• This record comes from PubMed

Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17-36 Amide and Glucose-Dependent Insulinotropic Polypeptide

. 2022 Jun 02 ; 14 (6) : . [epub] 20220602

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The T-2 toxin, a major secondary metabolite of Fusarium Gramineae, is considered a great risk to humans and animals due to its toxicity, such as inducing emesis. The mechanism of emesis is a complex signal involving an imbalance of hormones and neurotransmitters, as well as activity of visceral afferent neurons. The T-2 toxin has been proven to induce emesis and possess the capacity to elevate expressions of intestinal hormones glucagon-like peptide-17-36 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), both of which are important emetic factors. In addition, the activation of calcium-sensitive receptor (CaSR) and transient receptor potential (TRP) channels are engaged in intestinal hormone release. However, it is unknown whether hormones GLP-1 and GIP mediate T-2 toxin-induced emetic response through activating CaSR and TRP channels. To further assess the mechanism of T-2 toxin-induced emesis, we studied the hypothesis that T-2 toxin-caused emetic response and intestinal hormones GLP-1 and GIP released in mink are associated with activating calcium transduction. Following oral gavage and intraperitoneal injection T-2 toxin, emetic responses were observed in a dose-dependent manner, which notably corresponded to the secretion of GLP-1 and GIP, and were suppressed by pretreatment with respective antagonist Exending9-39 and Pro3GIP. Additional research found that NPS-2143 (NPS) and ruthenium red (RR), respective antagonists of CaSR and TRP channels, dramatically inhibited both T-2 toxin-induced emesis response and the expression of plasma GLP-1 and GIP. According to these data, we observed that T-2 toxin-induced emetic response corresponds to secretion of GLP-1 and GIP via calcium transduction.

See more in PubMed

Hjelkrem A.-G.R., Aamot H.U., Brodal G., Strand E.C., Torp T., Edwards S.G., Dill-Macky R., Hofgaard I.S. HT-2 and T-2 toxins in Norwegian oat grains related to weather conditions at different growth stages. Eur. J. Plant Pathol. 2018;151:501–514. doi: 10.1007/s10658-017-1394-3. DOI

Kiš M., Vulić A., Kudumija N., Šarkanj B., Jaki Tkalec V., Aladić K., Škrivanko M., Furmeg S., Pleadin J. A two-year occurrence of fusarium T-2 and HT-2 toxin in Croatian cereals relative of the regional weather. Toxins. 2021;13:39. doi: 10.3390/toxins13010039. PubMed DOI PMC

Zhao L., Zhang L., Xu Z., Liu X., Chen L., Dai J., Karrow N.A., Sun L. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021;12:74. doi: 10.1186/s40104-021-00603-0. PubMed DOI PMC

Zhang J., Zhang H., Liu S.L., Wu W.D., Zhang H.B. Comparison of anorectic potencies of type A trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxins. 2018;10:179. doi: 10.3390/toxins10050179. PubMed DOI PMC

Wu W.D., Zhou H.R., Bursian S.J., Link J.E., Pestka J.J. Emetic responses to T-2 toxin, HT-2 toxin and emetine correspond to plasma elevations of peptide YY3-36 and 5-hydroxytryptamine. Arch. Toxicol. 2016;90:997–1007. doi: 10.1007/s00204-015-1508-7. PubMed DOI PMC

Zhang J., Jia H., Wang Q.Q., Zhang Y.J., Wu W.D., Zhang H.B. Role of peptide YY3-36 and glucose-dependent insulinotropic polypeptide in anorexia induction by trichothecences T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxicol. Sci. 2017;159:203–210. doi: 10.1093/toxsci/kfx128. PubMed DOI

Liu M., Zhang L., Chu X.-H., Ma R., Wang Y.-W., Liu Q., Zhang N.-Y., Karrow N.A., Sun L.-H. Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food Chem. Toxicol. 2020;141:111373. doi: 10.1016/j.fct.2020.111373. PubMed DOI

Zhang L., Ma R., Zhu M.-X., Zhang N.-Y., Liu X.-L., Wang Y.-W., Qin T., Zheng L.-Y., Liu Q., Zhang W.-P., et al. Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food Chem. Toxicol. 2020;138:111187. doi: 10.1016/j.fct.2020.111187. PubMed DOI

