• This record comes from PubMed

The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements

Language English Country Great Britain, England Media print

Document type Journal Article, Review, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
DP1 OD006831 NIH HHS - United States
R24 NS092986 NINDS NIH HHS - United States
S10 RR029050 NCRR NIH HHS - United States
R01 EB000790 NIBIB NIH HHS - United States
R01 NS057198 NINDS NIH HHS - United States
R01 NS091230 NINDS NIH HHS - United States
R01 DA029706 NIDA NIH HHS - United States
R01 EB003832 NIBIB NIH HHS - United States
P01 NS055104 NINDS NIH HHS - United States
R01 NS036722 NINDS NIH HHS - United States
R01 MH111359 NIMH NIH HHS - United States
R00 AG042026 NIA NIH HHS - United States
DP1 NS082097 NINDS NIH HHS - United States

The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

Department of Biochemistry and Biophysics University of Pennsylvania Philadelphia PA 19104 USA

Department of Bioengineering UCSD La Jolla CA 92093 USA Department of Opthalmology UCSD La Jolla CA 92093 USA

Department of Mathematical Sciences and Technology Norwegian University of Life Sciences 1432 Ås Norway Department of Physics University of Oslo 0316 Oslo Norway

Department of Medical Genetics Oslo University Hospital 0407 Oslo Norway NORMENT KG Jebsen Centre for Psychosis Research Department of Clinical Science University of Bergen 5020 Bergen Norway

Department of Neurosciences UCSD La Jolla CA 92093 USA

Department of Neurosciences UCSD La Jolla CA 92093 USA Department of Physics John Carroll University University Heights OH 44118 USA

Department of Physics UCSD La Jolla CA 92093 USA Department of Electrical and Computer Engineering UCSD La Jolla CA 92093 USA Section of Neurobiology UCSD La Jolla CA 92093 USA

Department of Radiology UCSD La Jolla CA 92093 USA

Department of Radiology UCSD La Jolla CA 92093 USA CEITEC Central European Institute of Technology and Institute of Physical Engineering Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic

Department of Radiology UCSD La Jolla CA 92093 USA Department of Neurosciences UCSD La Jolla CA 92093 USA

Department of Radiology UCSD La Jolla CA 92093 USA Department of Neurosciences UCSD La Jolla CA 92093 USA Martinos Center for Biomedical Imaging MGH Harvard Medical School Charlestown MA 02129 USA

Department of Radiology UCSD La Jolla CA 92093 USA NORMENT KG Jebsen Centre for Psychosis Research Division of Mental Health and Addiction Oslo University Hospital and University of Oslo 0407 Oslo Norway

Martinos Center for Biomedical Imaging MGH Harvard Medical School Charlestown MA 02129 USA

Neurosciences Graduate Program UCSD La Jolla CA 92093 USA

NORMENT KG Jebsen Centre for Psychosis Research Division of Mental Health and Addiction Oslo University Hospital and University of Oslo 0407 Oslo Norway

See more in PubMed

Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. 2011. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58, 339–361. (10.1016/j.neuroimage.2011.03.058) PubMed DOI PMC

Buxton RB. 2010. Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front. Neuroenerget. 2, 8 (10.3389/fnene.2010.00008) PubMed DOI PMC

Logothetis NK. 2002. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil. Trans R Soc Lond B 357, 1003–1037. (10.1098/rstb.2002.1114) PubMed DOI PMC

Kim S-G, Ogawa S. 2012. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J. Cereb Blood Flow Metab. 32, 1188–1206. (10.1038/jcbfm.2012.23) PubMed DOI PMC

Vanzetta I, Grinvald A. 2008. Coupling between neuronal activity and microcirculation: implications for functional brain imaging. HFSP J. 2, 79–98. (10.2976/1.2889618) PubMed DOI PMC

Harel N, Bolan PJ, Turner R, Ugurbil K, Yacoub E. 2010. Recent advances in high-resolution MR application and its implications for neurovascular coupling research. Front. Neuroenerget. 2, 130 (10.3389/fnene.2010.00130) PubMed DOI PMC

Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. 1992. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad Sci USA 89, 5951–5955. (10.1073/pnas.89.13.5951) PubMed DOI PMC

Kwong KK, et al. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl Acad Sci USA 89, 5675–5679. (10.1073/pnas.89.12.5675) PubMed DOI PMC

