ease of use, all data elements and input ranges are defined in supporting Excel charts (Appendix S1).
Department of Neurosurgery and Epilepsy Center Kagoshima University Hospital Kagoshima Japan
Department of Neurosurgery Epilepsy Center National Nagasaki Medical Center Omura Nagasaki Japan
Department of Pharmacology University of Oxford Oxford United Kingdom
Joint Translational Research Task Force of the ILAE AES ILAE West Hartford Connecticut U S A
Neurology Unit Epilepsy Center University Hospital University of Pisa Pisa Italy
Zobrazit více v PubMed
Bertram EH. Monitoring for seizures in rodents In Pitkänen A, Schwartzkroin P, Moshé S. (Eds) Models of seizures and epilepsy. Burlington, San Diego, London: Elsevier Academic Press; 2006:569–582.
Galanopoulou AS, Simonato M, French JA, et al. Joint AES/ILAE translational workshop to optimize preclinical epilepsy research. Epilepsia 2013;54:1–2. PubMed
Lapchak PA. Scientific rigor recommendations for optimizing the clinical applicability of translational research. J Neurol Neurophysiol 2012;3:3–6. PubMed PMC
Hooijmans CR, Ritskes‐Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med 2013;10:1–4. PubMed PMC
Loring DW, Lowenstein DH, Barbaro NM, et al. Common data elements in epilepsy research: development and implementation of the NINDS epilepsy CDE project. Epilepsia 2011;52:1186–1191. PubMed PMC
NIH/NINDS . NINDS Common Data Elements: Epilepsy. Available at: https://commondataelements.ninds.nih.gov/.
Galanopoulou AS. ILAE/AES Translational Research Task Force: An Update on the Joint ILAE‐AES Translational Initiatives to Optimize Epilepsy Research, 2017. Available at: https://www.aesnet.org/research/ilae/aes translational research task force.
Harte‐Hargrove LC, French JA, Pitkänen A, et al. Common data elements for preclinical epilepsy research: standards for data collection and reporting. A report of the TASK3 group of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017;58(Suppl. 4):78–86. PubMed PMC
Moyer J, Gnatkovsky V, Ono T, et al. Standards for data acquisition and software‐based analysis of in vivo electrophysiological brain recordings. Epilepsia 2017;58(Suppl. 4):53–67. PubMed PMC
Raimondo JV, Heinemann U, de Curtis M, et al. Methodological standards for in vitro models of epilepsy and epileptic seizures. A report of the TASK1‐WG4 group of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017;58(Suppl. 4):40–52. PubMed PMC
Hernan AE, Schevon CA, Worrell GA, et al. Methodological standards and functional correlates of depth in vivo electrophysiological recordings in control rodents. A TASK1‐WG3 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017;58(Suppl. 4):28–39. PubMed PMC
Kadam S, D'Ambrosio R, Duveau V, et al. Methodological standards and interpretation of video‐EEG in adult control rodents. A TASK1‐WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017;58(Suppl. 4):10–27. PubMed PMC
Lidster K, Jefferys JG, Blümcke I, et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J Neurosci Methods 2016;260:2–25. PubMed
Harte-Hargrove L, Galanopoulou A, French J, et al. Common data elements (CDEs) for preclinical epilepsy research: introduction to CDEs and description of core CDEs a TASK3 report of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018;3(S1):12–22. PubMed PMC
Libenson M. Practical approach to electroencephalography. Philadelphia: Saunders Elsevier; 2010.
Cooper R, Osselton JW, Shaw JC. EEG thechnology. London: Butterworth & Co. (Publishers) Ltd.; 1974.
Galanopoulou AS, Kokaia M, Loeb JA, et al. Epilepsy therapy development: technical and methodologic issues in studies with animal models. Epilepsia 2013;54(Suppl. 4):13–23. PubMed PMC
McIntyre D. The kindling phenomenon In Pitkänen A, Schwartzkroin PA, Moshé SL. (Eds) Models of Seizures and Epilepsy. Burlington, San Diego, London: Elsevier Academic Press; 2006:351–364.