Wu W.D., Sheng K., Xu X., Zhang H., Zhou G. Potential roles for glucagon-like peptide-17–36 amide and cholecystokinin in anorectic response to the trichothecene mycotoxin T-2 toxin. Ecotoxicol. Environ. Saf. 2018;153:181–187. doi: 10.1016/j.ecoenv.2018.02.003. PubMed DOI

Vidal A., Bouzaghnane N., De Saeger S., De Boevre M. Human mycotoxin biomonitoring: Conclusive remarks on direct or indirect assessment of urinary deoxynivalenol. Toxins. 2020;12:139. doi: 10.3390/toxins12020139. PubMed DOI PMC

Knutsen H.K., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., Grasl-Kraupp B. Appropriateness to set a group health based guidance value for T2 and HT 2 toxin and its modified forms. EFSA J. 2017;15:e04655. PubMed PMC

Koch K.L., Andrews P., Stern R.M. Nausea: Mechanisms and Management. Oxford University Press; Oxford, UK: 2011.

Andrews P., Sanger G.J. Nausea and the quest for the perfect anti-emetic. Eur. J. Pharmacol. 2014;722:108–121. doi: 10.1016/j.ejphar.2013.09.072. PubMed DOI

Andrews P., Horn C. Signals for nausea and emesis: Implications for models of upper gastrointestinal diseases. Auton. Neurosci. 2006;125:100–115. doi: 10.1016/j.autneu.2006.01.008. PubMed DOI PMC

Hornby P.J. Central neurocircuitry associated with emesis. Am. J. Med. 2001;111:106–112. doi: 10.1016/S0002-9343(01)00849-X. PubMed DOI

Zhang J., Liu S.L., Zhang H., Li Y.Y., Wu W.D., Zhang H.B. Gut satiety hormones cholecystokinin and glucagon-like Peptide-1(7–36) amide mediate anorexia induction by trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol. Toxicol. Appl. Pharmacol. 2017;335:49–55. doi: 10.1016/j.taap.2017.09.020. PubMed DOI

Yue J.M., Guo D.W., Gao X.G., Wang J.C., Nepovimova E., Wu W.D., Kuca K. Deoxynivalenol (vomitoxin)-induced anorexia is Induced by the release of intestinal hormones in mice. Toxins. 2021;13:512. doi: 10.3390/toxins13080512. PubMed DOI PMC

Sheng K., Lu X., Yue J., Gu W., Gu C., Zhang H., Wu W.D. Role of neurotransmitters 5-hydroxytryptamine and substance P in anorexia induction following oral exposure to the trichothecene T-2 toxin. Food Chem. Toxicol. 2019;123:1–8. doi: 10.1016/j.fct.2018.10.041. PubMed DOI

Wu W.D., Zhou H.-R., Bursian S.J., Link J.E., Pestka J.J. Calcium-sensing receptor and transient receptor ankyrin-1 mediate emesis induction by deoxynivalenol (Vomitoxin) Toxicol. Sci. 2017;155:32–42. doi: 10.1093/toxsci/kfw191. PubMed DOI PMC

Müller T.D., Finan B., Bloom S.R., D’alessio D., Drucker D.J., Flatt P.R., Fritsche A., Gribble F., Grill H.J., Habener J.F., et al. Glucagon-like peptide 1 (GLP-1) Mol. Metab. 2019;30:72–130. doi: 10.1016/j.molmet.2019.09.010. PubMed DOI PMC

López-Ferreras L., Richard J., Noble E., Eerola K., Anderberg R., Olandersson K., Taing L., Kanoski S., Hayes M., Skibicka K. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol. Psychiatry. 2018;23:1157–1168. doi: 10.1038/mp.2017.187. PubMed DOI PMC

Kanoski S.E., Rupprecht L.E., Fortin S.M., De Jonghe B.C., Hayes M.R. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology. 2012;62:1916–1927. doi: 10.1016/j.neuropharm.2011.12.022. PubMed DOI PMC

Lu Z., Chan S.W., Tu L., Ngan M.P., Rudd J.A. GLP-1 receptors are involved in the GLP-1 (7–36) amide-induced modulation of glucose homoeostasis, emesis and feeding in Suncus murinus (house musk shrew) Eur. J. Pharmacol. 2020;888:173528. doi: 10.1016/j.ejphar.2020.173528. PubMed DOI

Borner T., Geisler C.E., Fortin S.M., Cosgrove R., Alsina-Fernandez J., Dogra M., Doebley S., Sanchez-Navarro M.J., Leon R.M., Gaisinsky J. GIP receptor agonism attenuates GLP-1 receptor agonist–induced nausea and emesis in preclinical models. Diabetes. 2021;70:2545–2553. doi: 10.2337/db21-0459. PubMed DOI PMC