Rosa MJ, Daunizeau J, Friston KJ. 2010. EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. J. Integr. Neurosci. 9, 453–476. (10.1142/S0219635210002512) PubMed DOI

Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E. 2000. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67. (10.1016/S0896-6273(00)81138-1) PubMed DOI

Leithner C, Royl G. 2014. The oxygen paradox of neurovascular coupling. J. Cereb. Blood Flow Metab. 34, 19–29. (10.1038/jcbfm.2013.181) PubMed DOI PMC

Buxton RB. 2013. The physics of functional magnetic resonance imaging (fMRI). Rep. Progress Phys. Phys. Soc. 76, 096601 (10.1088/0034-4885/76/9/096601) PubMed DOI PMC

Devor A, et al. 2011. ‘Overshoot’ of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31, 13 676–13 681. (10.1523/JNEUROSCI.1968-11.2011) PubMed DOI PMC

Buxton RB, Griffeth VE, Simon AB, Moradi F, Shmuel. 2014. Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity. Front. Neurosci. 8, 139 (10.3389/fnins.2014.00139) PubMed DOI PMC

Griffeth VE, Perthen JE, Buxton RB. 2011. Prospects for quantitative fMRI: investigating the effects of caffeine on baseline oxygen metabolism and the response to a visual stimulus in humans. Neuroimage 57, 809–816. (10.1016/j.neuroimage.2011.04.064) PubMed DOI PMC

Friston KJ. 2009. Modalities, modes, and models in functional neuroimaging. Science 326, 399–403. (10.1126/science.1174521) PubMed DOI

Davis TL, Kwong KK, Weisskoff RM, Rosen BR. 1998. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl Acad Sci USA 95, 1834–1839. (10.1073/pnas.95.4.1834) PubMed DOI PMC

Hoge RD. 2012. Calibrated FMRI. Neuroimage 62, 930–937. (10.1016/j.neuroimage.2012.02.022) PubMed DOI

Pike GB. 2012. Quantitative functional MRI: concepts, issues and future challenges. Neuroimage 62, 1234–1240. (10.1016/j.neuroimage.2011.10.046) PubMed DOI

Bargmann CI, Marder E. 2013. From the connectome to brain function. Nat. Methods 10, 483–490. (10.1038/nmeth.2451) PubMed DOI

Insel TR, Landis SC, Collins FS. 2013. Research priorities. The NIH BRAIN Initiative. Science 340, 687–688. (10.1126/science.1239276) PubMed DOI PMC

Devor A, et al. 2013. The challenge of connecting the dots in the B.R.A.I.N. Neuron 80, 270–274. (10.1016/j.neuron.2013.09.008) PubMed DOI PMC

Markram H. 2012. The human brain project. Sci. Am. 306, 50–55. (10.1038/scientificamerican0612-50) PubMed DOI

Simons DJ, Carvell GE. 1989. Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol. 61, 311–330. PubMed

Kleinfeld D, Delaney KR. 1996. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J. Comp. Neurol. 375, 89–108. (10.1002/(SICI)1096-9861(19961104)375:1%3C89::AID-CNE6%3E3.0.CO;2-K) PubMed DOI

Takashima I, Kajiwara R, Iijima T. 2001. Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex. Neuroreport 12, 2889–2894. (10.1097/00001756-200109170-00027) PubMed DOI

Derdikman D, Hildesheim R, Ahissar E, Arieli A, Grinvald A. 2003. Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. J. Neurosci. 23, 3100–3105. PubMed PMC

Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. 1992. Interhemispheric inhibition of the human motor cortex. J. Physiol. 453, 525–546. (10.1113/jphysiol.1992.sp019243) PubMed DOI PMC

Hlushchuk Y, Hari R. 2006. Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J. Neurosci. 26, 5819–5824. (10.1523/JNEUROSCI.5536-05.2006) PubMed DOI PMC

Boas DA, Jones SR, Devor A, Huppert TJ, Dale AM. 2008. A vascular anatomical network model of the spatio-temporal response to brain activation. Neuroimage 40, 1116–1129. (10.1016/j.neuroimage.2007.12.061) PubMed DOI PMC

Fang Q, Sakadz˘ić S, Ruvinskaya L, Devor A, Dale AM, Boas DA. 2008. Oxygen advection and diffusion in a three- dimensional vascular anatomical network. Opt. Express 16, 17 530–17 541. (10.1364/OE.16.017530) PubMed DOI PMC

