Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17-36 Amide and Glucose-Dependent Insulinotropic Polypeptide
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35737050
PubMed Central
PMC9228683
DOI
10.3390/toxins14060389
PII: toxins14060389
Knihovny.cz E-resources
- Keywords
- T-2 toxin, brain–gut peptide, calcium-sensing receptor, emesis, transient receptor potential channel,
- MeSH
- Amides MeSH
- Emetics MeSH
- Glucagon-Like Peptide 1 metabolism MeSH
- Glucose pharmacology MeSH
- Insulin MeSH
- Peptide Fragments pharmacology MeSH
- Receptors, G-Protein-Coupled MeSH
- T-2 Toxin * toxicity MeSH
- Calcium MeSH
- Gastric Inhibitory Polypeptide metabolism pharmacology MeSH
- Animals MeSH
- Vomiting MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amides MeSH
- Emetics MeSH
- Glucagon-Like Peptide 1 MeSH
- Glucose MeSH
- Insulin MeSH
- Peptide Fragments MeSH
- Receptors, G-Protein-Coupled MeSH
- T-2 Toxin * MeSH
- Calcium MeSH
- Gastric Inhibitory Polypeptide MeSH
The T-2 toxin, a major secondary metabolite of Fusarium Gramineae, is considered a great risk to humans and animals due to its toxicity, such as inducing emesis. The mechanism of emesis is a complex signal involving an imbalance of hormones and neurotransmitters, as well as activity of visceral afferent neurons. The T-2 toxin has been proven to induce emesis and possess the capacity to elevate expressions of intestinal hormones glucagon-like peptide-17-36 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), both of which are important emetic factors. In addition, the activation of calcium-sensitive receptor (CaSR) and transient receptor potential (TRP) channels are engaged in intestinal hormone release. However, it is unknown whether hormones GLP-1 and GIP mediate T-2 toxin-induced emetic response through activating CaSR and TRP channels. To further assess the mechanism of T-2 toxin-induced emesis, we studied the hypothesis that T-2 toxin-caused emetic response and intestinal hormones GLP-1 and GIP released in mink are associated with activating calcium transduction. Following oral gavage and intraperitoneal injection T-2 toxin, emetic responses were observed in a dose-dependent manner, which notably corresponded to the secretion of GLP-1 and GIP, and were suppressed by pretreatment with respective antagonist Exending9-39 and Pro3GIP. Additional research found that NPS-2143 (NPS) and ruthenium red (RR), respective antagonists of CaSR and TRP channels, dramatically inhibited both T-2 toxin-induced emesis response and the expression of plasma GLP-1 and GIP. According to these data, we observed that T-2 toxin-induced emetic response corresponds to secretion of GLP-1 and GIP via calcium transduction.
College of Life Science Yangtze University Jingzhou 434025 China
School of Biology and Food Engineering Changshu Institute of Technology Suzhou 215500 China
See more in PubMed
Hjelkrem A.-G.R., Aamot H.U., Brodal G., Strand E.C., Torp T., Edwards S.G., Dill-Macky R., Hofgaard I.S. HT-2 and T-2 toxins in Norwegian oat grains related to weather conditions at different growth stages. Eur. J. Plant Pathol. 2018;151:501–514. doi: 10.1007/s10658-017-1394-3. DOI
