High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
30479758
PubMed Central
PMC6249210
DOI
10.1038/s41377-018-0094-x
PII: 94
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Progress in neuroscience relies on new techniques for investigating the complex dynamics of neuronal networks. An ongoing challenge is to achieve minimally invasive and high-resolution observations of neuronal activity in vivo inside deep brain areas. Recently introduced methods for holographic control of light propagation in complex media enable the use of a hair-thin multimode optical fibre as an ultranarrow imaging tool. Compared to endoscopes based on graded-index lenses or fibre bundles, this new approach offers a footprint reduction exceeding an order of magnitude, combined with a significant enhancement in resolution. We designed a compact and high-speed system for fluorescent imaging at the tip of a fibre, achieving a resolution of 1.18 ± 0.04 µm across a 50-µm field of view, yielding 7-kilopixel images at a rate of 3.5 frames/s. Furthermore, we demonstrate in vivo observations of cell bodies and processes of inhibitory neurons within deep layers of the visual cortex and hippocampus of anaesthetised mice. This study paves the way for modern microscopy to be applied deep inside tissues of living animal models while exerting a minimal impact on their structural and functional properties.
Institute of Scientific Instruments of CAS Kralovopolska 147 Brno 612 64 Czech Republic
Leibniz Institute of Photonic Technology Albert Einstein Straße 9 Jena 07745 Germany
School of Life Sciences University of Dundee Nethergate Dundee DD1 4HN UK
School of Science and Engineering University of Dundee Nethergate Dundee DD1 4HN UK
Simons Initiative for the Developing Brain University of Edinburgh Edinburgh EH8 9XD UK
Zobrazit více v PubMed
Mosk AP, Lagendijk A, Lerosey G, Fink M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics. 2012;6:283–292. doi: 10.1038/nphoton.2012.88. DOI
Di Leonardo R, Bianchi S. Hologram transmission through multi-mode optical fibers. Opt. Express. 2011;19:247–254. doi: 10.1364/OE.19.000247. PubMed DOI
Čižmár T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express. 2011;19:18871–18884. doi: 10.1364/OE.19.018871. PubMed DOI
Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 2012;3:1027. doi: 10.1038/ncomms2024. PubMed DOI PMC
Papadopoulos IN, Farahi S, Moser C, Psaltis D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express. 2012;20:10583–10590. doi: 10.1364/OE.20.010583. PubMed DOI
Choi Y, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 2012;109:203901. doi: 10.1103/PhysRevLett.109.203901. PubMed DOI PMC
Papadopoulos IN, Farahi S, Moser C, Psaltis D. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express. 2013;4:260–270. doi: 10.1364/BOE.4.000260. PubMed DOI PMC
Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Nat. Photonics. 2015;9:529–535. doi: 10.1038/nphoton.2015.112. DOI
Morales-Delgado EE, Psaltis D, Moser C. Two-photon imaging through a multimode fiber. Opt. Express. 2015;23:32158–32170. doi: 10.1364/OE.23.032158. PubMed DOI
Plöschner M, et al. Multimode fibre: Light-sheet microscopy at the tip of a needle. Sci. Rep. 2015;5:18050. doi: 10.1038/srep18050. PubMed DOI PMC
Leite IT, et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics. 2018;12:33–39. doi: 10.1038/s41566-017-0053-8. DOI
Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 2007;32:2309–2311. doi: 10.1364/OL.32.002309. PubMed DOI
Vellekoop IM, Mosk AP. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 2008;101:120601. doi: 10.1103/PhysRevLett.101.120601. PubMed DOI
Popoff S, Lerosey G, Fink M, Boccara AC, Gigan S. Image transmission through an opaque material. Nat. Commun. 2010;1:81. doi: 10.1038/ncomms1078. PubMed DOI
Popoff SM, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 2010;104:100601. doi: 10.1103/PhysRevLett.104.100601. PubMed DOI
Conkey DB, Caravaca-Aguirre AM, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express. 2012;20:1733–1740. doi: 10.1364/OE.20.001733. PubMed DOI
Goorden SA, Bertolotti J, Mosk AP. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express. 2014;22:17999–18009. doi: 10.1364/OE.22.017999. PubMed DOI
Akbulut D, Huisman TJ, Van Putten EG, Vos WL, Mosk AP. Focusing light through random photonic media by binary amplitude modulation. Opt. Express. 2011;19:4017–4029. doi: 10.1364/OE.19.004017. PubMed DOI
Caravaca-Aguirre AM, Niv E, Conkey DB, Piestun R. Real-time resilient focusing through a bending multimode fiber. Opt. Express. 2013;21:12881–12887. doi: 10.1364/OE.21.012881. PubMed DOI
Turtaev S, et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express. 2017;25:29874–29884. doi: 10.1364/OE.25.029874. PubMed DOI
Ohayon S, Caravaca-Aguirre A, Piestun R, DiCarlo JJ. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express. 2018;9:1492–1509. doi: 10.1364/BOE.9.001492. PubMed DOI PMC
Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 2017;18:222–235. doi: 10.1038/nrn.2017.15. PubMed DOI PMC
Sharp AA, Ortega AM, Restrepo D, Curran-Everett D, Gall K. In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. Ieee. Trans. Biomed. Eng. 2009;56:45–53. doi: 10.1109/TBME.2008.2003261. PubMed DOI PMC
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 2015;6:48–67. doi: 10.1021/cn500256e. PubMed DOI PMC
Chandrasekaran S. N., Ligtenberg H., Steenbergen W., Vellekoop I. M. Using digital micromirror devices for focusing light through turbid media. In Proc. Emerging Digital Micromirror Device Based Systems and Applications VI 897905(SPIE: San Francisco, California, USA, 2014).
Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015;523:592–596. doi: 10.1038/nature14467. PubMed DOI PMC
Sato M, Kawano M, Yanagawa Y, Hayashi Y. In vivo two-photon imaging of striatal neuronal circuits in mice. Neurobiol. Learn. Mem. 2016;135:146–151. doi: 10.1016/j.nlm.2016.07.006. PubMed DOI
Lee WH. Binary computer-generated holograms. Appl. Opt. 1979;18:3661–3669. doi: 10.1364/AO.18.003661. PubMed DOI
"There's plenty of room at the bottom": deep brain imaging with holographic endo-microscopy
Suppression of the non-linear background in a multimode fibre CARS endoscope
Neurophotonic tools for microscopic measurements and manipulation: status report
Memory effect assisted imaging through multimode optical fibres
Compressively sampling the optical transmission matrix of a multimode fibre