Buchan A.M., Polak J.M., Capella C., Solcia E., Pearse A. Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) im man. Histochemistry. 1978;56:37–44. doi: 10.1007/BF00492251. PubMed DOI

Usdin T., Mezey E., Button D., Brownstein M., Bonner T. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology. 1993;133:2861–2870. doi: 10.1210/endo.133.6.8243312. PubMed DOI

Irwin N., Gault V.A., Green B.D., Greer B., Mccluskey J.T., Harriott P., Oharte F.P.M., Flatt P.R. Effects of short-term chemical ablation of the GIP receptor on insulin secretion, islet morphology and glucose homeostasis in mice. Biol. Chem. 2004;385:845–852. doi: 10.1515/BC.2004.110. PubMed DOI

Sheng K., Zhang H., Yue J.M., Gu W., Gu C., Zhang H.B., Wu W.D. Anorectic response to the trichothecene T-2 toxin correspond to plasma elevations of the satiety hormone glucose-dependent insulinotropic polypeptide and peptide YY3-36. Toxicology. 2018;402:28–36. doi: 10.1016/j.tox.2018.04.007. PubMed DOI

Zhao X., Xian Y., Wang C., Ding L., Meng X., Zhu W., Hang S. Calcium-sensing receptor-mediated L-tryptophan-induced secretion of cholecystokinin and glucose-dependent insulinotropic peptide in swine duodenum. J. Vet. Sci. 2018;19:179–187. doi: 10.4142/jvs.2018.19.2.179. PubMed DOI PMC

Van Liefferinge E., Van Noten N., Degroote J., Vrolix G., Van Poucke M., Peelman L., Van Ginneken C., Roura E., Michiels J. Expression of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 in the gut of the peri-weaning pig is strongly dependent on age and intestinal site. Animals. 2020;10:2417. doi: 10.3390/ani10122417. PubMed DOI PMC

Acar I., Cetinkaya A., Lay I., Ileri-Gurel E. The role of calcium sensing receptors in GLP-1 and PYY secretion after acute intraduodenal administration of L-Tryptophan in rats. Nutr. Neurosci. 2020;23:481–489. doi: 10.1080/1028415X.2018.1521906. PubMed DOI

Wu W., Zhou H.-R., Pestka J.J. Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin) Arch. Toxicol. 2017;91:495–507. doi: 10.1007/s00204-016-1687-x. PubMed DOI

Fairhurst S., Marrs T., Parker H., Scawin J., Swanston D. Acute toxicity of T2 toxin in rats, mice, guinea pigs, and pigeons. Toxicology. 1987;43:31–49. doi: 10.1016/0300-483X(87)90072-2. PubMed DOI

Mace O.J., Schindler M., Patel S. The regulation of K-and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J. Physiol. 2012;590:2917–2936. doi: 10.1113/jphysiol.2011.223800. PubMed DOI PMC

Kris M.G., Hesketh P.J., Somerfield M.R., Feyer P., Clark-Snow R., Koeller J.M., Morrow G.R., Chinnery L.W., Chesney M.J., Gralla R.J. American Society of Clinical Oncology guideline for antiemetics in oncology: Update 2006. J. Clin. Oncol. 2006;24:2932–2947. doi: 10.1200/JCO.2006.06.9591. PubMed DOI

Kalantari H., Mousavi M. Review on T-2 toxin. Jundishapur J. Nat. Pharm. Prod. 2010;5:26–38.

Beasley V.R., Swanson S.P., Corley R.A., Buck W.B., Koritz G.D., Burmeister H.R. Pharmacokinetics of the trichothecene mycotoxin, T-2 toxin, in swine and cattle. Toxicon. 1986;24:13–23. doi: 10.1016/0041-0101(86)90161-3. PubMed DOI

Osselaere A., Devreese M., Goossens J., Vandenbroucke V., De Baere S., De Backer P., Croubels S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013;51:350–355. doi: 10.1016/j.fct.2012.10.006. PubMed DOI

Horn C.C. Measuring the nausea-to-emesis continuum in non-human animals: Refocusing on gastrointestinal vagal signaling. Exp. Brain Res. 2014;232:2471–2481. doi: 10.1007/s00221-014-3985-y. PubMed DOI PMC