Gagnon L, et al. 2015. Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J. Neurosci. 35, 3663–3675. (10.1523/JNEUROSCI.3555-14.2015) PubMed DOI PMC

Friston KJ. 2005. Models of brain function in neuroimaging. Annu. Rev. Psychol. 56, 57–87. (10.1146/annurev.psych.56.091103.070311) PubMed DOI

Lindauer U, et al. 2010. Neurovascular coupling in rat brain operates independent of hemoglobin deoxygenation. J. Cereb. Blood Flow Metab. 30, 757–768. (10.1038/jcbfm.2009.259) PubMed DOI PMC

Devor A, Boas D, Einevoll GT, Buxton RB, Dale AM. 2012. Neuronal basis of non-invasive functional imaging: from microscopic neurovascular dynamics to BOLD fMRI. In Neural metabolism in vivo (eds Choi I-Y, Gruetter R), pp. 433–500. Berlin, Germany: Springer.

Devor A, et al. 2012. Frontiers in optical imaging of cerebral blood flow and metabolism. J. Cereb. Blood Flow Metab. 32, 1259–1276. (10.1038/jcbfm.2011.195) PubMed DOI PMC

Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. 2010. Glial and neuronal control of brain blood flow. Nature 468, 232–243. (10.1038/nature09613) PubMed DOI PMC

Devor A, et al. 2008. Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J. Neurosci. 28, 14 347–14 357. (10.1523/JNEUROSCI.4307-08.2008) PubMed DOI PMC

Attwell D, Iadecola C. 2002. The neural basis of functional brain imaging signals. Trends Neurosci 25, 621–625. (10.1016/S0166-2236(02)02264-6) PubMed DOI

Cauli B, Hamel E. 2010. Revisiting the role of neurons in neurovascular coupling. Front Neuroenergetics 2, 9 (10.3389/fnene.2010.00009) PubMed DOI PMC

Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E. 2004. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949. (10.1523/JNEUROSCI.3065-04.2004) PubMed DOI PMC

Kocharyan A, Fernandes P, Tong XK, Vaucher E, Hamel E. 2008. Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J. Cereb. Blood Flow Metab. 28, 221–231. (10.1038/sj.jcbfm.9600558) PubMed DOI

Lacroix A, et al. 2015. COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex. J. Neurosci. 35, 11 791–11 810. (10.1523/JNEUROSCI.0651-15.2015) PubMed DOI PMC

Lecrux C, et al. 2011. Pyramidal neurons are ‘neurogenic hubs’ in the neurovascular coupling response to whisker stimulation. J. Neurosci. 31, 9836–9847. (10.1523/JNEUROSCI.4943-10.2011) PubMed DOI PMC

Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, Arbault S, Hamel E, Cauli B. 2006. Glutamatergic control of microvascular tone by distinct GABA neurons in the cerebellum. J. Neurosci. 26, 6997–7006. (10.1523/JNEUROSCI.5515-05.2006) PubMed DOI PMC

Shmuel A, Augath M, Oeltermann A, Logothetis NK. 2006. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat. Neurosci. 9, 569–577. (10.1038/nn1675) PubMed DOI

Devor A, et al. 2007. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 27, 4452–4459. (10.1523/JNEUROSCI.0134-07.2007) PubMed DOI PMC

Hillman EM, Devor A, Bouchard MB, Dunn AK, Krauss GW, Skoch J, Bacskai BJ, Dale AM, Boas DA. 2007. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35, 89–104. (10.1016/j.neuroimage.2006.11.032) PubMed DOI PMC

Tian P, Teng IC, Dale AM, Devor A. 2008. Characterization of the spatiotemporal responses of surface and penetrating cerebral arterioles using two-photon microscopy. Program No. 286.5. Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience. Online (https://neurosciences.ucsd.edu/images/nil/Website_2_28_2011/abstracts_posters/2008/PeifangSFN08_poster.pdf)

Alonso BD, Lowe AS, Dear JP, Lee KC, Williams SC, Finnerty GT. 2007. Sensory inputs from whisking movements modify cortical whisker maps visualized with functional magnetic resonance imaging. Cereb. Cortex 18, 1314–1325. (10.1093/cercor/bhm163) PubMed DOI PMC

Bressler D, Spotswood N, Whitney D. 2007. Negative BOLD fMRI response in the visual cortex carries precise stimulus-specific information. PLoS ONE 2, e410 (10.1371/journal.pone.0000410) PubMed DOI PMC

