Potential for Genetic Improvement of the Main Slaughter Yields in Common Carp With in vivo Morphological Predictors

. 2018 ; 9 () : 283. [epub] 20180730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30105050

Common carp is a major aquaculture species worldwide, commonly sold alive but also as processed headless carcass or filets. However, recording of processing yields is impossible on live breeding candidates, and alternatives for genetic improvement are either sib selection based on slaughtered fish, or indirect selection on correlated traits recorded in vivo. Morphological predictors that can be measured on live fish and that correlate with real slaughter yields hence remain a possible alternative. To quantify the power of morphological predictors for genetic improvement of yields, we estimated genetic parameters of slaughter yields and various predictors in 3-year-old common carp reared communally under semi-intensive pond conditions. The experimental stock was established by a partial factorial design of 20 dams and 40 sires, and 1553 progenies were assigned to their parents using 12 microsatellites. Slaughter yields were highly heritable (h2 = 0.46 for headless carcass yield, 0.50 for filet yield) and strongly genetically correlated with each other (rg = 0.96). To create morphological predictors, external (phenotypes, 2D digitization) and internal measurements (ultrasound imagery) were recorded and combined by multiple linear regression to predict slaughter yields. The accuracy of the phenotypic prediction was high for headless carcass yield (R2 = 0.63) and intermediate for filet yield (R2 = 0.49). Interestingly, heritability of predicted slaughter yields (0.48-0.63) was higher than that of the real yields to predict, and had high genetic correlations with the real yields (rg = 0.84-0.88). In addition, both predicted yields were highly phenotypically and genetically correlated with each other (0.95 for both), suggesting that using predicted headless carcass yield in a breeding program would be a good way to also improve filet yield. Besides, two individual predictors (P1 and P2) included in the prediction models and two simple internal measurements (E4 and E23) exhibited intermediate to high heritability estimates (h2 = 0.34 - 0.72) and significant genetic correlations to the slaughter yields (rg = |0.39 - 0.83|). The results show that there is a solid potential for genetic improvement of slaughter yields by selecting for predictor traits recorded on live breeding candidates of common carp.

Zobrazit více v PubMed

Ankorion Y., Moav R., Wohlfarth G. (1992). Bidirectional mass selection for body shape in common carp. DOI

Bauer B. C., Schlott G. (2009). Fillet yield and fat content in common carp ( DOI

Boichard D., Barbotte L., Genestout L. (2014). “AccurAssign, software for accurate maximum-likelihood parentage assignment,” in

Bosworth B., Holland M., Brazil B. (2001). Evaluation of ultrasound imagery and body shape to predict carcass and fillet yield in farm-raised catfish. PubMed DOI

Bugeon J., Lefevre F., Cardinal M., Uyanik A., Davenel A., Haffray P. (2010). Flesh quality in large rainbow trout with high or low fillet yield. DOI

Chavanne H., Janssen K., Hofherr J., Contini F., Haffray P., Komen H., et al. (2016). A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. DOI

Cibert C., Fermon Y., Vallod D., Meunier F. J. (1999). Morphological screening of carp DOI

Dong Z., Nguyen N. H., Zhu W. (2015). Genetic evaluation of a selective breeding program for common carp PubMed DOI PMC

Efron B., Tibshirani R. (1993). DOI

Falconer D. S., MacKay T. F. C. (1996).

FAO (2016).

Flajšhans M., Gela D., Kocour M., Rodina M., Kašpar V., Linhart O., et al. (2015). “Amur mirror carp, a recently certified breed of common carp in the Czech Republic,” in

Fraslin C., Dupont-Nivet M., Haffray P., Bestin A., Vandeputte M. (2018). How to genetically increase fillet yield in fish: new insights from simulations based on field data. DOI

Gela D., Rodina M., Linhart O. (2003). Top-crossing with evaluation of slaughtering value in common carp ( DOI

Gjedrem T. (2010). The first family-based breeding program in aquaculture. DOI

Gjedrem T., Baranski M. (2009). DOI

Gjerde B., Mengistu S. B., Ødegård J., Johansen H., Altamirano D. S. (2012). Quantitative genetics of body weight, fillet weight and fillet yield in DOI

Gunsett F. (1984). Linear index selection to improve traits defined as ratios. DOI

Gunsett F. (1987). Merit of utilizing the heritability of a ratio to predict the genetic change of a ratio. DOI

Haffray P., Bugeon J., Pincent C., Chapuis H., Mazeiraud E., Rossignol M. N., et al. (2012). Negative genetic correlations between production traits and head or bony tissues in large all-female rainbow trout ( DOI

Haffray P., Bugeon J., Rivard Q., Quittet B., Puyo S., Allamelou J. M., et al. (2013). Genetic parameters of in-vivo prediction of carcass, head and fillet yields by internal ultrasound and 2D external imagery in large rainbow trout ( DOI

Hu X., Li C., Shang M., Ge Y., Jia Z., Wang S., et al. (2017). Inheritance of growth traits in Songpu mirror carp ( DOI