Kiš M., Vulić A., Kudumija N., Šarkanj B., Jaki Tkalec V., Aladić K., Škrivanko M., Furmeg S., Pleadin J. A two-year occurrence of fusarium T-2 and HT-2 toxin in Croatian cereals relative of the regional weather. Toxins. 2021;13:39. doi: 10.3390/toxins13010039. PubMed DOI PMC
Zhao L., Zhang L., Xu Z., Liu X., Chen L., Dai J., Karrow N.A., Sun L. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021;12:74. doi: 10.1186/s40104-021-00603-0. PubMed DOI PMC
Zhang J., Zhang H., Liu S.L., Wu W.D., Zhang H.B. Comparison of anorectic potencies of type A trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxins. 2018;10:179. doi: 10.3390/toxins10050179. PubMed DOI PMC
Wu W.D., Zhou H.R., Bursian S.J., Link J.E., Pestka J.J. Emetic responses to T-2 toxin, HT-2 toxin and emetine correspond to plasma elevations of peptide YY3-36 and 5-hydroxytryptamine. Arch. Toxicol. 2016;90:997–1007. doi: 10.1007/s00204-015-1508-7. PubMed DOI PMC
Zhang J., Jia H., Wang Q.Q., Zhang Y.J., Wu W.D., Zhang H.B. Role of peptide YY3-36 and glucose-dependent insulinotropic polypeptide in anorexia induction by trichothecences T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxicol. Sci. 2017;159:203–210. doi: 10.1093/toxsci/kfx128. PubMed DOI
Liu M., Zhang L., Chu X.-H., Ma R., Wang Y.-W., Liu Q., Zhang N.-Y., Karrow N.A., Sun L.-H. Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food Chem. Toxicol. 2020;141:111373. doi: 10.1016/j.fct.2020.111373. PubMed DOI
Zhang L., Ma R., Zhu M.-X., Zhang N.-Y., Liu X.-L., Wang Y.-W., Qin T., Zheng L.-Y., Liu Q., Zhang W.-P., et al. Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food Chem. Toxicol. 2020;138:111187. doi: 10.1016/j.fct.2020.111187. PubMed DOI
Wu W.D., Sheng K., Xu X., Zhang H., Zhou G. Potential roles for glucagon-like peptide-17–36 amide and cholecystokinin in anorectic response to the trichothecene mycotoxin T-2 toxin. Ecotoxicol. Environ. Saf. 2018;153:181–187. doi: 10.1016/j.ecoenv.2018.02.003. PubMed DOI
Vidal A., Bouzaghnane N., De Saeger S., De Boevre M. Human mycotoxin biomonitoring: Conclusive remarks on direct or indirect assessment of urinary deoxynivalenol. Toxins. 2020;12:139. doi: 10.3390/toxins12020139. PubMed DOI PMC
Knutsen H.K., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., Grasl-Kraupp B. Appropriateness to set a group health based guidance value for T2 and HT 2 toxin and its modified forms. EFSA J. 2017;15:e04655. PubMed PMC
Koch K.L., Andrews P., Stern R.M. Nausea: Mechanisms and Management. Oxford University Press; Oxford, UK: 2011.
Andrews P., Sanger G.J. Nausea and the quest for the perfect anti-emetic. Eur. J. Pharmacol. 2014;722:108–121. doi: 10.1016/j.ejphar.2013.09.072. PubMed DOI
Andrews P., Horn C. Signals for nausea and emesis: Implications for models of upper gastrointestinal diseases. Auton. Neurosci. 2006;125:100–115. doi: 10.1016/j.autneu.2006.01.008. PubMed DOI PMC
Hornby P.J. Central neurocircuitry associated with emesis. Am. J. Med. 2001;111:106–112. doi: 10.1016/S0002-9343(01)00849-X. PubMed DOI