Kastrup A, Baudewig J, Schnaudigel S, Huonker R, Becker L, Sohns JM, Dechent P, Klingner C, Witte OW. 2008. Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. Neuroimage 41, 1364–1371. (10.1016/j.neuroimage.2008.03.049) PubMed DOI

Mullinger KJ, Mayhew SD, Bagshaw AP, Bowtell R, Francis ST. 2014. Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans. Neuroimage 94, 263–274. (10.1016/j.neuroimage.2014.02.029) PubMed DOI

Smith AT, Williams AL, Singh KD. 2004. Negative BOLD in the visual cortex: evidence against blood stealing. Hum. Brain Mapp. 21, 213–220. (10.1002/hbm.20017) PubMed DOI PMC

Dietrich HH, Kajita Y, Dacey RG Jr. 1996. Local and conducted vasomotor responses in isolated rat cerebral arterioles. Am. J. Physiol. 271, H1109–H1116. PubMed

Gustafsson F, Holstein-Rathlou N. 1999. Conducted vasomotor responses in arterioles: characteristics, mechanisms and physiological significance. Acta Physiol. Scand. 167, 11–21. (10.1046/j.1365-201x.1999.00582.x) PubMed DOI

Segal SS, Duling BR. 1986. Flow control among microvessels coordinated by intercellular conduction. Science 234, 868–870. (10.1126/science.3775368) PubMed DOI

Welsh DG, Segal SS. 1998. Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am. J. Physiol. 274, H178–H186. PubMed

Tian P, et al. 2010. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc. Natl Acad Sci USA 107, 15 246–15 251. (10.1073/pnas.1006735107) PubMed DOI PMC

Nizar K, et al. 2013. In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J. Neurosci. 33, 8411–8422. (10.1523/JNEUROSCI.3285-12.2013) PubMed DOI PMC

Lindvere L, Janik R, Dorr A, Chartash D, Sahota B, Sled JG, Stefanovic B. 2013. Cerebral microvascular network geometry changes in response to functional stimulation. Neuroimage 71, 248–259. (10.1016/j.neuroimage.2013.01.011) PubMed DOI

Hall CN, et al. 2014. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60. (10.1038/nature13165) PubMed DOI PMC

Uhlirova H, et al. 2016. Cell type specificity of neurovascular coupling in cerebral cortex. eLife 5, e14315 (10.7554/eLife.14315) PubMed DOI PMC

Siero JC, Petridou N, Hoogduin H, Luijten PR, Ramsey NF. 2011. Cortical depth-dependent temporal dynamics of the BOLD response in the human brain. J. Cereb. Blood Flow Metab. 31, 1999–2008. (10.1038/jcbfm.2011.57) PubMed DOI PMC

Yu X, Qian C, Chen DY, Dodd SJ, Koretsky AP. 2014. Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat. Methods 11, 55–58. (10.1038/nmeth.2730) PubMed DOI PMC

Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. 2015. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110. (10.1016/j.neuron.2015.06.001) PubMed DOI PMC

Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY. 2015. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2, 041402 (10.1117/1.NPh.2.4.041402) PubMed DOI PMC

Attwell D, Mishra A, Hall CN, O'Farrell FM, Dalkara T. 2016. What is a pericyte? J. Cereb. Blood Flow Metab. 36, 451–455. (10.1177/0271678X15610340) PubMed DOI PMC

Drew PJ, Shih AY, Kleinfeld D. 2011. Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc. Natl Acad Sci USA 108, 8473–8478. (10.1073/pnas.1100428108) PubMed DOI PMC

Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. 2011. Optogenetics in neural systems. Neuron 71, 9–34. (10.1016/j.neuron.2011.06.004) PubMed DOI

Madisen L, et al. 2012. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802. (10.1038/nn.3078) PubMed DOI PMC

Anenberg E, Chan AW, Xie Y, LeDue JM, Murphy TH. 2015. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J. Cereb. Blood Flow Metab. 35, 1579–1586. (10.1038/jcbfm.2015.140) PubMed DOI PMC

Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, Fenno LE, Ramakrishnan C, Deisseroth K. 2010. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792. (10.1038/nature09108) PubMed DOI PMC

Kahn I, Desai M, Knoblich U, Bernstein J, Henninger M, Graybiel AM, Boyden ES, Buckner RL, Moore CI. 2011. Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J. Neurosci. 31, 15 086–15 091. (10.1523/JNEUROSCI.0007-11.2011) PubMed DOI PMC

