• This record comes from PubMed

Potential for Genetic Improvement of the Main Slaughter Yields in Common Carp With in vivo Morphological Predictors

. 2018 ; 9 () : 283. [epub] 20180730

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Common carp is a major aquaculture species worldwide, commonly sold alive but also as processed headless carcass or filets. However, recording of processing yields is impossible on live breeding candidates, and alternatives for genetic improvement are either sib selection based on slaughtered fish, or indirect selection on correlated traits recorded in vivo. Morphological predictors that can be measured on live fish and that correlate with real slaughter yields hence remain a possible alternative. To quantify the power of morphological predictors for genetic improvement of yields, we estimated genetic parameters of slaughter yields and various predictors in 3-year-old common carp reared communally under semi-intensive pond conditions. The experimental stock was established by a partial factorial design of 20 dams and 40 sires, and 1553 progenies were assigned to their parents using 12 microsatellites. Slaughter yields were highly heritable (h2 = 0.46 for headless carcass yield, 0.50 for filet yield) and strongly genetically correlated with each other (rg = 0.96). To create morphological predictors, external (phenotypes, 2D digitization) and internal measurements (ultrasound imagery) were recorded and combined by multiple linear regression to predict slaughter yields. The accuracy of the phenotypic prediction was high for headless carcass yield (R2 = 0.63) and intermediate for filet yield (R2 = 0.49). Interestingly, heritability of predicted slaughter yields (0.48-0.63) was higher than that of the real yields to predict, and had high genetic correlations with the real yields (rg = 0.84-0.88). In addition, both predicted yields were highly phenotypically and genetically correlated with each other (0.95 for both), suggesting that using predicted headless carcass yield in a breeding program would be a good way to also improve filet yield. Besides, two individual predictors (P1 and P2) included in the prediction models and two simple internal measurements (E4 and E23) exhibited intermediate to high heritability estimates (h2 = 0.34 - 0.72) and significant genetic correlations to the slaughter yields (rg = |0.39 - 0.83|). The results show that there is a solid potential for genetic improvement of slaughter yields by selecting for predictor traits recorded on live breeding candidates of common carp.

See more in PubMed

Ankorion Y., Moav R., Wohlfarth G. (1992). Bidirectional mass selection for body shape in common carp. Genet. Sel. Evol. 24 43–52. 10.1186/1297-9686-24-1-43 DOI

Bauer B. C., Schlott G. (2009). Fillet yield and fat content in common carp (Cyprinus carpio) produced in three Austrian carp farms with different culture methodologies. J. Appl. Ichthyol. 25 591–594. 10.1111/j.1439-0426.2009.01282.x DOI

Boichard D., Barbotte L., Genestout L. (2014). “AccurAssign, software for accurate maximum-likelihood parentage assignment,” in Proceedings of the Tenth World Congress on Genetics Applied to Livestock Production Vancouver.

Bosworth B., Holland M., Brazil B. (2001). Evaluation of ultrasound imagery and body shape to predict carcass and fillet yield in farm-raised catfish. J. Anim. Sci. 79 1483–1490. 10.2527/2001.7961483x PubMed DOI

Bugeon J., Lefevre F., Cardinal M., Uyanik A., Davenel A., Haffray P. (2010). Flesh quality in large rainbow trout with high or low fillet yield. J. Muscle Foods 21 702–721. 10.1111/j.1745-4573.2010.00214.x DOI

Chavanne H., Janssen K., Hofherr J., Contini F., Haffray P., Komen H., et al. (2016). A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult. Int. 24 1287–1307. 10.1007/s10499-016-9985-0 DOI

Cibert C., Fermon Y., Vallod D., Meunier F. J. (1999). Morphological screening of carp Cyprinus carpio: relationship between morphology and fillet yield. Aquat. Living Resour. 12 1–10. 10.1016/S0990-7440(99)80009-6 DOI

Dong Z., Nguyen N. H., Zhu W. (2015). Genetic evaluation of a selective breeding program for common carp Cyprinus carpio conducted from 2004 to 2014. BMC Genet. 16:94. 10.1186/s12863-015-0256-2 PubMed DOI PMC

Efron B., Tibshirani R. (1993). An Introduction to the Bootstrap. New York, NY: CRC Press; 10.1007/978-1-4899-4541-9 DOI

Falconer D. S., MacKay T. F. C. (1996). Introduction to Quantitative Genetics 4th Edn. Harlow: Longman Scientific & Technical.