Babic T., Browning K.N. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur. J. Pharmacol. 2014;722:38–47. doi: 10.1016/j.ejphar.2013.08.047. PubMed DOI PMC

Miller A.D., Leslie R.A. The area postrema and vomiting. Front. Neuroendocrinol. 1994;15:301–320. doi: 10.1006/frne.1994.1012. PubMed DOI

Baker P.D., Morzorati S.L., Ellett M.L. The pathophysiology of chemotherapy-induced nausea and vomiting. Gastroenterol. Nurs. 2005;28:469–480. doi: 10.1097/00001610-200511000-00003. PubMed DOI

Hayes M.R., Borner T., De Jonghe B.C. The role of GIP in the regulation of GLP-1 satiety and nausea. Diabetes. 2021;70:1956–1961. doi: 10.2337/dbi21-0004. PubMed DOI PMC

Price C.J., Hoyda T.D., Ferguson A.V. The area postrema: A brain monitor and integrator of systemic autonomic state. Neuroscientist. 2007;14:182–194. doi: 10.1177/1073858407311100. PubMed DOI

Adams J.M., Pei H., Sandoval D.A., Seeley R.J., Chang R.B., Liberles S.D., Olson D.P. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor–expressing glutamatergic neurons. Diabetes. 2018;67:1538–1548. doi: 10.2337/db17-1385. PubMed DOI PMC

Bai L., Mesgarzadeh S., Ramesh K.S., Huey E.L., Liu Y., Gray L.A., Aitken T.J., Chen Y., Beutler L.R., Ahn J.S. Genetic identification of vagal sensory neurons that control feeding. Cell. 2019;179:1129–1143.e23. doi: 10.1016/j.cell.2019.10.031. PubMed DOI PMC

Krieger J.-P. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides. 2020;131:170342. doi: 10.1016/j.peptides.2020.170342. PubMed DOI

Trapp S., Brierley D.I. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br. J. Pharmacol. 2022;179:557–570. doi: 10.1111/bph.15638. PubMed DOI PMC

Williams E.K., Chang R.B., Strochlic D.E., Umans B.D., Lowell B.B., Liberles S.D. Sensory neurons that detect stretch and nutrients in the digestive system. Cell. 2016;166:209–221. doi: 10.1016/j.cell.2016.05.011. PubMed DOI PMC

Berthoud H.-R., Albaugh V.L., Neuhuber W.L. Gut-brain communication and obesity: Understanding functions of the vagus nerve. J. Clin. Investig. 2021;131:e143770. doi: 10.1172/JCI143770. PubMed DOI PMC

Borner T., Tinsley I.C., Doyle R.P., Hayes M.R., De Jonghe B.C. Glucagon-like peptide-1 in diabetes care: Can glycaemic control be achieved without nausea and vomiting? Br. J. Pharmacol. 2022;179:542–556. doi: 10.1111/bph.15647. PubMed DOI PMC

Trujillo J. Safety and tolerability of once-weekly GLP-1 receptor agonists in type 2 diabetes. J. Clin. Pharm. Ther. 2020;45:43–60. doi: 10.1111/jcpt.13225. PubMed DOI PMC

Bergenstal R.M., Wysham C., Macconell L., Malloy J., Walsh B., Yan P., Wilhelm K., Malone J., Porter L.E. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): A randomised trial. Lancet. 2010;376:431–439. doi: 10.1016/S0140-6736(10)60590-9. PubMed DOI

Ludwig M.Q., Todorov P.V., Egerod K.L., Olson D.P., Pers T.H. Single-cell mapping of GLP-1 and GIP receptor expression in the dorsal vagal complex. Diabetes. 2021;70:1945–1955. doi: 10.2337/dbi21-0003. PubMed DOI PMC

Adriaenssens A.E., Biggs E.K., Darwish T., Tadross J., Sukthankar T., Girish M., Polex-Wolf J., Lam B.Y., Zvetkova I., Pan W., et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 2019;30:987–996.e6. doi: 10.1016/j.cmet.2019.07.013. PubMed DOI PMC

Zhang C., Kaye J.A., Cai Z., Wang Y., Prescott S.L., Liberles S.D. Area postrema cell types that mediate nausea-associated behaviors. Neuron. 2021;109:461–472.e5. doi: 10.1016/j.neuron.2020.11.010. PubMed DOI PMC

Takeda N., Hasegawa S., Morita M., Matsunaga T. Pica in rats is analogous to emesis: An animal model in emesis research. Pharmacol. Biochem. Behav. 1993;45:817–821. doi: 10.1016/0091-3057(93)90126-E. PubMed DOI