Kahn I, Knoblich U, Desai M, Bernstein J, Graybiel AM, Boyden ES, Buckner RL, Moore CI. 2013. Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity. Brain Res. 1511, 33–45. (10.1016/j.brainres.2013.03.011) PubMed DOI PMC

Scott NA, Murphy TH. 2012. Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission. PLoS ONE 7, e29859 (10.1371/journal.pone.0029859) PubMed DOI PMC

Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD. 2008. What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946. (10.1016/j.neuron.2008.09.004) PubMed DOI PMC

Koehler RC, Roman RJ, Harder DR. 2009. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. 32, 160–169. (10.1016/j.tins.2008.11.005) PubMed DOI

Iadecola C, Nedergaard M. 2007. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376. (10.1038/nn2003) PubMed DOI

Nimmerjahn A. 2009. Astrocytes going live: advances and challenges. J. Physiol. 587, 1639–1647. (10.1113/jphysiol.2008.167171) PubMed DOI PMC

Petzold GC, Murthy VN. 2011. Role of astrocytes in neurovascular coupling. Neuron 71, 782–797. (10.1016/j.neuron.2011.08.009) PubMed DOI

Paulson OB, Hasselbalch SG, Rostrup E, Knudsen GM, Pelligrino D. 2010. Cerebral blood flow response to functional activation. J. Cereb. Blood Flow Metab. 30, 2–14. (10.1038/jcbfm.2009.188) PubMed DOI PMC

Takata N, Nagai T, Ozawa K, Oe Y, Mikoshiba K, Hirase H. 2013. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes. PLoS ONE 8, e66525 (10.1371/journal.pone.0066525) PubMed DOI PMC

Bonder DE, McCarthy KD. 2014. Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J. Neurosci. 34, 13 139–13 150. (10.1523/JNEUROSCI.2591-14.2014) PubMed DOI PMC

Lind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ. 2013. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc. Natl Acad Sci USA 110, E4678–E4687. (10.1073/pnas.1310065110) PubMed DOI PMC

Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM, Pfrieger FW, Bergles DE, Charpak S. 2015. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat. Neurosci. 18, 210–218. (10.1038/nn.3906) PubMed DOI PMC

Mathiesen C, Brazhe A, Thomsen K, Lauritzen M. 2013. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen. J. Cereb. Blood Flow Metab. 33, 161–169. (10.1038/jcbfm.2012.175) PubMed DOI PMC

Liu X, Li C, Falck JR, Harder DR, Koehler RC. 2012. Relative contribution of cyclooxygenases, epoxyeicosatrienoic acids, and pH to the cerebral blood flow response to vibrissal stimulation. Am. J. Physiol. Heart Circ. Physiol. 302, H1075–H1085. (10.1152/ajpheart.00794.2011) PubMed DOI PMC

Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM. 1974. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5, 630–639. (10.1161/01.STR.5.5.630) PubMed DOI

Magistretti PJ, Pellerin L. 1999. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. R. Soc. Lond. B 354, 1155–1163. (10.1098/rstb.1999.0471) PubMed DOI PMC

Yucel MA, Devor A, Akin A, Boas DA. 2009. The possible role of CO2 in producing a post-stimulus CBF and BOLD undershoot. Front. Neuroenerget. 1, 7 (10.3389/neuro.14.007.2009) PubMed DOI PMC

Raichle ME, Mintun MA. 2006. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476. (10.1146/annurev.neuro.29.051605.112819) PubMed DOI

Dunn KM, Nelson MT. 2010. Potassium channels and neurovascular coupling. Circul. J. 74, 608–616. (10.1253/circj.CJ-10-0174) PubMed DOI PMC

Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT. 2006. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9, 1397–1403. (10.1038/nn1779) PubMed DOI

Nelson MT, Quayle JM. 1995. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799–C822. PubMed

Longden TA, Nelson MT. 2015. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation 22, 183–196. (10.1111/micc.12190) PubMed DOI PMC

Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM. 2014. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3, e000787 (10.1161/JAHA.114.000787) PubMed DOI PMC

Metea MR, Kofuji P, Newman EA. 2007. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J. Neurosci. 27, 2468–2471. (10.1523/JNEUROSCI.3204-06.2007) PubMed DOI PMC

Odette LL, Newman EA. 1988. Model of potassium dynamics in the central nervous system. Glia 1, 198–210. (10.1002/glia.440010305) PubMed DOI