Hulata G. (1995). A review of genetic improvement of the common carp ( DOI

Janhunen M., Nousiainen A., Koskinen H., Vehviläinen H., Kause A. (2017). Selection strategies for controlling muscle lipid content recorded with a non-destructive method in European whitefish, DOI

Janssen K., Chavanne H., Berentsen P., Komen H. (2017). Impact of selective breeding on European aquaculture. DOI

Kankainen M., Setälä J., Kause A., Quinton C., Airaksinen S., Koskela J. (2016). Economic values of supply chain productivity and quality traits calculated for a farmed European whitefish breeding program. DOI

Kause A., Paananen T., Ritola O., Koskinen H. (2007). Direct and indirect selection of visceral lipid weight, fillet weight, and fillet percentage in a rainbow trout breeding program. PubMed DOI

Klingenberg C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. PubMed DOI

Kocour M., Gela D., Rodina M., Linhart O. (2005a). Testing of performance in common carp DOI

Kocour M., Linhart O., Gela D., Rodina M. (2005b). Growth performance of all-female and mixed-sex common carp DOI

Kocour M., Mauger S., Rodina M., Gela D., Linhart O., Vandeputte M. (2007). Heritability estimates for processing and quality traits in common carp ( DOI

Kohlmann K., Gross R., Murakaeva A., Kersten P. (2003). Genetic variability and structure of common carp ( DOI

Kohlmann K., Kersten P., Flajšhans M. (2005). Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp ( DOI

Lin C. (1980). Relative efficiency of selection methods for improvement of feed efficiency. DOI

Lin C., Aggrey S. (2013). Incorporation of economic values into the component traits of a ratio: feed efficiency. PubMed DOI

Madsen P., Jensen J. (2013).

Navarro A., Zamorano M. J., Hildebrandt S., Ginés R., Aguilera C., Afonso J. M. (2009). Estimates of heritabilities and genetic correlations for growth and carcass traits in gilthead seabream ( DOI

Nguyen N. H., Ponzoni R. W., Abu-Bakar K. R., Hamzah A., Khaw H. L., Yee H. Y. (2010a). Correlated response in fillet weight and yield to selection for increased harvest weight in genetically improved farmed tilapia (GIFT strain), DOI

Nguyen N. H., Ponzoni R. W., Yee H. Y., Abu-Bakar K. R., Hamzah A., Khaw H. L. (2010b). Quantitative genetic basis of fatty acid composition in the GIFT strain of DOI

Nielsen H. M., Ødegård J., Olesen I., Gjerde B., Ardo L., Jeney G., et al. (2010). Genetic analysis of common carp ( DOI

Ninh N. H., Ponzoni R. W., Nguyen N. H., Woolliams J. A., Taggart J. B., McAndrew B. J., et al. (2011). A comparison of communal and separate rearing of families in selective breeding of common carp ( DOI

Pinheiro J. C., Bates D. M. (2000). DOI

Powell J., White I., Guy D., Brotherstone S. (2008). Genetic parameters of production traits in Atlantic salmon ( DOI

Prchal M., Kause A., Vandeputte M., Gela D., Allamelou J. M., Girish K., et al. (2018). The genetics of overwintering performance in two-year old common carp and its relation to performance until market size. PubMed DOI PMC

Rueden C. T., Schindelin J., Hiner M. C., DeZonia B. E., Walter A. E., Arena E. T., et al. (2017). ImageJ2: ImageJ for the next generation of scientific image data. PubMed DOI PMC

Rutten M. J., Bovenhuis H., Komen H. (2004). Modeling fillet traits based on body measurements in three DOI

Rutten M. J., Bovenhuis H., Komen H. (2005). Genetic parameters for fillet traits and body measurements in DOI

Saillant E., Dupont-Nivet M., Sabourault M., Ha P., Laureau S., Vidal M.-O., et al. (2009). Genetic variation for carcass quality traits in cultured sea bass ( DOI

Van Sang N., Klemetsdal G., Ødegård J., Gjøen H. M. (2012). Genetic parameters of economically important traits recorded at a given age in striped catfish ( DOI

Van Sang N., Thomassen M., Klemetsdal G., Gjøen H. M. (2009). Prediction of fillet weight, fillet yield, and fillet fat for live river catfish ( DOI

Vandeputte M. (2003). Selective breeding of quantitative traits in the common carp ( DOI

Vandeputte M., Garouste R., Dupont-Nivet M., Haffray P., Vergnet A., Chavanne H., et al. (2014). Multi-site evaluation of the rearing performances of 5 wild populations of European sea bass ( DOI

Vandeputte M., Kocour M., Mauger S., Dupont-Nivet M., De Guerry D., Rodina M., et al. (2004). Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp ( DOI

Vandeputte M., Kocour M., Mauger S., Rodina M., Launay A., Gela D., et al. (2008). Genetic variation for growth at one and two summers of age in the common carp ( DOI

Vandeputte M., Puledda A., Tyran A. S., Bestin A., Coulombet C., Bajek A., et al. (2017). Investigation of morphological predictors of fillet and carcass yield in European sea bass ( DOI

Zajic T., Mraz J., Sampels S., Pickova J. (2013). Fillet quality changes as a result of purging of common carp ( DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...