Mcclean P.L., Gault V.A., Irwin N., Mccluskey J.T., Flatt P.R. Daily administration of the GIP-R antagonist (Pro(3))GIP in streptozotocin-induced diabetes suggests that insulin-dependent mechanisms are critical to anti-obesity-diabetes actions of (Pro(3))GIP. Diabetes Obes. Metab. 2008;10:336–342. doi: 10.1111/j.1463-1326.2007.00712.x. PubMed DOI

Pala L., Ciani S., Dicembrini I., Bardini G., Cresci B., Pezzatini A., Giannini S., Mannucci E., Rotella C.M. Relationship between GLP-1 levels and dipeptidyl peptidase-4 activity in different glucose tolerance conditions. Diabetic. Med. 2010;27:691–695. doi: 10.1111/j.1464-5491.2010.03010.x. PubMed DOI

Hausenloy D.J., Whittington H.J., Wynne A.M., Begum S.S., Theodorou L., Riksen N., Mocanu M.M., Yellon D.M. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc. Diabetol. 2013;12:154. doi: 10.1186/1475-2840-12-154. PubMed DOI PMC

Deacon C.F. Metabolism of GIP and the contribution of GIP to the glucose-lowering properties of DPP-4 inhibitors. Peptides. 2020;125:170196. doi: 10.1016/j.peptides.2019.170196. PubMed DOI

D’souza-Li L. The calcium-sensing receptor and related diseases. Arq. Bras. Endocrinol. Metabol. 2006;50:628–639. doi: 10.1590/S0004-27302006000400008. PubMed DOI

Roura E., Depoortere I., Navarro M. Chemosensing of nutrients and non-nutrients in the human and porcine gastrointestinal tract. Animal. 2019;13:2714–2726. doi: 10.1017/S1751731119001794. PubMed DOI

Yang J., Bai W.D., Zeng X.F., Cui C. γ-Glu ((n = 1,2))-Phe/-Met/-Val stimulates gastrointestinal hormone (CCK and GLP-1) secretion by activating the calcium-sensing receptor. Food Funct. 2019;10:4071–4080. doi: 10.1039/C9FO00313D. PubMed DOI

Wang L.Y., Ding L.R., Zhu W.Y., Hang S.Q. Soybean protein hydrolysate stimulated cholecystokinin secretion and inhibited feed intake through calcium-sensing receptors and intracellular calcium signalling in pigs. Food Funct. 2021;12:9286–9299. doi: 10.1039/D1FO01596F. PubMed DOI

Boesmans W., Owsianik G., Tack J., Voets T., Vanden Berghe P. TRP channels in neurogastroenterology: Opportunities for therapeutic intervention. Br. J. Pharmacol. 2011;162:18–37. doi: 10.1111/j.1476-5381.2010.01009.x. PubMed DOI PMC

Emery E.C., Diakogiannaki E., Gentry C., Psichas A., Habib A.M., Bevan S., Fischer M.J.M., Reimann F., Gribble F.M. Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes. 2014;64:1202–1210. doi: 10.2337/db14-0737. PubMed DOI PMC

Wang P., Yan Z., Zhong J., Chen J., Ni Y., Li L., Ma L., Zhao Z., Liu D., Zhu Z. Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis. Diabetes. 2012;61:2155–2165. doi: 10.2337/db11-1503. PubMed DOI PMC

Zhou H.-R., Pestka J.J. Deoxynivalenol (vomitoxin)-induced cholecystokinin and glucagon-like peptide-1 release in the STC-1 enteroendocrine cell model is mediated by calcium-sensing receptor and transient receptor potential ankyrin-1 channel. Toxicol. Sci. 2015;145:407–417. doi: 10.1093/toxsci/kfv061. PubMed DOI PMC

Liu M., Zhao L., Gong G., Zhang L., Shi L., Dai J., Han Y., Wu Y., Khalil M.M., Sun L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022;13:19. doi: 10.1186/s40104-021-00661-4. PubMed DOI PMC

Jia H., Wu W., Lu X., Zhang J., He C.H., Zhang H.B. Role of glucagon-like peptide-1 and gastric inhibitory peptide in anorexia induction following oral exposure to the trichothecene mycotoxin deoxynivalenol (Vomitoxin) Toxicol. Sci. 2017;159:16–24. doi: 10.1093/toxsci/kfx112. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...