Newman EA, Frambach DA, Odette LL. 1984. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225, 1174–1175. (10.1126/science.6474173) PubMed DOI PMC

Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA. 2008. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745–749. (10.1038/nature07525) PubMed DOI PMC

Kılıç K, et al. In press Tools for high resolution in vivo imaging of cellular and molecular mechanisms in cortical spreading depression and spreading depolarization. In Neurobiological basis of migraine. New York, NY: Wiley; (https://www.amazon.com/Neurobiological-Basis-Migraine-TurgayDalkara/dp/1118967194)

Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF, Coulter DA, Carmignoto G, Haydon PG. 2007. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J. Neurosci. 27, 10 674–10 684. (10.1523/JNEUROSCI.2001-07.2007) PubMed DOI PMC

Thompson JK, Peterson MR, Freeman RD. 2003. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299, 1070–1072. (10.1126/science.1079220) PubMed DOI

Viswanathan A, Freeman RD. 2007. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat. Neurosci. 10, 1308–1312. (10.1038/nn1977) PubMed DOI

Offenhauser N, Thomsen K, Caesar K, Lauritzen M. 2005. Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J. Physiol. 565, 279–294. (10.1113/jphysiol.2005.082776) PubMed DOI PMC

Erecinska M, Silver IA. 2001. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276. (10.1016/S0034-5687(01)00306-1) PubMed DOI

Masamoto K, Takizawa N, Kobayashi H, Oka K, Tanishita K. 2003. Dual responses of tissue partial pressure of oxygen after functional stimulation in rat somatosensory cortex. Brain Res. 979, 104–113. (10.1016/S0006-8993(03)02882-8) PubMed DOI

Sharan M, Vovenko EP, Vadapalli A, Popel AS, Pittman RN. 2008. Experimental and theoretical studies of oxygen gradients in rat pial microvessels. J. Cereb. Blood Flow Metab. 28, 1597–1604. (10.1038/jcbfm.2008.51) PubMed DOI PMC

Vazquez AL, Fukuda M, Tasker ML, Masamoto K, Kim SG. 2010. Changes in cerebral arterial, tissue and venous oxygenation with evoked neural stimulation: implications for hemoglobin-based functional neuroimaging. J. Cereb. Blood Flow Metab. 30, 428–439. (10.1038/jcbfm.2009.213) PubMed DOI PMC

Vovenko E. 1999. Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats. Pflugers Arch. 437, 617–623. (10.1007/s004240050825) PubMed DOI

Ances BM, Wilson DF, Greenberg JH, Detre JA. 2001. Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching. J. Cereb. Blood Flow Metab. 21, 511–516. (10.1097/00004647-200105000-00005) PubMed DOI

Vanzetta I, Grinvald A. 1999. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286, 1555–1558. (10.1126/science.286.5444.1555) PubMed DOI

Yaseen MA, Srinivasan VJ, Sakadz˘ić S, Wu W, Ruvinskaya S, Vinogradov SA, Boas DA. 2009. Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy. Opt. Express 17, 22 341–22 350. (10.1364/OE.17.022341) PubMed DOI PMC

Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Ugurbil K. 2009. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J. Cereb. Blood Flow Metab. 29, 441–463. (10.1038/jcbfm.2008.134) PubMed DOI PMC

Aubert A, Costalat R. 2002. A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage 17, 1162–1181. (10.1006/nimg.2002.1224) PubMed DOI

Almeida R, Stetter M. 2002. Modeling the link between functional imaging and neuronal activity: synaptic metabolic demand and spike rates. Neuroimage 17, 1065–1079. (10.1006/nimg.2002.1234) PubMed DOI

Sotero RC, Trujillo-Barreto NJ. 2008. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39, 290–309. (10.1016/j.neuroimage.2007.08.001) PubMed DOI

Finikova OS, Lebedev AY, Aprelev A, Troxler T, Gao F, Garnacho C, Muro S, Hochstrasser RM, Vinogradov SA. 2008. Oxygen microscopy by two-photon-excited phosphorescence. Chemphyschem 9, 1673–1679. (10.1002/cphc.200800296) PubMed DOI PMC

Brinas RP, Troxler T, Hochstrasser RM, Vinogradov SA. 2005. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J. Am. Chem. Soc. 127, 11 851–11 862. (10.1021/ja052947c) PubMed DOI PMC