Zhang J., Liu S.L., Zhang H., Li Y.Y., Wu W.D., Zhang H.B. Gut satiety hormones cholecystokinin and glucagon-like Peptide-1(7–36) amide mediate anorexia induction by trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol. Toxicol. Appl. Pharmacol. 2017;335:49–55. doi: 10.1016/j.taap.2017.09.020. PubMed DOI
Yue J.M., Guo D.W., Gao X.G., Wang J.C., Nepovimova E., Wu W.D., Kuca K. Deoxynivalenol (vomitoxin)-induced anorexia is Induced by the release of intestinal hormones in mice. Toxins. 2021;13:512. doi: 10.3390/toxins13080512. PubMed DOI PMC
Sheng K., Lu X., Yue J., Gu W., Gu C., Zhang H., Wu W.D. Role of neurotransmitters 5-hydroxytryptamine and substance P in anorexia induction following oral exposure to the trichothecene T-2 toxin. Food Chem. Toxicol. 2019;123:1–8. doi: 10.1016/j.fct.2018.10.041. PubMed DOI
Wu W.D., Zhou H.-R., Bursian S.J., Link J.E., Pestka J.J. Calcium-sensing receptor and transient receptor ankyrin-1 mediate emesis induction by deoxynivalenol (Vomitoxin) Toxicol. Sci. 2017;155:32–42. doi: 10.1093/toxsci/kfw191. PubMed DOI PMC
Müller T.D., Finan B., Bloom S.R., D’alessio D., Drucker D.J., Flatt P.R., Fritsche A., Gribble F., Grill H.J., Habener J.F., et al. Glucagon-like peptide 1 (GLP-1) Mol. Metab. 2019;30:72–130. doi: 10.1016/j.molmet.2019.09.010. PubMed DOI PMC
López-Ferreras L., Richard J., Noble E., Eerola K., Anderberg R., Olandersson K., Taing L., Kanoski S., Hayes M., Skibicka K. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol. Psychiatry. 2018;23:1157–1168. doi: 10.1038/mp.2017.187. PubMed DOI PMC
Kanoski S.E., Rupprecht L.E., Fortin S.M., De Jonghe B.C., Hayes M.R. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology. 2012;62:1916–1927. doi: 10.1016/j.neuropharm.2011.12.022. PubMed DOI PMC
Lu Z., Chan S.W., Tu L., Ngan M.P., Rudd J.A. GLP-1 receptors are involved in the GLP-1 (7–36) amide-induced modulation of glucose homoeostasis, emesis and feeding in Suncus murinus (house musk shrew) Eur. J. Pharmacol. 2020;888:173528. doi: 10.1016/j.ejphar.2020.173528. PubMed DOI
Borner T., Geisler C.E., Fortin S.M., Cosgrove R., Alsina-Fernandez J., Dogra M., Doebley S., Sanchez-Navarro M.J., Leon R.M., Gaisinsky J. GIP receptor agonism attenuates GLP-1 receptor agonist–induced nausea and emesis in preclinical models. Diabetes. 2021;70:2545–2553. doi: 10.2337/db21-0459. PubMed DOI PMC
Buchan A.M., Polak J.M., Capella C., Solcia E., Pearse A. Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) im man. Histochemistry. 1978;56:37–44. doi: 10.1007/BF00492251. PubMed DOI
Usdin T., Mezey E., Button D., Brownstein M., Bonner T. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology. 1993;133:2861–2870. doi: 10.1210/endo.133.6.8243312. PubMed DOI
Irwin N., Gault V.A., Green B.D., Greer B., Mccluskey J.T., Harriott P., Oharte F.P.M., Flatt P.R. Effects of short-term chemical ablation of the GIP receptor on insulin secretion, islet morphology and glucose homeostasis in mice. Biol. Chem. 2004;385:845–852. doi: 10.1515/BC.2004.110. PubMed DOI
Sheng K., Zhang H., Yue J.M., Gu W., Gu C., Zhang H.B., Wu W.D. Anorectic response to the trichothecene T-2 toxin correspond to plasma elevations of the satiety hormone glucose-dependent insulinotropic polypeptide and peptide YY3-36. Toxicology. 2018;402:28–36. doi: 10.1016/j.tox.2018.04.007. PubMed DOI