FAO (2016). FishStat Database. Available at: http://faostat.fao.org/site/629/default.Aspx

Flajšhans M., Gela D., Kocour M., Rodina M., Kašpar V., Linhart O., et al. (2015). “Amur mirror carp, a recently certified breed of common carp in the Czech Republic,” in Book of abstracts: Third International Conference on Common Carp Vodňany.

Fraslin C., Dupont-Nivet M., Haffray P., Bestin A., Vandeputte M. (2018). How to genetically increase fillet yield in fish: new insights from simulations based on field data. Aquaculture 486 175–183. 10.1016/j.aquaculture.2017.12.012 DOI

Gela D., Rodina M., Linhart O. (2003). Top-crossing with evaluation of slaughtering value in common carp (Cyprinus carpio L.) offspring. Aquacult. Int. 11 379–387. 10.1023/A:1025721723369 DOI

Gjedrem T. (2010). The first family-based breeding program in aquaculture. Rev. Aquacult. 2 2–15. 10.1111/j.1753-5131.2010.01011.x DOI

Gjedrem T., Baranski M. (2009). Selective Breeding in Aquaculture: an Introduction. Dordrecht: Springer Netherlands; 10.1007/978-90-481-2773-3 DOI

Gjerde B., Mengistu S. B., Ødegård J., Johansen H., Altamirano D. S. (2012). Quantitative genetics of body weight, fillet weight and fillet yield in Nile tilapia (Oreochromis niloticus). Aquaculture 342 117–124. 10.1016/j.aquaculture.2012.02.015 PubMed DOI

Gunsett F. (1984). Linear index selection to improve traits defined as ratios. J. Anim. Sci. 59 1185–1193. 10.2527/jas1984.5951185x DOI

Gunsett F. (1987). Merit of utilizing the heritability of a ratio to predict the genetic change of a ratio. J. Anim. Sci. 65 936–942. 10.2527/jas1987.654936x DOI

Haffray P., Bugeon J., Pincent C., Chapuis H., Mazeiraud E., Rossignol M. N., et al. (2012). Negative genetic correlations between production traits and head or bony tissues in large all-female rainbow trout (Oncorhynchus mykiss). Aquaculture 368 145–152. 10.1016/j.aquaculture.2012.09.023 DOI

Haffray P., Bugeon J., Rivard Q., Quittet B., Puyo S., Allamelou J. M., et al. (2013). Genetic parameters of in-vivo prediction of carcass, head and fillet yields by internal ultrasound and 2D external imagery in large rainbow trout (Oncorhynchus mykiss). Aquaculture 41 236–244. 10.1016/j.aquaculture.2013.06.016 DOI

Hu X., Li C., Shang M., Ge Y., Jia Z., Wang S., et al. (2017). Inheritance of growth traits in Songpu mirror carp (Cyprinus carpio L.) cultured in Northeast China. Aquaculture 477 1–5. 10.1016/j.aquaculture.2017.04.031 DOI

Hulata G. (1995). A review of genetic improvement of the common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection. Aquaculture 129 143–155. 10.1016/0044-8486(94)00244-I DOI

Janhunen M., Nousiainen A., Koskinen H., Vehviläinen H., Kause A. (2017). Selection strategies for controlling muscle lipid content recorded with a non-destructive method in European whitefish, Coregonus lavaretus. Aquaculture 481 229–238. 10.1016/j.aquaculture.2017.09.016 DOI

Janssen K., Chavanne H., Berentsen P., Komen H. (2017). Impact of selective breeding on European aquaculture. Aquaculture 472 8–16. 10.1016/j.aquaculture.2016.03.012 DOI