Lebedev AY, Troxler T, Vinogradov SA. 2008. Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen. J. Porphyr. Phthalocyanines 12, 1261–1269. (10.1142/S1088424608000649) PubMed DOI PMC

Sakadz˘ić S, et al. 2010. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat. Methods 7, 755–759. (10.1038/nmeth.1490) PubMed DOI PMC

Sakadz˘ić S, et al. 2014. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (10.1038/ncomms6734) PubMed DOI PMC

Devor A, et al. 2014. Functional imaging of cerebral oxygenation with intrinsic optical contrast and phosphorescent O2 sensors. In Optical imaging of cortical circuit dynamics (eds Weber B, Helmchen F), pp. 225–253. Berlin, Germany: Springer.

Lecoq J, Parpaleix A, Roussakis E, Ducros M, Goulam Houssen Y, Vinogradov SA, Charpak S. 2011. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat. Med. 17, 893–898. (10.1038/nm.2394) PubMed DOI PMC

Parpaleix A, Goulam Houssen Y, Charpak S. 2013. Imaging local neuronal activity by monitoring PO2 transients in capillaries. Nat. Med. 19, 241–246. (10.1038/nm.3059) PubMed DOI

Kasischke KA, Lambert EM, Panepento B, Sun A, Gelbard HA, Burgess RW, Foster TH, Nedergaard M. 2010. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J. Cereb. Blood Flow Metab. 31, 68–81. (10.1038/jcbfm.2010.158) PubMed DOI PMC

Lyons DG, Parpaleix A, Roche M, Charpak S. 2016. Mapping oxygen concentration in the awake mouse brain. eLife 5, e12024 (10.7554/eLife.12024) PubMed DOI PMC

Krogh A. 1919. The supply of oxygen to the tissues and the regulation of the capillary circulation. J. Physiol. 52, 457–474. (10.1113/jphysiol.1919.sp001844) PubMed DOI PMC

Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ, Karten HJ, Lyden PD, Kleinfeld D. 2009. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29, 14 553–14 570. (10.1523/JNEUROSCI.3287-09.2009) PubMed DOI PMC

Goldman D. 2008. Theoretical models of microvascular oxygen transport to tissue. Microcirculation 15, 795–811. (10.1080/10739680801938289) PubMed DOI PMC

Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145. (10.1097/00004647-200110000-00001) PubMed DOI

Beard DA, Bassingthwaighte JB. 2001. Modeling advection and diffusion of oxygen in complex vascular networks. Ann. Biomed. Eng. 29, 298–310. (10.1114/1.1359450) PubMed DOI PMC

Dale AM, Sereno MI. 1993. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cogn. Neurosci. 5, 162–176. (10.1162/jocn.1993.5.2.162) PubMed DOI

Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O. 1993. Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497. (10.1103/RevModPhys.65.413) DOI

Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. 2004. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807. (10.1038/nrn1519) PubMed DOI

Nunez PL, Srinivasan R. 2006. Electric fields of the brain: the neurophysics of EEG. Oxford, UK: Oxford University Press.

Liu AK, Dale AM, Belliveau JW. 2002. Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum. Brain Mapp. 16, 47–62. (10.1002/hbm.10024) PubMed DOI PMC

Einevoll GT, Kayser C, Logothetis NK, Panzeri S. 2013. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785. (10.1038/nrn3599) PubMed DOI

Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT. 2006. Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 116–133. (10.1016/j.jneumeth.2005.12.005) PubMed DOI

Bangera NB, Schomer DL, Dehghani N, Ulbert I, Cash S, Papavasiliou S, Eisenberg SR, Dale AM, Halgren E. 2010. Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution. J. Comput. Neurosci. 29, 371–387. (10.1007/s10827-009-0205-z) PubMed DOI PMC

Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, Dale AM. 2007. Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. J. Neurophysiol. 97, 2174–2190. (10.1152/jn.00845.2006) PubMed DOI

Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ. 2013. The organization of two new cortical interneuronal circuits. Nat. Neurosci. 16, 210–218. (10.1038/nn.3305) PubMed DOI PMC

Ascoli GA, Donohue DE, Halavi M. 2007. NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251. (10.1523/JNEUROSCI.2055-07.2007) PubMed DOI PMC

Kawaguchi Y, Kubota Y. 1996. Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J. Neurosci. 16, 2701–2715. PubMed PMC