Zhao X., Xian Y., Wang C., Ding L., Meng X., Zhu W., Hang S. Calcium-sensing receptor-mediated L-tryptophan-induced secretion of cholecystokinin and glucose-dependent insulinotropic peptide in swine duodenum. J. Vet. Sci. 2018;19:179–187. doi: 10.4142/jvs.2018.19.2.179. PubMed DOI PMC
Van Liefferinge E., Van Noten N., Degroote J., Vrolix G., Van Poucke M., Peelman L., Van Ginneken C., Roura E., Michiels J. Expression of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 in the gut of the peri-weaning pig is strongly dependent on age and intestinal site. Animals. 2020;10:2417. doi: 10.3390/ani10122417. PubMed DOI PMC
Acar I., Cetinkaya A., Lay I., Ileri-Gurel E. The role of calcium sensing receptors in GLP-1 and PYY secretion after acute intraduodenal administration of L-Tryptophan in rats. Nutr. Neurosci. 2020;23:481–489. doi: 10.1080/1028415X.2018.1521906. PubMed DOI
Wu W., Zhou H.-R., Pestka J.J. Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin) Arch. Toxicol. 2017;91:495–507. doi: 10.1007/s00204-016-1687-x. PubMed DOI
Fairhurst S., Marrs T., Parker H., Scawin J., Swanston D. Acute toxicity of T2 toxin in rats, mice, guinea pigs, and pigeons. Toxicology. 1987;43:31–49. doi: 10.1016/0300-483X(87)90072-2. PubMed DOI
Mace O.J., Schindler M., Patel S. The regulation of K-and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J. Physiol. 2012;590:2917–2936. doi: 10.1113/jphysiol.2011.223800. PubMed DOI PMC
Kris M.G., Hesketh P.J., Somerfield M.R., Feyer P., Clark-Snow R., Koeller J.M., Morrow G.R., Chinnery L.W., Chesney M.J., Gralla R.J. American Society of Clinical Oncology guideline for antiemetics in oncology: Update 2006. J. Clin. Oncol. 2006;24:2932–2947. doi: 10.1200/JCO.2006.06.9591. PubMed DOI
Kalantari H., Mousavi M. Review on T-2 toxin. Jundishapur J. Nat. Pharm. Prod. 2010;5:26–38.
Beasley V.R., Swanson S.P., Corley R.A., Buck W.B., Koritz G.D., Burmeister H.R. Pharmacokinetics of the trichothecene mycotoxin, T-2 toxin, in swine and cattle. Toxicon. 1986;24:13–23. doi: 10.1016/0041-0101(86)90161-3. PubMed DOI
Osselaere A., Devreese M., Goossens J., Vandenbroucke V., De Baere S., De Backer P., Croubels S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013;51:350–355. doi: 10.1016/j.fct.2012.10.006. PubMed DOI
Horn C.C. Measuring the nausea-to-emesis continuum in non-human animals: Refocusing on gastrointestinal vagal signaling. Exp. Brain Res. 2014;232:2471–2481. doi: 10.1007/s00221-014-3985-y. PubMed DOI PMC
Babic T., Browning K.N. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur. J. Pharmacol. 2014;722:38–47. doi: 10.1016/j.ejphar.2013.08.047. PubMed DOI PMC
Miller A.D., Leslie R.A. The area postrema and vomiting. Front. Neuroendocrinol. 1994;15:301–320. doi: 10.1006/frne.1994.1012. PubMed DOI
Baker P.D., Morzorati S.L., Ellett M.L. The pathophysiology of chemotherapy-induced nausea and vomiting. Gastroenterol. Nurs. 2005;28:469–480. doi: 10.1097/00001610-200511000-00003. PubMed DOI
Hayes M.R., Borner T., De Jonghe B.C. The role of GIP in the regulation of GLP-1 satiety and nausea. Diabetes. 2021;70:1956–1961. doi: 10.2337/dbi21-0004. PubMed DOI PMC