Kankainen M., Setälä J., Kause A., Quinton C., Airaksinen S., Koskela J. (2016). Economic values of supply chain productivity and quality traits calculated for a farmed European whitefish breeding program. Aquacult. Econ. Manag. 20 131–164. 10.1080/13657305.2016.1155961 DOI

Kause A., Paananen T., Ritola O., Koskinen H. (2007). Direct and indirect selection of visceral lipid weight, fillet weight, and fillet percentage in a rainbow trout breeding program. J. Anim. Sci. 85 3218–3227. 10.2527/jas.2007-0332 PubMed DOI

Klingenberg C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11 353–357. 10.1111/j.1755-0998.2010.02924.x PubMed DOI

Kocour M., Gela D., Rodina M., Linhart O. (2005a). Testing of performance in common carp Cyprinus carpio L. under pond husbandry conditions I: top-crossing with Northern mirror carp. Aquacult. Res. 36 1207–1215. 10.1111/j.1365-2109.2005.01340.x DOI

Kocour M., Linhart O., Gela D., Rodina M. (2005b). Growth performance of all-female and mixed-sex common carp Cyprinus Carpio L. populations in the Central Europe climatic conditions. J. World Aquacult. Soc. 36 103–113. 10.1111/j.1749-7345.2005.tb00136.x DOI

Kocour M., Mauger S., Rodina M., Gela D., Linhart O., Vandeputte M. (2007). Heritability estimates for processing and quality traits in common carp (Cyprinus carpio L.) using a molecular pedigree. Aquaculture 270 43–50. 10.1016/j.aquaculture.2007.03.001 DOI

Kohlmann K., Gross R., Murakaeva A., Kersten P. (2003). Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquat. Living Resour. 16 421–431. 10.1016/S0990-7440(03)00082-2 DOI

Kohlmann K., Kersten P., Flajšhans M. (2005). Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247 253–266. 10.1016/j.aquaculture.2005.02.024 DOI

Lin C. (1980). Relative efficiency of selection methods for improvement of feed efficiency. J. Dairy Sci. 63 491–494. 10.3168/jds.S0022-0302(80)82960-2 DOI

Lin C., Aggrey S. (2013). Incorporation of economic values into the component traits of a ratio: feed efficiency. Poultry Sci. 92 916–922. 10.3382/ps.2012-02688 PubMed DOI

Madsen P., Jensen J. (2013). DMU version 6. Available at: http://dmu.agrsci.dk/DMU/Doc/Current/dmuv6_guide.5.2.pdf

Navarro A., Zamorano M. J., Hildebrandt S., Ginés R., Aguilera C., Afonso J. M. (2009). Estimates of heritabilities and genetic correlations for growth and carcass traits in gilthead seabream (Sparus aurata L.), under industrial conditions. Aquaculture 289 225–230. 10.1016/j.aquaculture.2008.12.024 DOI

Nguyen N. H., Ponzoni R. W., Abu-Bakar K. R., Hamzah A., Khaw H. L., Yee H. Y. (2010a). Correlated response in fillet weight and yield to selection for increased harvest weight in genetically improved farmed tilapia (GIFT strain), Oreochromis niloticus. Aquaculture 305 1–5. 10.1016/j.aquaculture.2010.04.007 DOI

Nguyen N. H., Ponzoni R. W., Yee H. Y., Abu-Bakar K. R., Hamzah A., Khaw H. L. (2010b). Quantitative genetic basis of fatty acid composition in the GIFT strain of Nile tilapia (Oreochromis niloticus) selected for high growth. Aquaculture 309 66–74. 10.1016/j.aquaculture.2010.08.034 DOI

Nielsen H. M., Ødegård J., Olesen I., Gjerde B., Ardo L., Jeney G., et al. (2010). Genetic analysis of common carp (Cyprinus carpio) strains. I: genetic parameters and heterosis for growth traits and survival. Aquaculture 304 14–21. 10.1016/j.aquaculture.2010.03.016 DOI

Ninh N. H., Ponzoni R. W., Nguyen N. H., Woolliams J. A., Taggart J. B., McAndrew B. J., et al. (2011). A comparison of communal and separate rearing of families in selective breeding of common carp (Cyprinus carpio): estimation of genetic parameters. Aquaculture 32 39–46. 10.1016/j.aquaculture.2011.09.031 DOI