Karagiannis A, Gallopin T, David C, Battaglia D, Geoffroy H, Rossier J, Hillman EM, Staiger JF, Cauli B. 2009. Classification of NPY-expressing neocortical interneurons. J. Neurosci. 29, 3642–3659. (10.1523/JNEUROSCI.0058-09.2009) PubMed DOI PMC

Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A. 2006. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082. (10.1523/JNEUROSCI.0661-06.2006) PubMed DOI PMC

Wang Y, Toledo-Rodriguez M, Gupta A, Wu C, Silberberg G, Luo J, Markram H. 2004. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90. (10.1113/jphysiol.2004.073353) PubMed DOI PMC

Perrenoud Q, Geoffroy H, Gauthier B, Rancillac A, Alfonsi F, Kessaris N, Rossier J, Vitalis T, Gallopin T. 2012. Characterization of Type I and Type II nNOS-expressing interneurons in the barrel cortex of mouse. Front. Neural Circuits 6, 36 (10.3389/fncir.2012.00036) PubMed DOI PMC

Linden H, Pettersen KH, Einevoll GT. 2010. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29, 423–444. (10.1007/s10827-010-0245-4) PubMed DOI

Leski S, Linden H, Tetzlaff T, Pettersen KH, Einevoll GT. 2013. Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput. Biol. 9, e1003137 (10.1371/journal.pcbi.1003137) PubMed DOI PMC

Lee AJ, et al. 2015. Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb. Cortex 25, 2114–2126. (10.1093/cercor/bhu020) PubMed DOI PMC

Silberberg G, Markram H. 2007. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746. (10.1016/j.neuron.2007.02.012) PubMed DOI

Gratiy SL, Devor A, Einevoll GT, Dale AM. 2011. On the estimation of population-specific synaptic currents from laminar multielectrode recordings. Front. Neuroinform. 5, 32 (10.3389/fninf.2011.00032) PubMed DOI PMC

Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, Grün S, Diesmann M, Einevoll GT. In press. Hybrid scheme for modeling local field potentials from point-neuron networks. Cereb. Cortex. PubMed PMC

Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C. 2013. A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79, 375–390. (10.1016/j.neuron.2013.05.023) PubMed DOI PMC

Larkum ME, Kaiser KM, Sakmann B. 1999. Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc. Natl Acad Sci USA 96, 14 600–14 604. (10.1073/pnas.96.25.14600) PubMed DOI PMC

Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. 1998. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn. Reson. Med. 40, 383–396. (10.1002/mrm.1910400308) PubMed DOI

Liu TT, Brown GG. 2007. Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods. J. Int. Neuropsychol. Soc. 13, 517–525. (10.1017/S1355617707070646) PubMed DOI

Wong EC, Buxton RB, Frank LR. 1998. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn. Reson. Med. 39, 702–708. (10.1002/mrm.1910390506) PubMed DOI

Liu AK, Belliveau JW, Dale AM. 1998. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc. Natl Acad Sci USA 95, 8945–8950. (10.1073/pnas.95.15.8945) PubMed DOI PMC

Buxton RB, Wong EC, Frank LR. 1998. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39, 855–864. (10.1002/mrm.1910390602) PubMed DOI

Mandeville JB, Marota JJ, Ayata C, Zaharchuk G, Moskowitz MA, Rosen BR, Weisskoff RM. 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689. (10.1097/00004647-199906000-00012) PubMed DOI

Gagnon L, Sakadžić S, Lesage F, Pouliot P, Dale AM, Devor A, Buxton RB, Boas DA. 2016. Validation and optimization of hypercapnic-calibrated fMRI from oxygen-sensitive two-photon microscopy. Phil. Trans. R. Soc. B 371, 20150359 (10.1098/rstb.2015.0359) PubMed DOI PMC

Griffeth VE, Buxton RB. 2011. A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. Neuroimage 58, 198–212. (10.1016/j.neuroimage.2011.05.077) PubMed DOI PMC

Oberheim NA, et al. 2009. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287. (10.1523/JNEUROSCI.4707-08.2009) PubMed DOI PMC

Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR. 1999. A neuronal morphologic type unique to humans and great apes. Proc. Natl Acad Sci USA 96, 5268–5273. (10.1073/pnas.96.9.5268) PubMed DOI PMC

Testa-Silva G, Verhoog MB, Linaro D, de Kock CP, Baayen JC, Meredith RM, De Zeeuw CI, Giugliano M, Mansvelder HD. 2014. High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biol. 12, e1002007 (10.1371/journal.pbio.1002007) PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...