Scantlebury MH, Galanopoulou AS, Chudomelova L, et al. A model of symptomatic infantile spasms syndrome. Neurobiol Dis 2010;37:604–612. PubMed PMC
Horner RL, Liu X, Gill H, et al. Effects of sleep‐wake state on the genioglossus vs.diaphragm muscle response to CO(2) in rats. J Appl Physiol 2002;92:878–887. PubMed
Benington JH, Kodali SK, Heller HC. Scoring transitions to REM sleep in rats based on the EEG phenomena of pre‐REM sleep: an improved analysis of sleep structure. Sleep 1994;17:28–36. PubMed
Sitnikova E, Hramov AE, Grubov V, et al. Time‐frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Res 2014;1543:290–299. PubMed
Sitnikova E, Hramov AE, Grubov V, et al. Age‐dependent increase of absence seizures and intrinsic frequency dynamics of sleep spindles in rats. Neurosci J 2014;2014:1–6. PubMed PMC
Shaw F. Is spontaneous high‐voltage rhythmic spike discharge in long evans rats an absence‐like seizure activity ? J Neurophysiol 2004;91:63–77. PubMed
Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926–1929. PubMed
Jing W, Wang Y, Fang G, et al. EEG bands of Wakeful Rest, slow‐wave and rapid‐eye‐movement sleep at different brain areas in rats. Front Comput Neurosci 2016;10:79 10.3389/fncom.2016.00079 PubMed DOI PMC
Corsi‐Cabrera M, Pérez‐Garci E, Del Río‐Portilla Mc Y, et al. EEG bands during wakefulness, slow‐wave, and paradoxical sleep as a result of principal component analysis in the rat. Sleep 2001;24:374–380. PubMed
Bragin A, Wilson CL, Almajano J, et al. High‐frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 2004;45:1017–1023. PubMed
Lévesque M, Bortel A, Gotman J, et al. Neurobiology of disease high‐frequency (80–500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy. Neurobiol Dis 2011;42:231–241. PubMed PMC
Staba RJ. Normal and pathologic high‐frequency oscillations. Jasper's Basic Mech Epilepsies 2012;1:1–16. PubMed
Matos G, Tsai R, Baldo M, et al. The sleep‐wake cycle in adult rats following pilocarpine‐induced temporal lobe epilepsy. Epilepsy Behav 2009;17:324–331. PubMed
Beniczky S, Aurlien H, Brøgger JC, et al. Standardized computer‐based organized reporting of EEG: SCORE – Second version. Clin Neurophysiol 2017;128:2334–2346. PubMed
Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972;32:281–294. PubMed
Haas KZ, Sperber EF, Benenati B, et al. Idiosyncrasies of limbic kindling in developing rats In Corcoran M, Moshé S. (Eds) Kindling 5. New York: Plenum Press; 1998:15–24.
Haas KZ, Sperber EF, Moshe SL. Kindling in developing animals: expression of severe seizures and enhanced development of bilateral foci. Dev Brain Res 1990;56:275–280. PubMed
Lüttjohann A, Fabene PF, van Luijtelaar G. A revised Racine's scale for PTZ‐induced seizures in rats. Physiol Behav 2009;98:579–586. PubMed
de Curtis M, Avoli M. Initiation, propagation, and termination of partial (Focal) seizures. Cold Spring Harb Perspect Med 2015;5:a022368. PubMed PMC
Greenfield L. Approaching the EEG: an introduction to visual analysis In Greenfield LJ, Geyer JD, Carney PR. (Eds) Reading EEGs: a practical approach. Philadelphia: Lippincott Williams & Wilkins, A Wolters Kluwer Business; 2010:38–74.
Lee M, Kim D, Shin H, et al. High‐density EEG recordings of the freely moving mice using polyimide‐based microelectrode. J Vis Exp 2011;e2565. PubMed PMC
Bae J, Deshmukh A, Song Y, et al. Brain source imaging in preclinical rat models of focal epilepsy using high‐resolution EEG recordings. J Vis Exp 2015;e52700. PubMed PMC
Brown RE, Basheer R, McKenna JT, et al. Control of sleep and wakefulness. Physiol Rev 2012;92:1087–1187. PubMed PMC
Geyer JD, Carney PR. Focal and generalized rhythm abnormalities In Greenfield LJ, Geyer JD, Carney PR. (Eds) Reading EEGs: a practical approach. Philadelphia: Lippincott Williams & Wilkins, A Wolters Kluwer Business; 2010:75–92.
Seelke AMH, Blumberg MS. Developmental appearance and disappearance of cortical events and oscillations in infant rats. Brain Res 2010;1324:34–42. PubMed PMC
Bajorat R, Wilde M, Sellmann T, et al. Seizure frequency in pilocarpine‐treated rats is independent of circadian rhythm. Epilepsia 2011;52:118–122. PubMed
Ikeda A, Taki W, Kunieda T, et al. Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain 1999;122:827–838. PubMed
Vanhatalo S, Holmes MD, Tallgren P, et al. Very slow EEG responses lateralize temporal lobe seizures: an evaluation of non‐invasive DC‐EEG. Neurology 2003;60:1098–1104. PubMed