Price C.J., Hoyda T.D., Ferguson A.V. The area postrema: A brain monitor and integrator of systemic autonomic state. Neuroscientist. 2007;14:182–194. doi: 10.1177/1073858407311100. PubMed DOI
Adams J.M., Pei H., Sandoval D.A., Seeley R.J., Chang R.B., Liberles S.D., Olson D.P. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor–expressing glutamatergic neurons. Diabetes. 2018;67:1538–1548. doi: 10.2337/db17-1385. PubMed DOI PMC
Bai L., Mesgarzadeh S., Ramesh K.S., Huey E.L., Liu Y., Gray L.A., Aitken T.J., Chen Y., Beutler L.R., Ahn J.S. Genetic identification of vagal sensory neurons that control feeding. Cell. 2019;179:1129–1143.e23. doi: 10.1016/j.cell.2019.10.031. PubMed DOI PMC
Krieger J.-P. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides. 2020;131:170342. doi: 10.1016/j.peptides.2020.170342. PubMed DOI
Trapp S., Brierley D.I. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br. J. Pharmacol. 2022;179:557–570. doi: 10.1111/bph.15638. PubMed DOI PMC
Williams E.K., Chang R.B., Strochlic D.E., Umans B.D., Lowell B.B., Liberles S.D. Sensory neurons that detect stretch and nutrients in the digestive system. Cell. 2016;166:209–221. doi: 10.1016/j.cell.2016.05.011. PubMed DOI PMC
Berthoud H.-R., Albaugh V.L., Neuhuber W.L. Gut-brain communication and obesity: Understanding functions of the vagus nerve. J. Clin. Investig. 2021;131:e143770. doi: 10.1172/JCI143770. PubMed DOI PMC
Borner T., Tinsley I.C., Doyle R.P., Hayes M.R., De Jonghe B.C. Glucagon-like peptide-1 in diabetes care: Can glycaemic control be achieved without nausea and vomiting? Br. J. Pharmacol. 2022;179:542–556. doi: 10.1111/bph.15647. PubMed DOI PMC
Trujillo J. Safety and tolerability of once-weekly GLP-1 receptor agonists in type 2 diabetes. J. Clin. Pharm. Ther. 2020;45:43–60. doi: 10.1111/jcpt.13225. PubMed DOI PMC
Bergenstal R.M., Wysham C., Macconell L., Malloy J., Walsh B., Yan P., Wilhelm K., Malone J., Porter L.E. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): A randomised trial. Lancet. 2010;376:431–439. doi: 10.1016/S0140-6736(10)60590-9. PubMed DOI
Ludwig M.Q., Todorov P.V., Egerod K.L., Olson D.P., Pers T.H. Single-cell mapping of GLP-1 and GIP receptor expression in the dorsal vagal complex. Diabetes. 2021;70:1945–1955. doi: 10.2337/dbi21-0003. PubMed DOI PMC
Adriaenssens A.E., Biggs E.K., Darwish T., Tadross J., Sukthankar T., Girish M., Polex-Wolf J., Lam B.Y., Zvetkova I., Pan W., et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 2019;30:987–996.e6. doi: 10.1016/j.cmet.2019.07.013. PubMed DOI PMC
Zhang C., Kaye J.A., Cai Z., Wang Y., Prescott S.L., Liberles S.D. Area postrema cell types that mediate nausea-associated behaviors. Neuron. 2021;109:461–472.e5. doi: 10.1016/j.neuron.2020.11.010. PubMed DOI PMC
Takeda N., Hasegawa S., Morita M., Matsunaga T. Pica in rats is analogous to emesis: An animal model in emesis research. Pharmacol. Biochem. Behav. 1993;45:817–821. doi: 10.1016/0091-3057(93)90126-E. PubMed DOI
Mcclean P.L., Gault V.A., Irwin N., Mccluskey J.T., Flatt P.R. Daily administration of the GIP-R antagonist (Pro(3))GIP in streptozotocin-induced diabetes suggests that insulin-dependent mechanisms are critical to anti-obesity-diabetes actions of (Pro(3))GIP. Diabetes Obes. Metab. 2008;10:336–342. doi: 10.1111/j.1463-1326.2007.00712.x. PubMed DOI