Pinheiro J. C., Bates D. M. (2000). Mixed-Effects Models in S and S-PLUS. New York, NY: Springer-Verlag; 10.1007/978-1-4419-0318-1 DOI

Powell J., White I., Guy D., Brotherstone S. (2008). Genetic parameters of production traits in Atlantic salmon (Salmo salar). Aquaculture 274 225–231. 10.1016/j.aquaculture.2007.11.036 DOI

Prchal M., Kause A., Vandeputte M., Gela D., Allamelou J. M., Girish K., et al. (2018). The genetics of overwintering performance in two-year old common carp and its relation to performance until market size. PLoS One 13:e0191624. 10.1371/journal.pone.0191624 PubMed DOI PMC

Rueden C. T., Schindelin J., Hiner M. C., DeZonia B. E., Walter A. E., Arena E. T., et al. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529. 10.1186/s12859-017-1934-z PubMed DOI PMC

Rutten M. J., Bovenhuis H., Komen H. (2004). Modeling fillet traits based on body measurements in three Nile tilapia strains (Oreochromis niloticus L.). Aquaculture 231 113–122. 10.1016/j.aquaculture.2003.11.002 DOI

Rutten M. J., Bovenhuis H., Komen H. (2005). Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture 246 125–132. 10.1016/j.aquaculture.2005.01.006 DOI

Saillant E., Dupont-Nivet M., Sabourault M., Ha P., Laureau S., Vidal M.-O., et al. (2009). Genetic variation for carcass quality traits in cultured sea bass (Dicentrarchus labrax). Aquat. Living Resour. 22 105–112. 10.1051/alr/2009010 DOI

Van Sang N., Klemetsdal G., Ødegård J., Gjøen H. M. (2012). Genetic parameters of economically important traits recorded at a given age in striped catfish (Pangasianodon hypophthalmus). Aquaculture 34 82–89. 10.1016/j.aquaculture.2012.03.013 DOI

Van Sang N., Thomassen M., Klemetsdal G., Gjøen H. M. (2009). Prediction of fillet weight, fillet yield, and fillet fat for live river catfish (Pangasianodon hypophthalmus). Aquaculture 288 166–171. 10.1016/j.aquaculture.2008.11.030 DOI

Vandeputte M. (2003). Selective breeding of quantitative traits in the common carp (Cyprinus carpio): a review. Aquat. Living Resour. 16 399–407. 10.1016/S0990-7440(03)00056-1 DOI

Vandeputte M., Garouste R., Dupont-Nivet M., Haffray P., Vergnet A., Chavanne H., et al. (2014). Multi-site evaluation of the rearing performances of 5 wild populations of European sea bass (Dicentrarchus labrax). Aquaculture 42 239–248. 10.1016/j.aquaculture.2014.01.005 DOI

Vandeputte M., Kocour M., Mauger S., Dupont-Nivet M., De Guerry D., Rodina M., et al. (2004). Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture 235 223–236. 10.1016/j.aquaculture.2003.12.019 DOI

Vandeputte M., Kocour M., Mauger S., Rodina M., Launay A., Gela D., et al. (2008). Genetic variation for growth at one and two summers of age in the common carp (Cyprinus carpio L.): heritability estimates and response to selection. Aquaculture 277 7–13. 10.1016/j.aquaculture.2008.02.009 DOI

Vandeputte M., Puledda A., Tyran A. S., Bestin A., Coulombet C., Bajek A., et al. (2017). Investigation of morphological predictors of fillet and carcass yield in European sea bass (Dicentrarchus labrax) for application in selective breeding. Aquaculture 470 40–49. 10.1016/j.aquaculture.2016.12.014 DOI

Zajic T., Mraz J., Sampels S., Pickova J. (2013). Fillet quality changes as a result of purging of common carp (Cyprinus carpio L.) with special regard to weight loss and lipid profile. Aquaculture 40 111–119. 10.1016/j.aquaculture.2013.03.004 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...