Pala L., Ciani S., Dicembrini I., Bardini G., Cresci B., Pezzatini A., Giannini S., Mannucci E., Rotella C.M. Relationship between GLP-1 levels and dipeptidyl peptidase-4 activity in different glucose tolerance conditions. Diabetic. Med. 2010;27:691–695. doi: 10.1111/j.1464-5491.2010.03010.x. PubMed DOI
Hausenloy D.J., Whittington H.J., Wynne A.M., Begum S.S., Theodorou L., Riksen N., Mocanu M.M., Yellon D.M. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc. Diabetol. 2013;12:154. doi: 10.1186/1475-2840-12-154. PubMed DOI PMC
Deacon C.F. Metabolism of GIP and the contribution of GIP to the glucose-lowering properties of DPP-4 inhibitors. Peptides. 2020;125:170196. doi: 10.1016/j.peptides.2019.170196. PubMed DOI
D’souza-Li L. The calcium-sensing receptor and related diseases. Arq. Bras. Endocrinol. Metabol. 2006;50:628–639. doi: 10.1590/S0004-27302006000400008. PubMed DOI
Roura E., Depoortere I., Navarro M. Chemosensing of nutrients and non-nutrients in the human and porcine gastrointestinal tract. Animal. 2019;13:2714–2726. doi: 10.1017/S1751731119001794. PubMed DOI
Yang J., Bai W.D., Zeng X.F., Cui C. γ-Glu ((n = 1,2))-Phe/-Met/-Val stimulates gastrointestinal hormone (CCK and GLP-1) secretion by activating the calcium-sensing receptor. Food Funct. 2019;10:4071–4080. doi: 10.1039/C9FO00313D. PubMed DOI
Wang L.Y., Ding L.R., Zhu W.Y., Hang S.Q. Soybean protein hydrolysate stimulated cholecystokinin secretion and inhibited feed intake through calcium-sensing receptors and intracellular calcium signalling in pigs. Food Funct. 2021;12:9286–9299. doi: 10.1039/D1FO01596F. PubMed DOI
Boesmans W., Owsianik G., Tack J., Voets T., Vanden Berghe P. TRP channels in neurogastroenterology: Opportunities for therapeutic intervention. Br. J. Pharmacol. 2011;162:18–37. doi: 10.1111/j.1476-5381.2010.01009.x. PubMed DOI PMC
Emery E.C., Diakogiannaki E., Gentry C., Psichas A., Habib A.M., Bevan S., Fischer M.J.M., Reimann F., Gribble F.M. Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes. 2014;64:1202–1210. doi: 10.2337/db14-0737. PubMed DOI PMC
Wang P., Yan Z., Zhong J., Chen J., Ni Y., Li L., Ma L., Zhao Z., Liu D., Zhu Z. Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis. Diabetes. 2012;61:2155–2165. doi: 10.2337/db11-1503. PubMed DOI PMC
Zhou H.-R., Pestka J.J. Deoxynivalenol (vomitoxin)-induced cholecystokinin and glucagon-like peptide-1 release in the STC-1 enteroendocrine cell model is mediated by calcium-sensing receptor and transient receptor potential ankyrin-1 channel. Toxicol. Sci. 2015;145:407–417. doi: 10.1093/toxsci/kfv061. PubMed DOI PMC
Liu M., Zhao L., Gong G., Zhang L., Shi L., Dai J., Han Y., Wu Y., Khalil M.M., Sun L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022;13:19. doi: 10.1186/s40104-021-00661-4. PubMed DOI PMC
Jia H., Wu W., Lu X., Zhang J., He C.H., Zhang H.B. Role of glucagon-like peptide-1 and gastric inhibitory peptide in anorexia induction following oral exposure to the trichothecene mycotoxin deoxynivalenol (Vomitoxin) Toxicol. Sci. 2017;159:16–24. doi: 10.1093/toxsci/kfx112. PubMed DOI